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ABSTRACT: The Tevatron longitudinal dampers were built in 2002 to stop the proton beam from
spontaneously blowing up during high energy physics. The system has been operational since
then and has been very successful in keeping the beam stable. In October 2011, the Tevatron
will be shutdown and the dampers decommissioned. The goal of this paper is to document the
9 year experience in the operation of these dampers, account for the design choices made at the
time, describe its commissioning, and its performance during its working life. Included will be a
discussion on the type of instability which required the damper to be built.
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1. Introduction

When Run II began in its first year, the high current stored in the Tevatron caused unforeseen
problems in the beam dynamics. These needed to be fixed before higher luminosities could be
achieved. One of the problems that started to appear at the beginning of 2002 was the rapid blow
up of the longitudinal beam size during a store. See Figure 1. Although these blow ups do not
appear in every store, they seem to be weakly correlated with beam current. At that time, there
were conjectures that coupled bunch mode instabilities that arose from coupling to the higher order
parasitic modes of the RF cavities are the cause of the instabilities. As the frequency of these higher
modes move as a function of temperature, the coupled bunch modes can be stable or unstable
depending on where and how the higher order parasitic modes line up. Table 1 shows eleven stores
in the month of May 2002 where about 2/3 of the stores were unstable. Note: The “before blow
up” time is measured w.r.t. the time flattop is reached.
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Table 1. Comparison of different stores
Store Date Num. Bunch Bunch Time 111///eee time 111///eee time Comments

protons length length before before after
×××111000111111 before after blow up blow up blow up

blow up blow up (min) (hr) (hr)
(ns) (ns)

1302 8 May 02 1.70 2.0 2.3 60 42 67
1305 9 May 02 1.67 2.0 2.3 6 12 43
1307 10 May 02 1.79 2.0 – – 53 – No blow up
1309 11 May 02 1.71 2.0 – – 42 – No blow up
1313 12 May 02 1.76 2.0 – – 40 – No blow up
1329 16 May 02 1.76 1.9 2.2 3 No data 77
1332 17 May 02 1.78 1.9 2.4 6 9 83
1333 18 May 02 1.81 2.1 – – 50 – No blow up
1335 19 May 02 1.77 2.0 2.2 39 40 59
1337 20 May 02 1.83 2.0 2.2 16 19 56
1340 21 May 02 1.94 2.0 2.6 2 No data No data

Figure 1. The beam blows up longitudinally (rms bunch length – T:SBDMS) at about 1340hrs during the
store which started at about 1300hrs. We see that when it blows up the phase of the bunch oscillates w.r.t.
the RF (amplitude of the oscillation– T:LDM0IF). Plotted also are beam current T:IBEAM and the magnet
bus current T:IRING.

The instability could not be controlled with narrow band (mode 0) dampers. This showed us
that the instability may be a longitudinal head-tail or higher order coupled bunch mode. At the time,
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we did not have the instrumentation to distinguish between the two types, but later experiments
showed that the longitudinal instability was indeed mode 1 coupled bunch mode instability. See
section 1.2.

The attitude in 2002 was to stop the beam from blowing up at all cost and to do it very quickly
because this instability not only caused unacceptable beam loss at the experiments, it also caused
a drop in luminosity. See section 1.1. The problem for us was that the type of instability was an
unknown and so building a narrow band damper system was too much of a risk.

We decided to build a wide band longitudinal damper system that would take care of all the
coupled bunch mode instabilities (except mode 0) because of the strong time pressures for solving
this problem.1 In our design, we used the accelerating cavities as its kicker which meant that
we had to take into account their high Q (104) and the rapidity of their impedance fall off away
from resonance. Furthermore, the amplitude and phase response is not constant for all synchrotron
sideband pairs, and thus the response of the dampers for the mode 1 coupled bunch mode would
be an order of magnitude greater than the higher order coupled bunch modes. It would have been
impossible to keep the feedback stable for mode 1 and still have useful gain at the higher order
modes. We overcame this problem by building an equalizer that leveled the impedance so that it
looked constant away from the resonance. Besides the equalizer, the damper also needed a notch
filter that suppressed the revolution harmonics (otherwise these harmonics would limit the gain of
the loop) and differentiated in time the synchrotron sidebands. Lastly, we also had to time in the
system so that the error signal of bunch n was applied exactly one turn later to kick bunch n.

