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We report the first reconstruction in hadron collisions of the suppressed decays B−
→ D(→

K+π−)K− and B−
→ D(→ K+π−)π−, sensitive to the CKM phase γ, using data from 7 fb−1 of

integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a
signal for theB−

→ D(→ K+π−)K− suppressed mode with a significance of 3.2 standard deviations,
and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0± 8.6(stat)±
2.6(syst)] × 10−3, R+(K) = [42.6 ± 13.7(stat) ± 2.8(syst)] × 10−3, R−(K) = [3.8 ± 10.3(stat) ±
2.7(syst)]×10−3 as well as the direct CP -violating asymmetry A(K) = −0.82±0.44(stat)±0.09(syst)
of this mode. Corresponding quantities for B−

→ D(→ K+π−)π− decay are also reported.
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The measurement of CP -violating asymmetries and
branching ratios of B− → DK− [1] decay modes
allows a theoretically clean extraction of the phase
γ = arg(−VudV

∗
ub/VcdV

∗
cb) of the Cabibbo-Kobayashi-

Maskawa quark-mixing matrix VCKM , a fundamental pa-
rameter of the standard model [2]. In these decays the
interference between the first order tree amplitudes of
the b → cūs and b → uc̄s processes leads to observables
that depend on their relative weak phase γ, their relative
strong phase δB , and the magnitude of the amplitude ra-
tio rB [3]. These quantities can all be extracted from data
by combining several experimental observables. This can
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be achieved in several ways, using a variety of D decay
channels [4–6]. An accurate knowledge of the value of
γ is instrumental in establishing the possible presence
of additional non-standard model CP -violating phases in
processes where higher-order diagrams are involved [7, 8].
Its current determination has a relative uncertainty, dom-
inated by statistical uncertainties, between 15 and 20%,
depending on the method [9]. A promising class of pro-
cesses consists of B meson decays that are a coherent
superposition of the color favored B− → D0K− followed
by the doubly Cabibbo suppressed decay D0 → K+π−,
and of the color suppressed B− → D̄0K− followed by
the Cabibbo favored decay D̄0 → K+π−. The magni-
tude of the two amplitudes is comparable, allowing for
large CP -violating asymmetries sensitive to the phase γ.
The following observables can be defined [5]:

R(K) =
B(B− → [K+π−]DK−) + B(B+ → [K−π+]DK+)

B(B− → [K−π+]DK−) + B(B+ → [K+π−]DK+)
,

R±(K) =
B(B± → [K∓π±]DK±)

B(B± → [K±π∓]DK±)
,

A(K) =
B(B− → [K+π−]DK−)− B(B+ → [K−π+]DK+)

B(B− → [K+π−]DK−) + B(B+ → [K−π+]DK+)
,

where B− → [K+π−]DK− is the suppressed (sup)
mode and B− → [K−π+]DK− is the favored (fav )
mode. In the approximation of negligible CP -violation
in D decays and negligible D0 − D̄0 mixing, whose ef-
fects were shown to be small in Ref. [10], these quan-
tities are related to the CKM phase γ by the equa-
tions [5] R = r2D + r2B + 2rDrB cos γ cos (δB + δD),
R± = r2D + r2B + 2rDrB cos (δB + δD ± γ), and A =

2rBrD sin γ sin (δB + δD)/R, where rD =
∣

∣

∣

A(D0→K+π−)
A(D0→K−π+)

∣

∣

∣

and δD is the corresponding relative strong phase. The
smallness of the product of branching fractions for these
suppressed final states (O(10−7)) has been a strong limi-
tation to their use in γ determinations. Evidence for the
suppressed B− → DK− channel has only recently been
obtained by the Belle collaboration [11]. The large pro-
duction rate of B mesons available at hadron colliders of-
fers a unique opportunity for improving the experimental
determination of the angle γ. Measurements of branching
fractions and CP -violating asymmetries of B− → DK−

modes in less suppressed final states of theD meson (CP -
even modes K−K+ and π−π+) have already been per-
formed in hadron collisions [12]. However, the small de-
cay rates along with large potential backgrounds from
misidentified favored decays, which only differ for the
identity of the final particles, make the reconstruction of
suppressed modes in hadron collisions significantly more
challenging.
In this Letter, we describe the first reconstruction of

