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We describe a model independent search for physics beyond the standard model in lepton final
states. We examine 117 final states using 1.1 fb−1 of pp̄ collisions data at

√
s = 1.96 TeV collected

with the D0 detector. We conclude that all observed discrepancies between data and model can be
attributed to uncertainties in the standard model background modeling, and hence we do not see
any evidence for physics beyond the standard model.

PACS numbers: 13.38.Dg,13.85.Qk,14.70.Hp

I. INTRODUCTION

The standard model (SM) has been remarkably suc-
cessful in accommodating all the interactions between the
fundamental particles [1]. Despite this success, there are
strong motivations to expect new phenomena at ener-
gies at the order of the electroweak scale. For example,
the Higgs boson [2] receives quantum corrections to its
mass through loop diagrams. The scalar nature of the
Higgs boson leads to a quadratic divergence, with an up-
per limit of the integral set by the highest scale, i.e., the
Planck mass (1019 GeV). To maintain the Higgs mass
close to the electroweak scale, it is necessary to fine tune a

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cUPIITA-IPN, Mex-
ico City, Mexico, cSLAC, Menlo Park, CA, USA, eUniversity
College London, London, UK, fCentro de Investigacion en Com-
putacion - IPN, Mexico City, Mexico, gECFM, Universidad Au-
tonoma de Sinaloa, Culiacán, Mexico, and hUniversität Bern, Bern,
Switzerland. ‡Deceased.

parameter in the theory to within MW /MPlanck ≈ 10−16

[3].

There are few logical options for overcoming this prob-
lem. If the Higgs boson does not exist, then there must
be a new contribution to the physics at the electroweak
scale. If the Higgs boson does exist, then the theory
must be either fine tuned or a generalized Higgs scheme,
beyond the SM, is present at the electroweak scale.

Assuming that beyond standard model (BSM) physics
exists, we do not know how it appears, rendering its
search difficult. While there are many theories that
predict observable differences with the SM, these mod-
els usually depend on additional unspecified parameters
which broaden the possible range of results.

Motivated by uncertainty and expectations of physics
beyond the SM, we examined data from many channels
in pp̄ collisions at

√
s = 1.96 TeV at the Tevatron Col-

lider at Fermilab, collected by the D0 experiment, for
deviations from the SM. After this, we focus on events
with objects with high transverse momentum (pT ) in a
quasi-model-independent search of new phenomena ef-
fects. Our background model is specific for final states

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 
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containing leptons, which form the focus of this paper.
Similar approaches have been applied to data from the
D0 Collaboration [4–6], the H1 Collaboration at the
HERA ep collider at DESY [7], and the CDF Collab-
oration at the Tevatron [8, 9].

Our technique trades the sensitivity of specific searches
for breadth of coverage: we do not design selections fo-
cused on a particular model and neglect systematic un-
certainties. This way, we can incorporate many channels
without developing a detailed modeling for each individ-
ual channel. This approach limits sensitivity for physics
beyond the SM in individual final states, but it helps
identify global differences relative to the SM expecta-
tions. If any particular final state or distribution found
discrepant with the SM remains significantly discrepant
after systematic uncertainties are considered, then it war-
rants claim for the presence of physics beyond the SM.
The benefit of this approach is that we can look in a co-
ordinated way at many channels, applying expectations
from the SM and a model of the detector in a relatively
straightforward manner, to search for discrepancies be-
tween data and the SM.

The data for the search consists of events containing
objects that have large pT values. We divide the data
and the selected Monte Carlo (MC) simulated events into
seven inclusive subsets based on the number and types of
leptons identified in each event. Unlike the search con-
ducted by the CDF Collaboration [8, 9], only events with
at least one electron or muon are considered. For each of
the chosen final states, we apply corrections to the MC
simulation, as determined from the previous D0 studies
based on well-understood regions of phase space, domi-
nated by particular SM processes, as discussed in Sec. IV.
To account for any incorrect normalizations in the ab-
sence of systematic uncertainties, we fit for contributions
from each of the subsets to obtain scale factors which re-
produce the distributions in the selected data with MC
events and multijet background events determined from
data, as discussed in Sec. V.

The seven non-overlapping inclusive subsets are
merged to create an input file for the analyses employing
algorithms called vista and sleuth [8], as discussed in
Sec. VII.

II. D0 DETECTOR

The data correspond to 1.07± 0.07 fb−1 of integrated
luminosity from pp collisions at the Tevatron Collider at
Fermilab, collected with the D0 detector at

√
s = 1.96

TeV during 2002–2006.
The D0 detector is described in detail elsewhere [10].