1.1 Effects on luminosity and background losses

When the bunch length suddenly grows, the luminosity at the experiments drops quickly and also
causes long persistent background losses at the experiments.

The effect on luminosity is shown in Figure 2. The increase in bunch length by 8.8% causes a
drop of ∼2% of at CDF and 1.6% at D0. Note: The CDF data shown here is much noisier than D0
and despite an initial luminosity drop from the bunch length growth, it increases again when the
bunch length is shaved away in the high dispersion areas of the Tevatron. Interestingly, D0 does
not see an increase when the bunch length decreased.

The effect on background losses at the CDF experiment are shown in Figure 3 which increases
by at a factor of 4 when the bunch length suddenly grows. It is only when the collimators are
withdrawn and the beam no longer scrapes on them that the losses get under control.

1.2 Coupled Bunch Mode Instability

It is not until much later that the type of instability was identified to be coupled bunch mode 1
when better instrumentation and software became available. The Tevatron SBD (sampled bunch
display [1]) was used to collect the centroid data of each bunch shown in Figure 4. Each frame
shows the position of the 36 bunch centroids w.r.t. its position before the onset of the instability
in consecutive frames which are taken 2 s apart. Frame 1 shows the onset of the instability where

1Clearly, there are other ways to stop the instabilities if we were confident as to the source, e.g. lowering the
impedance of the RF cavities [2, 3]. However, although the RF cavities are the most likely candidates for the source of
the instability, there are other large impedance devices in the Tevatron, e.g. Lambertsons.
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CDF luminosity

D0 luminosity

Bunch length

Figure 2. The luminosity at the experiments CDF (C:B0ILUM) and D0 (C:D0FZTL) and the median rms
bunch length (T:SBDMS) are plotted here. The bunch length growth from the instability drops the luminosity
at both experiments.

the mode 1 pattern just begins. This pattern becomes very clear in frames 4, 5 and 6 where the
centroids can have a maximum amplitude of 49◦. This pattern starts to dissipate after frame 7.

The source of the instability is still not completely understood even after 9 years of operations.
The most likely impedance candidates are the RF cavity fundamental mode or a parasitic mode at
311 MHz.

2. Theory

Let us consider a simple damper system shown in Figure 5. The source of this derivation comes
from D. McGinnis [4]. Looking at Figure 5, ZE represents the impedance of the electronics and GB

represents the conductance of the beam. Therefore,

IG = GBVout (2.1)

and the output voltage Vout of the damper is

Vout = ZE

(
Iin + IG

)

= ZE

(
Iin +GBVout

)
(2.2)
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Bunch Length

Proton losses at CDF

Collimators 

retracted

Figure 3. The sudden bunch length growth (T:SBDMS) causes the losses at CDF to increase and become
very spiky (C:LOSTP and C:B0RAT4). The sudden drop in losses comes from the withdrawal of collimators.

Solving for the impedance of the entire system ZD, we have

ZD(s) =
Vout

Iin
=

ZE(s)
1−GB(s)ZE(s)

(2.3)

So, if we examine Eq. 2.3, we can see in its denominator is GBZE , which is the open loop
response of the damper system. To determine the stability of the damper system, let ZE be of finite
bandwidth with one pole, i.e.