B− → DsupK
− modes performed in hadron collisions,

yielding evidence for a signal with significance in excess
of three Gaussian standard deviations, based on data
from a total integrated luminosity of 7 fb−1 of p̄p col-
lisions at

√
s = 1.96 TeV, collected by the upgraded Col-

lider Detector (CDF II) at the Fermilab Tevatron. We
report measurements of R(K), R±(K), and A(K) for
those modes. We also report measurements related to
the corresponding Dπ− modes, since measurable, albeit

smaller, γ-dependent asymmetries may also be found in
these modes [9]. The maximum possible value of the
asymmetry is Amax = 2rBrD/(r2B + r2D), where rB can
be rB(K) or rB(π). Taking into account the CKM struc-
ture of the contributing processes, we expect that rB(π)
is suppressed by a factor |VcdVus/VudVcs| ∼ tan2 θC with
respect to rB(K), where θC is the Cabibbo angle, and
we assume the same color suppression factor for both
DK and Dπ modes. Using rB(K) = 0.103+0.015

−0.024 [9],

rB(π) ∼ 0.005 [9], and r2D = (3.80± 0.18)× 10−3 [13], we
expect Amax(K) ≈ 0.90 and Amax(π) ≈ 0.16.

CDF II is a multipurpose magnetic spectrometer sur-
rounded by calorimeters and muon detectors, and is de-
scribed in detail elsewhere [14, 17]. The resolution on
transverse momentum of charged particles is σpT

/pT ≃
0.07% pT/(GeV/c), corresponding to a typical mass res-
olution of 18 MeV/c2 for our signals. The specific ion-
ization energy loss dE/dx of charged particles can be
measured from the charge collected by a gaseous drift
chamber (COT), and provides 1.5σ separation between
pion and kaon particles for p > 2 GeV/c. Candidate
events for this analysis are selected by a three-level on-
line event-selection system (trigger). At level 1, charged
particles are reconstructed in the COT by a hardware
processor, the extremely fast tracker XFT [18]. Two op-
positely charged particles are required, with transverse
momenta pT ≥ 2 GeV/c and scalar sum pT1 + pT2 ≥ 5.5
GeV/c. At level 2, another processor, a silicon vertex
trigger (SVT) [19], associates r − φ position measure-
ments from an inner silicon detector with XFT tracks.
This provides a precise measurement of the track impact
parameter d0, the transverse distance of closest approach
to the beam line. The resolution of the impact parame-
ter measurement is 50 µm for particles with pT of about
2 GeV/c, including a ≈ 30 µm contribution due to the
transverse beam size, and improves for higher transverse
momenta.

We select B hadron candidates by requiring two SVT
tracks with 120 ≤ d0 ≤ 1000 µm. To reduce background
from light-quark jet pairs, the two trigger tracks are re-
quired to have an opening angle in the transverse plane
2◦ ≤ ∆φ ≤ 90◦, and to satisfy the requirement Lxy > 200
µm, where Lxy is defined as the distance in the transverse
plane from the beam line to the reconstructed two-track
vertex. The level 1 and 2 trigger requirements are then
confirmed at trigger level 3, where the event is fully re-
constructed in software.

The events collected by the trigger are further selected
by searching for a pair of oppositely charged particles
compatible with a two-bodyD decay. The invariant mass
MD of the pair is reconstructed for both pion and kaon
assignments of particle identities. Events are accepted for
the analysis only when one of the possible masses is com-
patible with the nominal D mass 1.8495 ≤ MD ≤ 1.8815
GeV/c2, and the alternative combination, MSW (D), is
outside a veto region of 1.8245 ≤ MSW (D) ≤ 1.9045
GeV/c2 around the nominal D mass. The D candidate
is then combined with a negatively charged particle in the
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event with pT > 0.4 GeV/c to form a B− candidate. A
three-dimensional kinematic fit of each decay candidate
trajectory is performed by constraining the two tracks
forming the D candidate to a common vertex and to the
nominal D mass; the D candidate and the remaining
track to a separate vertex; and the reconstructed momen-
tum of the B− candidate to point back to the primary
p̄p interaction vertex determined from other tracks in the
event.