The central tracking, calorimetry, and muon systems are
the components most important to this analysis. The
central tracking system consists of a silicon microstrip
tracker (SMT) and a central fiber tracker (CFT), both
located within a 2 T superconducting solenoidal magnet,
and provides charged particle tracking for pseudorapidi-

ties |η| < 3, where η = − ln[tan(θ/2)], and θ is the polar
angle relative to the center of the detector with respect
to the proton beam direction.

The three liquid-argon/uranium calorimeters are
housed in separate cryostats. Outside of the tracking
system, a central section covers up to |η| = 1.1. Two
end calorimeters extend coverage to |η| = 4.2. The
calorimeter is highly segmented with four electromag-
netic (EM) and four to five hadronic longitudinal layers;
transverse to the particle direction, typical segmentation
is ∆η = ∆φ = 0.1, where φ is the azimuthal angle.

Beyond the calorimeter, a muon system consists of
a layer of tracking detectors and scintillation trigger
counters in front of 1.8 T iron toroids, followed by two
similar layers after the toroids, all at pseudorapidities
|η| < 2.0 [11].

A three level trigger system selects events, recording
data at about 100 Hz. Our sample was collected using
triggers that select events with at least one electron or
one muon.

III. OBJECT ID AND EVENT SELECTION

In this section, we describe the identification criteria
used to select energetic objects isolated from other event
activity, viz., electrons (e±), muons (µ±), tau leptons
(τ±), missing transverse energy (6ET ), jets, and b-quark
jets. The selection criteria for all these objects are identi-
cal for all final states. In addition, we discuss the criteria
for non-isolated electrons and muons, i.e., objects that
are not truly isolated but can mimic the signatures of
isolated leptons. Because of the difficulty of modeling
such false leptons, their contributions are estimated di-
rectly from data.

A. Vertices

Only pp̄ interaction vertices reconstructed from at least
three tracks are allowed in this analysis. Based on the
pT of the tracks associated with that vertex, we define
the primary pp̄ interaction vertex (PV), as the one with
smallest probability of originating from a minimum-bias
interaction [12]. The z coordinate of the PV (zPV) is
required to be |zPV| < 60 cm (where the z axis is the
axis along beam direction, with origin at the center of
the detector).

B. Electrons and Photons

Electrons are characterized by an isolated shower in the
calorimeter and an isolated track in the central tracker.
Starting with a seed cell, a calorimeter cluster is formed
using cells within a cone of radius ∆R < 0.4 where
∆R =

√

(∆η)2 + (∆φ)2. Such clusters are required
to pass the calorimeter isolation criterion (Etot(∆R <
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0.4) − EEM(∆R < 0.2))/EEM(∆R < 0.2) < 0.2, where
Etot is the total energy of the shower, summing the EM
and hadronic calorimeter cells, and EEM is the energy in
the EM calorimeter only. Every accepted cluster must
have 90% of Etot within the EM calorimeter, pass a χ2-
based selection on the spatial distribution of the shower,
and be matched with a track extrapolated from the cen-
tral tracker. An electron likelihood (Le), based on seven
tracking and calorimetric parameters, is used to enhance
signal purity of the candidate electrons. Photons are
identified as electromagnetic clusters that pass the same
isolation and shower criteria, but fail to match with a
track.

In this analysis, we use only electrons that are found in
the central calorimeter (CC), with |η| < 1.1 and pT > 15
GeV. Typical electron detection efficiencies are 70% to
80%.

To estimate the contribution from non-isolated elec-
trons (e.g. from multijet background), we use the same
selection as for signal, but with a reversed Le likelihood
criterion.

C. Muons

Muons are identified in the muon system, and then
matched to tracks. They are required to have |η| < 1.5
and pT > 15 GeV. The track requirements include a se-
lection on DCA < 0.02 (0.2) cm for tracks with (without)
hits in the SMT, where DCA is the distance of closest ap-
proach of the track to the PV in the transverse plane.

We require muons to be isolated, meaning that the
sum of the transverse energies in calorimeter cells in an
annular region (0.1 < ∆R < 0.4) around the muon track,
and the sum of the tracks pT in a cone of ∆R < 0.5
around the muon track must both be less than 2.5 GeV.

To estimate the multijet background in the single muon
sample, we use control samples where the isolation vari-
ables are required to be between 2.5 GeV and 8 GeV. All
other criteria are the same as in the signal data sample.