ZE ≡ Z′E
1+αs

(2.4)

Then

ZD =
Z′E

α
(

s+ 1−GBZ′E
α

) (2.5)

which implies that the pole is at

sp =−1−GBZ′E
α

(2.6)

and thus by inverse Laplace transforming Eq. 2.5, we have the temporal response WD of the damper
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frame 1+2.5 ns (49° )

−2.5 ns (−49° )

frame 2

frame 3 frame 4

frame 5 frame 6

frame 7 frame 8

frame 9 frame 10

Figure 4. These frames, which are taken 2 s apart, show the time evolution of the instability for the
36 bunches in the Tevatron for store 3918 (11 Jan 2005) where the longitudinal dampers were acciden-
tally disabled. Each green box is the centroid position of the bunch w.r.t. its position before the instability.
Frames 3, 4, 5 and 6 clearly show a mode 1 coupled bunch mode pattern.

system

WD(t)∼ espt

= e−
1−Re

[
GBZ′E

]
α t × eiIm

[
GBZ′E

]
t

= (decay or growth part)× (oscillatory part) (2.7)
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Figure 5. This is a block diagram of a simple damper system.

Clearly, for dampers we want the decay part of Eq. 2.7, thus

1−Re
[

GBZ′E

]
> 0 (2.8)

or

Re
[

GBZ′E

]
< 1 (2.9)

which means that the real part of the open loop response must be < 1 for damping. This is the most
important result of this section.

3. Hardware Setup

In this section, we will go through each part of our setup used for our bunch by bunch longitudinal
dampers and show that the open loop response GBZ′E < 1. Figure 6 is a block diagram of the setup.
The damper system starts at the stripline pickups which sum the beam signals at the two plates to
produce a signal which is proportional to the longitudinal position of the beam. This signal is then
down converted with the Tevatron RF (53 MHz) to produce a phase error (or quadrature) signal
w.r.t. it. The error signal is then processed with electronics which perform the following:

(i) Equalize the impedance of the RF cavity.

(ii) Suppress the revolution harmonics and differentiate the synchrotron sidebands around the
revolution lines.

(iii) One turn delay so that when the dampers pick up the signal of bunch 1 it will kick bunch 1
one turn later.

To accomplish (i), we have a high pass filter (hpf) which equalizes the RF cavity impedance
and for (ii), we have notch filters at every revolution harmonic. For (iii) we have a digital delay
and a near uniform triggering system.
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Figure 6. This figure shows the block diagram of the setup used for the longitudinal dampers.

3.1 Equalizer

The idea of using a hpf to equalize the impedance of the RF cavity comes from observing that if
we model the RF cavity impedance ZRF using an RLC circuit and define Rs is its shunt impedance,
L is its inductance and C is its capacitance, then

ZRF =
Rs

1− iQ
(

ωR
ω − ω

ωR

) (3.1)

If ωR = 1/
√

LC is its resonant frequency and Q = Rs
√

C/L is its quality factor, then the magnitude∣∣∣∣ZRF

∣∣∣∣ is

∣∣∣∣ZRF

∣∣∣∣ =
Rs√

1+Q2
(

ωR
ω − ω

ωR

)2

=
Rs

Q
∣∣∣ωR

ω − ω
ωR

∣∣∣
when Q→ ∞ (3.2)
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If we write ω = ωR + δω so that δω/ωR ¿ 1 (for example, in our system 47 kHz < δω/2π <

1.25 MHz, ωR/2π = 53 MHz, and Q∼ 104), Eq. 3.2 becomes

∣∣∣∣ZRF

∣∣∣∣ =
Rs

2Q

∣∣∣ ωR

δω

∣∣∣∼
∣∣∣ ωR

δω

∣∣∣ (3.3)

which means that
∣∣∣∣ZRF

∣∣∣∣ has a 1/δω type dependence when Q→ ∞ and δω/ωR ¿ 1.