The events are then divided into two non–overlapping
samples, nominally classified as favored or suppressed,
according to the relative charge of the B candidate with
the decay product of the D that has been classified as the
kaon. The veto requirements applied to the D mass re-
constructed with the alternative particle assignment re-
move a large fraction of the background of favored de-
cays from the sample classified as suppressed, and vice
versa, ensuring no overlap between the samples and a
complete symmetry of the selection, which is a crucial
aspect of the analysis. The small residual contamination
of each sample from events with an incorrect identifi-
cation of D decay products is accounted for as part of
the inclusive background B− → D(→ X)π−, where X
are modes other than Kπ (see below). A further veto is
applied to the invariant mass formed by the track from
the B candidate and the oppositely charged track from
the D candidate, again requiring it to be incompatible
with the D meson mass, using the same range as the
first veto. This requirement suppresses the contamina-
tion from tracks from real B decays that have been in-
correctly labeled as D decay products, and is applied
symmetrically to both samples. A further suppression of
this background is achieved by requiring that the trans-
verse distance between B and D decay vertex is greater
than 100 µm. This has the additional effect of reducing
contamination from non–resonant three–body decays of
the type B+ → h+h−h+, in which all tracks come from
a common decay vertex, and where h indicates either K
or π.

Additional requirements are applied to the following
observables: the impact parameter dB of the recon-
structed B candidate relative to the beamline; the iso-
lation of the B candidate IB [20]; the goodness of fit of
the decay vertex χ2

B ; the significance of the B hadron
decay length Lxy(B)/σLxy(B); the angle α between the
three-dimensional momentum of the B candidate and the
three-dimensional decay length; ∆R =

√

∆φ2 +∆η2 be-
tween the track from the B hadron and the D meson; the
cosine of the angle between the D and the flight direction
of the B, in the B meson rest-frame, cos θ∗D; the difference
of the kaon probability [21] values of the tracks forming
the D to discriminate kaon-pion pairs from pion-pion and
kaon-kaon pairs, ∆κ. The threshold values for all these
requirements, and for the allowed D mass window men-
tioned above, were determined by an unbiased optimiza-
tion procedure, maximizing the quantityNS/(1.5+

√
NB)

[22], with no use of simulated signal. The signal NS is de-
fined as the expected rate of suppressed B− → Dsupπ

−

events. We take advantage of our large sample of fa-
vored B− → Dfavπ

− decays, using it as a model for
the kinematical and particle identification properties of
the suppressed decay by simply considering the swap in
sign. For each choice of thresholds, the signal NS was
determined from the observed B− → Dfavπ

− in ±2σ
around nominal B mass, 5.243 ≤ MB ≤ 5.315 GeV/c2

sideband subtracted, while the background NB was de-
termined from the upper mass sideband, 5.4 ≤ MB ≤ 5.8
GeV/c2. The resulting requirements are the follow-
ing: Lxy(B)/σLxy(B) > 12, dB < 50 µm, χ2

B < 13,
IB(cone = 1) > 0.4, IB(cone = 0.4) > 0.7, α < 0.15,
∆R < 1.5, | cos θ∗D| < 0.6, ∆κ > −1. After applying all
the above selection criteria, the invariant mass of each
B− → Dh− candidate is evaluated using a nominal pion
mass assignment to the particle h− coming from the B
decay. Figure 1 shows the distributions for B± candi-
dates.

With the help of large simulated samples of B mesons,
we determine that the only modes contributing non-
negligible backgrounds are B− → D(→ X)h−, B− →
D∗0π−, with D∗0 → D0γ/π0, non-resonant B− →
K−π+π−, and B0 → D∗−

0 l+νl. The large contribution
of B− → D(→ K+K−)h− reported in Ref. [11, 25] is
strongly suppressed by our selection, since we reconstruct
the D mass in the Kπ mass hypothesis.