Because the muon pT is estimated by the pT of the
matching track in the central tracker, the momentum
resolution decreases with increasing pT . To restrict the
analysis to muons with well measured momenta, we
require the significance of its pT measurement to be
(1/pT )/σ(1/pT ) > 3, where σ(1/pT ) is the uncertainty
on the measurement of the track curvature (inverse of
the muon track’s pT ). This effectively limits muons to
pT < 200 GeV.

D. Tau Leptons

Tau leptons can decay to eνeντ , µνµντ , or hadrons hντ

(τh). It is difficult to determine whether a light lepton
in an event originated from a τ , but the signature from
τh → hντ differs significantly from that of a jet. The

decays τ → πντ are referred to as Type-1. Decays corre-
sponding to τ± → π±nπ0ντ are referred to as Type-2 (n
is an integer ≥ 1), and decays to multiple charged pions
are referred to as Type-3 decays. Type-3 decays differ
from Type-1 (τ1) and Type-2 (τ2) by being matched to
multiple tracks, and are not used in this analysis. Type-
1 and Type-2 decays are required to have |η| < 1.1 and
a track with at least one SMT hit, as well as pT > 10
GeV for Type-1, and pT > 5 GeV for Type-2 tau lep-
tons. There are also requirements concerning overlaps of
objects: ∆R(µ, τ) > 0.4 and ∆R(e, τ) > 0.4, where τ , µ
and e are as defined above, except that muons that pass
the overlap criterion do not have to pass the additional
isolation requirement. To distinguish τh decays from jets,
we use a neural network discriminant [13], NNh, and to
distinguish Type-2 τh from electrons, we use an addi-
tional neural network, NNe. We require NNh > 0.9 for
τ1 and τ2, and NNe > 0.2 for τ2.

To model the multijet contribution to final states with
τh decays, we select events with τh candidates as above,
but with 0.3 < NNh < 0.8.

E. Jets

We reconstruct jets within |η| < 2.5, using an iterative
midpoint cone algorithm [14] with cone radius of 0.5 and
a minimum pT requirement of 20 GeV after applying a jet
energy scale (JES) correction as discussed in Sec. IV B 3.
Jets separated from a τh or an electron by ∆R < 0.5 are
removed from consideration.

F. b-jets

Bottom and charm quarks can travel measurable dis-
tances from the PV before decaying, so that their decay
products originate from an identifiable secondary vertex.
This provides a way of tagging jets coming from a b(c)-
quark decay by examining the associated tracks [15]. Be-
fore applying any b-tagging criteria, the jets are required
to pass both calorimeter criteria outlined in Sec. III E
and the taggability criteria. A jet is taggable if it is
matched to a track jet, which is a jet formed from tracks,
reconstructed using a simple cone-clustering algorithm of
∆R < 0.5. At least two tracks are required, with at least
one having pT > 1 GeV and another with pT > 0.5 GeV.
Every track in the jet is required to have at least one hit
in the SMT detector, a DCA < 0.2 cm, and a distance
of closest approach along the z axis of < 0.4 cm.

All taggable jets are subjected to a neural network b
tagging algorithm [15] whose input variables include the
DCA of each track in a jet and information on secondary
vertices in the jet. We define b-jet candidates by requiring
that the neural network output be greater than 0.775.
This algorithm selects about 60% of b jets with pT = 50
GeV, and only 1% of light flavor (u, d, s quarks or gluon)
jets.
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G. Missing Transverse Energy

Neutrinos or other weakly-interacting neutral particles
do not leave energy deposits in the detector. Their pres-
ence is inferred from the measurement of significant 6ET in
the event. The missing transverse energy is determined
from energies deposited in all calorimeter cells. The 6ET

is corrected for JES, measured muon pT , electron and τh
energy scales. The JES corrected 6ET vector is obtained
by adding the difference between the vector sums of un-
corrected and JES corrected jet momenta to the uncor-
rected 6ET vector. The muon correction reflects the fact
that muons deposit little energy in the calorimeter, and
adjusts the 6ET for the pT of the muon. Finally, electron
and τh energy corrections are applied to the appropriate
calorimeter cells in the 6ET calculation.

IV. MODELING SM PREDICTIONS

A. SM Event Generation

We generally estimate SM processes with MC gener-
ated events. A model-independent search incorporates
many different processes to properly model the data. We
use two generators for this purpose, alpgen [16] for gen-
eration of all processes, except for diboson production
which is generated with pythia [17]. pythia is also used
for hadronization and showering.

alpgen uses exact matrix elements at leading orders
for QCD and electroweak interactions. The benefit of
using alpgen comes from its ability to calculate exact
leading order terms for processes that include high jet
multiplicities. alpgen produces parton-level events with
information on color and flavor, and can be matched to
pythia for parton evolution and hadronization.