Next, let us examine the response of a hpf. We introduce first a new variable ∆ω = (ω−ωRF)
(the reason for doing this will become apparent later on in the analysis). ωRF is the RF drive
frequency and ωRF ≈ ωR. For a hpf with a 3 dB response at ∆ω3dB, its response function Rhpf is

Rhpf(∆ω) =
1+ i ∆ω3dB

∆ω

1+ ∆ω2
3dB

∆ω2

(3.4)

and when ∆ω ¿ ∆ω3dB, we see that

Rhpf

(
∆ω ¿ ∆ω3dB

)
= i

∆ω
∆ω3dB

⇒
∣∣∣∣Rhpf

(
∆ω ¿ ∆ω3dB

)∣∣∣∣ =
∣∣∣∣

∆ω
∆ω3dB

∣∣∣∣ (3.5)

and thus
∣∣∣∣Rhpf

∣∣∣∣ has a ∆ω dependence. So now, we have to multiply the baseband response of the

hpf by the impedance of the RF cavity which is strongest about ωR to obtain a constant impedance.

3.2 Phase Shifter

A phase shifter is a device takes as input a voltage Vin and converts it to a phase shift ∆φ in the RF.
Suppose the conversion factor between voltage and angle is K rad/V and the RF to be shifted is
VRF sinωRFt and Vin(∆ω) = V0ei∆ωtRhpf(∆ω), (See Appendix I of Reference [5]) , the output of the
phase shifter is

V∆φ (dipole mode) =
VRF

2
KV0Rhpf(∆ω)eiωt (3.6)

from which we can just read off2 the dipole mode response of the hpf phase shifter combination as

∣∣∣∣Rhpf+∆φ (ω)
∣∣∣∣ =

∣∣∣∣
VRF

2
KRhpf(∆ω)

∣∣∣∣∼
∣∣∣∣

∆ω
∆ω3dB

∣∣∣∣ (3.7)

Therefore, Rhpf+∆φ (ω)ZRF(ω) will have a constant impedance in the region around ωR ≈ ωRF and∣∣∣∣ωRF−ω
∣∣∣∣¿ ω3dB as required. In the design, we chose f3dB = 2 MHz

2There is a subtlety here, since the phase shifter is a non linear device which means technically there the frequency
response is undefined. However, by introducing ∆ω which is equivalent to a down converted signal, we can talk of a
response.

– 9 –



3.3 Notch Filter

The notch filter used in the electronics serves a two fold purpose. First, it suppresses the revolution
harmonics. Second, it differentiates the synchrotron sidebands around the revolution harmonics
which tells the damper which direction to kick. In our setup, the notch filter is created with two
digital delay lines. Its response is given by

Rnotch(ω) = 1− e−iωNT (3.8)

where T is the revolution period and N is the number of revolution periods in the delay. We will
see later in this section that the choice of N is a compromise between the synchrotron frequency of
the Tevatron at 150 GeV and 980 GeV.

The notch filter clearly suppresses the revolution harmonics at ω0 = 2π f0 since Rnotch = 0
whenever

ω = 2Mπ/NT M ∈ Z
f =

M
N

f0 (3.9)

i.e. a notch appears at every multiple of the revolution harmonic f0 whenever M is a multiple of N.
Another observation is that the number of notches between 0 and f0 is N.

The block diagram of the actual implementation of the digital notch filter is shown in Figure 7.
A full discussion on how the notch filter is built is in ref. [6]. The filter consists of one 14-bit
digitizer, two 64k-value asynchronous FIFO memories, a 14-bit ALU, one 14-bit DAC, and two
counters. The input signal is digitized and loaded into both FIFOs. The FIFOs hold the data for the
number of clock ticks specified by the counters and then out put their data to the ALU. The ALU
performs the desired math function on the data and drives the input to the DAC. The output signal
comes from the DAC.

Figure 7. Block diagram of the digital notch filter card.