We use an extended unbinned maximum likelihood fit,
exploiting mass and particle identification (PID) infor-
mation to statistically separate the B− → DK− and
B− → Dπ− signals, the combinatorial background, and
the physics backgrounds. The shape of the mass distri-
butions is modeled using simulated events. PID infor-
mation on the track from the B decay is incorporated
in the kaon probability observable [21]. The extended
likelihood function is defined as L =

∏

i PiLi, where i
runs over the favored and suppressed modes, positive
and negative charges. The Poisson distribution Pi is

equal to µ
N tot

i

N tot
i

!
e−µ, where N tot

i is the number of events

of each sub-samples and µ is the expected mean value.
The individual likelihood components have the follow-

ing structure: Li =
∏N tot

i

r

∑

j fjPj(Mr, κr|θr), where f

and P (Mr, κr|θr) are the fractions and the probability
density functions of the signal and background modes.
The fit is performed on the favored and suppressed sam-
ples. Common parameters are the exponential function
for the combinatorial background, whose normalization
and slope are determined by the fit; the functional ex-
pression for signal and background modes; and the ratio
between B− → D∗0π− and B− → Dπ− fractions. The
numbers of events and the fractions of signal and back-
ground are determined by the fit and the observables are
extracted from them.

A large sample of D∗+ → D0(→ K−π+)π+ decays is
used to calibrate the average dE/dx response of the de-
tector to kaons and pions, using the charge of the pion in
the D∗+ decay to determine the identity of the D decay
products. The shape of the κ distribution is calibrated
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FIG. 1. Invariant mass distributions of B±
→ Dh± for the suppressed mode (bottom meson on the left and antibottom on

the right). The pion mass is assigned to the charged track from the B candidate decay vertex. The projections of the common
likelihood fit (see text) are overlaid.

within our own sample, by using kaons and pions from
the decay of the D meson in the favored sample. Un-
certainties on the calibration parameters are included in
the final systematic uncertainty of A, R and R±, taking
into account the full correlation matrix of the parameters
characterizing the shape of the κ distribution.

The B− → DK− and B− → Dπ− event yields ob-
tained from the fit to the data are reported in Table I.
Fit projections on the invariant mass distributions are
given in Fig. 1. They provide a consistent description
of the observed distributions in the data. We find evi-
dence for a signal in the B− → DK− suppressed mode
with a significance of 3.2σ. The significance is evalu-
ated by comparing the likelihood-ratio observed in data
with the distribution expected in statistical trials. Sev-
eral distributions are generated corresponding to differ-
ent choices of systematic parameters. The quoted signif-
icance corresponds to the distribution yielding the most
conservative p-value. The raw fit results are then cor-
rected for the reconstruction efficiency ǫ, due to differ-
ent probabilities of K+, K−, π+ and π− to interact
with the tracker material. We use previous measure-

ments of ǫ(K+)
ǫ(K−) = 1.0178±0.0023(stat)±0.0045(syst) and

ǫ(π+)
ǫ(π−) = 0.997±0.003(stat)±0.006(syst) [23]. We extract

ǫ(K−π+)
ǫ(K+π−) = 0.998±0.015(stat)±0.016(syst) from our own

sample of favored B− → Dπ− decays. Systematic uncer-
tainties are determined by repeating the fit changing the
mass and the dE/dx model (Table II). The dominant
contribution is the uncertainty on the B− → D(→ X)π−

shape. This is the largest physics background, and it lies
under the signal peak.

In summary, we find evidence for the B− → D(→

K+π−)K− suppressed mode with a significance of 3.2
Gaussian standard deviations. We measure the ra-
tios of the suppressed ([K+π−]DK−/π−) to favored
([K−π+]DK−/π−) branching fractions R(K) = [22.0 ±
8.6(stat)±2.6(syst)]×10−3, R+(K) = [42.6±13.7(stat)±
2.8(syst)]×10−3, R−(K) = [3.8±10.3(stat)±2.7(syst)]×
10−3 and R(π) = [2.8 ± 0.7(stat) ± 0.4(syst)] × 10−3,
R+(π) = [2.4 ± 1.0(stat) ± 0.4(syst)] × 10−3, R−(π) =
[3.1 ± 1.1(stat) ± 0.4(syst)] × 10−3 as well as the direct
CP -violating asymmetries

A(K) = −0.82± 0.44(stat)± 0.09(syst),

A(π) = 0.13± 0.25(stat)± 0.02(syst).

The observed asymmetry A(K) deviates from zero by 2.2
standard deviations.
These measurements, performed here for the first time

in hadron collisions, are in agreement with previous mea-
surements from BABAR [25] and Belle [11] with compa-
rable uncertainties. These results can be combined with
other B− → DK− measurements to improve the deter-
mination of the CKM angle γ.
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