3.3.1 Differentiator

To show that the slope of the notch around the synchrotron frequency is a differentiator, let us
choose an M = 1 notch at 2π/NT ≡ ωz (Obviously, any 2Mπ/NT will work). The synchrotron
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frequency near this notch is Ωs = ωz +ωs, which means that the response of the notch filter at Ωs

is

Rnotch(Ωs) = 1− e−iΩsNT = 1− e−iωsNT

= 2sin
ωsNT

2
eiϕ (3.10)

where tanϕ = sinωsNT/(1− cosωsNT ). Now when ωz 6= 0, we have ωsNT = 2πωs/ωz ≈ 0 if
ωs ¿ ωz, so that ϕ = π/2, then

Rnotch(Ωs)≈ iωsNT + . . . = i(Ωs−ωz)NT + . . . (3.11)

which to first order in ωsNT has differentiated in time the synchrotron sidebands at Ωs.
As we have mentioned earlier, the choice of N are compromises between the Tevatron’s in-

jection energy at 150 GeV and its top energy at 980 GeV and the phase and amplitude responses
at these two energies. We chose NT = 1/6 fs where fs ≈ 88 Hz is the synchrotron frequency at
150 GeV. Therefore, N = 90 when T = 21 µs. (Note: we have actually set N = 91 in the real
setup).

3.4 Near Uniform Triggers

In order for the digital delays to work they have to be triggered. The triggers which we use are
nearly uniform in time. The reason for the non-uniformity in triggers comes from the spacing of the
bunches in the Tevatron. At present, there are three trains of 12 bunches. In each train, the bunches
are spaced 21 buckets apart. The spacing between the trains are the abort gaps and they take up
140 buckets each. As a check, we can add these numbers up 3× (21× (12− 1) + 140) = 1113
which is exactly the harmonic number of the Tevatron. Notice that 21 does not divide the number
of buckets in the abort gap. This observation threw us off initially when we had triggers which
were uniformly spaced 21 buckets apart. We fixed this by having triggers at the following bucket
locations:

in train | in abort gap

1,22,43, . . . ,211,232 | 253,274, . . . ,337,358

372,393,414, . . . ,582,603 | 624,645, . . . ,708,729

743,764,785, . . . ,582,603 | 624,645, . . . ,1079,1100

which has mostly a 21 bucket spacing with the exceptions being between the last bucket of the
abort gap and the first bucket of the train when we only have 14 buckets.

The reason for having near uniform triggers rather than having triggers where the bunches are
is to allow us to use reasonable cable delays to ensure that the correct bunches are kicked. In the
worst case scenario for near uniform triggers, the cable length will be 21 buckets/2 ≈ 200 ns for
correctly hitting the right bunch. While for triggers where there are bunches only, the worst case
scenario will be 140 buckets/2≈ 1.3 µs of cable!
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3.5 Phase Shifts

There are three devices in the damper circuit which introduce phase shifts. They are:

(i) RF cavity, around the resonance δω ¿ ωR.

(ii) High pass filter, at base band ω ¿ ωRF.

(iii) Notch filter, at every revolution harmonic ω0.

Shown in Figure 8 are the magnitudes and phase shift response of each of the devices. For
each of the devices we can make the following approximations:

(a) RF cavity: shifts the phase π/2 below resonance and −π/2 above resonance.

(b) High pass filter: the phase shift is +π/2 phase shift when 0 < ω ¿ ω3dB.

(c) Notch filter: near the notch, the phase shift is −π/2 below the notch and +π/2 above the
notch.

As an example, let us use the response of the synchrotron sidebands at ωRF +ω0±ωs and pass
them through the RF cavity. Now the RF cavity rotates the imaginary part according to (a) and thus
the real part of the result is anti-symmetric about ωR. When we down convert this signal, we should
measure sidebands about ω0 which have anti-symmetric real parts. See Figure 9(b). The process
is actually a bit complicated because mixers are non-linear devices. In order to have zero phase
shift from down-conversion, we have to assume that the up and down-conversion occur in pairs,
i.e. the synchrotron sidebands are measured from a down-converted signal which is excited with an
up-converted signal. The resultant phase when the signal is down-converted and then up-converted
is zero.

Next, when the down-converted signal goes through the high pass filter, both sidebands are
rotated by +π/2, and thus the imaginary part must now be antisymmetric. See Figure 9(c).

Finally, when we take this signal and pass it through a notch filter, they become perfectly
symmetric! And if we have the sign of the gain right, they will be symmetric and negative which
is exactly what is required for damping. See Eq. 2.9 and Figure 9(d).

3.6 Problem with Mode 0

The dampers do not work on mode 0. If we go through the rotations in phase from each element
as we did in section 3.5, we will find that the real part of the response is anti-symmetric about
ω = 0. The source of the problem is that the high pass filter has a phase shift of −π/2 when
−ω3dB ¿ ω < 0. However, we notice that the gain near ω0 is small because of the hpf and the
notch filter and thus mode 0 will not be anti-damped. Mode 0 must be taken care of by the Robinson
stability criterion by tuning the cavities so that its fundamental resonance is lower in frequency than
the RF frequency.
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Figure 8. The magnitude and phase responses of three of the devices in the damper circuit.

3.7 Setting up the 1 turn delay

We set up the 1 turn delay by performing the measurement with delay B disconnected. See Fig-
ure 10. When this is done, we can get the response to look like Figure 9(c). Three of the possible
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26 modes are shown in Figure 11. Before the correct amount of delay is set in Delay A, the as
found imaginary part of the response is the top graph in Figure 11. When the delay is made exactly
right, we get the anti-symmetric imaginary responses for all the modes. Three of the modes are
shown as examples in the bottom graph of Figure 11.

3.8 Making the notches

After the delay has been set in Delay A, we can make the notches by reconnecting back Delay B and
by setting the delay in this card by N(= 91) revolution periods w.r.t. Delay A. (The value of N was
calculated in the subsection 3.3). The notches do not land perfectly on each revolution harmonic
because the electronics in each card are not exactly the same and so there is some small error in
delay. This can be fixed by adding a a length of cable between Delay A and Delay B by using the
method discussed in Appendix III of ref. [5]. This method works really well and we find that the
notches will land exactly on the revolution harmonics. However, the two cards do not have exactly
the same gain and serendipitously, a shorter cable (and thus a smaller attenuation) actually gives a
better notch, albeit not exactly on the revolution harmonic. The results are shown in Figure 12.

Finally, after the notch filter has been added into the circuit into the circuit the frequency
response can be measured using the same block diagram shown in Figure 10 but with delay B
reconnected. Like we had previously discussed and shown in Figure 9(d) with the gain set to −1,
the real part of the response is negative and symmetric. These results are shown in Figure 13. The
top graph of Figure 13 shows the response at 150 GeV and the bottom graph is at 980 GeV.

3.9 Limits on the gain

The main limitation on the gain of the dampers are the “wings” indicated in Figure 13. As we
increase the gain, the wings become more positive and when it gets comparable in size to the
negative real part, the damper anti-damps the beam.

We measured the open loop transfer measurements up to the twentieth revolution harmonic
(See Figure 13) and we can see that the amplitude of the wings get progressively worse as the
mode number increases. However, for the gain setting of −5 used for high energy physics (HEP),
the wings do not present a problem. This setting is about 20% below the gain margin of the system.

3.10 Tests

To test whether the dampers indeed work, we excite the beam at 980 GeV by switching the sign
of the gain. This is a good sign because we can actually excite the beam which means that there
is sufficient gain in the loop. When we switch the sign of the gain back to damping, we find that
the excitation can be damped. The results of these actions are shown in Figure 14. Although the
dampers do perform their job, we find that damping takes 2 to 3 minutes in these examples.

4. Damper Performance during Stores

The initial luminosity recorded at the experiments has increased by a factor of 400 from about
(1×1030) cm−2s−1 of store 460 in 2001 to the record initial luminosity of (424×1030) cm−2s−1 of
store 8709 in 2011. The luminosity increase can be seen Figure 15. Most of the luminosity increase
can be accounted from the larger number and smaller emittance of anti-protons at collisions.
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The proton longitudinal instability has been well controlled by the dampers. But there are
mysteries as to why instabilities are observed hours into a store where the bunch length is longer
and the proton intensity is lower than at the start of HEP. See Figure 16. The bunch length growth
after each incident is ∼0.5% which does not affect the experiments.

5. Conclusion

The dampers have worked very well in controlling the instabilities in the Tevatron. For the past
9 years, the electronics have proved to be extremely reliable and we have done very little main-
tenance work on them. However, the source of these instabilities have not be identified and there
is a bigger mystery as to why the beam becomes unstable well into a store. We have not made
or considered any improvements of the damper system because the damper system has met all the
operational requirements for high energy physics

A. Some Parameters of the Tevatron

Table 2. Comparison of different stores
Symbol Description Value

h harmonic number 1113
– number of proton bunches 36
– number of buckets between bunches in a train 21
– number of buckets between trains 140
– bucket size 18.8 ns

f0 revolution frequency at 150 GeV 47.712 kHz
fRF frequency of RF drive at 150 GeV 53.103639 MHz
fs synchrotron frequency at 150 GeV 88 Hz

f0 revolution frequency at 980 GeV 47.713 kHz
fRF frequency of RF drive at 980 GeV 53.104705 MHz
fs synchrotron frequency at 980 GeV 34 Hz
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Figure 9. These figures show the upper and lower synchrotron sidebands (a) modeled as the response of a
simple harmonic oscillator (sho). The response after going through each device which contributes a phase
shift are plotted here.
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Figure 10. To get the 1 turn delay correct, we disconnected digital delay B and measured the response. For
the open loop measurement discussed in section 3.8 we connect delay B back into the circuit.
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Figure 11. These graphs show the imaginary part of the response of modes 1, 10 and 20 before and after
the delay was corrected. We have superimposed all the three graphs on top of each other by shifting the
frequency of mode 10 by −10 f0 and mode 20 by −20 f0.
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Figure 12. With both delays in the loop, we get notches near the revolution harmonics. The uncorrected
imaginary response with one digital delay is superimposed for reference. See text for more details
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wings
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Figure 13. These graphs show the real part of the open loop response of modes 1, 10 and 20 at 150 GeV
and 980 GeV. We have superimposed all the three graphs on top of each other by shifting the frequency of
mode 10 by −10 f0 and mode 20 by −20 f0. The limitations on the gain of the system are the “wings”.
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Mode 1

Mode 20

Figure 14. When we closed the loop at 980GeV, we excited the beam by anti-damping it. Then we turned
on damping and clearly the synchrotron lines of mode 1 and 20 were damped.
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CDF luminosty

D0 luminosity

Proton intensity

Anti-proton intensity

Figure 15. The luminosity at the experiments CDF (green points) and D0 (red points) has increased by
a factor of 400 from 2001 to 2011. The peak proton intensity (yellow points) during this time is about
12000×109 protons in 2003. The corresponding increase in luminosity mainly comes from both decrease in
emittance and the increase in anti-proton intensity (cyan points) from about 400×109 in 2002 to 3000×109

in 2011..
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Proton Bunch Length

Proton Bunch Intensity

Figure 16. In store 7477, the proton longitudinal bunch length (T:SBDPWS) made two attempts to blow up
1 hour into HEP but the dampers were able to stop them. The bunch length increase is very small during
these two instabilities ∼0.5%. The proton intensity (T:SBDPIS) has already decreased by about 1.5% and
the bunch length has already increased by about 6% just before the onset of instability.

– 24 –