Matching of a parton from alpgen to pythia show-
ering has the fundamental difficulty of separation of the
hard interaction from initial-state radiation (ISR) and
final-state radiation (FSR). To address this problem we
use the MLM matching scheme [18]. In this scheme each
final state parton from the matrix element is matched in
∆R to an evolved jet. We further reject events which
contain an additional jet not matched to a final state
parton, except in the sample with the highest number of
final state partons.

The following processes are considered, where j is a
light jet (g,u,d, or s), ` is a lepton, N is an integer ≥ 0
and lp represents a light parton:

1. W +Nj

2. Z/γ∗ +Nj

3. W + cc+Nj

4. W + bb+Nj

5. Z/γ∗ + cc+Nj

6. Z/γ∗ + bb+Nj

7. tt→ (2`+ 2ν + 2b) +Nj

8. tt→ (`ν + 2b+ 2lp) +Nj

9. WW

10. WZ

11. ZZ

The processes involving heavy flavor (HF) quarks (c
and b) are treated separately from light quark processes
because they are often associated with particularly in-
teresting final states, and we generate large number of
MC events for these final states. Some of these processes
are included in the light parton simulations, so we remove
the events with heavy flavor quarks from the light-parton
samples so as to avoid double-counting.

For some objects, other programs provide more accu-
rate simulations of their properties and decays. Specifi-
cally, tauola [19] is used for τ decays, and evtgen [20]
is used for the decay of b hadrons.

We assume a mass of 172.5 GeV for the top quark,
consistent with recent measurements [21].

B. Detector Simulation

The events produced from the above combination of
generators are processed through the D0 detector simu-
lation and combined with random beam crossing events
taken from data (Sec. IV B 1). The detector simulation
is based on geant 3.2.1 [22], to which two types of cor-
rection factors are applied. The first type of correction is
event reweighting, where an overall correction is applied
to the MC event, rather than to the measured kinematic
properties of reconstructed objects. For example, we ap-
ply weights to account for the difference in reconstruction
efficiencies between data and MC. Another type of cor-
rection modifies the objects in a MC event to account for
the fact that the simulation has better resolution and a
different energy scale than the detector. These correc-
tions generally depend on properties of the objects in an
event. The specific corrections used in this analysis are
described below.

1. Instantaneous Luminosity Reweighting

The trigger selecting random beam crossings records
data with a different instantaneous luminosity profile
from that of the triggers utilized to record the data used
in this search. A weight is introduced in the MC events to
match the instantaneous luminosity distribution in data.
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2. ZPV Reweighting

Our simulated events have a narrower zPV distribution
than is observed in data. We therefore apply a weight to
each event, based on the zPV of the event, to increase the
relative weight of events farther from the center of our
detector to match the observed distribution.

3. JES

We apply JES corrections to jets in both data and MC
[23]. The purpose of the JES corrections is to correct the
measured jet energy to that of the particles in the jet. Jet
energies initially determined from the calorimeter cell en-
ergies do not exactly correspond to the energies of final
state particles that traverse the calorimeter. As a result,
a detailed calibration is applied separately in data and
MC. In general, the energy of all final state particles in-

side the jet cone, Eptcl
j , can be related to the energy mea-

sured inside the jet cone, Ej , by Eptcl
j = (Ej −O)/(RS).

Here, O denotes an offset energy, primarily from addi-
tional interactions in or out of time with an event. R is
the average response of the calorimeter to the particles
in a jet, and S is the correction factor for the net energy
loss from particles that scatter out of or into the jet cone.
For a given cone radius, O and S are functions of the jet
η within the detector. O is also a function of the number
of reconstructed event vertices and the instantaneous lu-
minosity; R is the largest correction factor and reflects
the lower response of the calorimeter to charged hadrons
relative to electrons and photons. It also includes the
effect of particle energy loss in front of the calorimeter.
The primary response correction is derived from studies
of γ+jet events, and depends on jet energy and pseudo-
rapidity. For all jets that contain non-isolated muons, we
add the muon momenta to that of the jet. Under the as-
sumption that these muons are from semileptonic decays
of b quarks, we also add an estimated average neutrino
momentum assumed to be collinear with the jet direction.

4. Jet Shifting, Smearing, and Removal (JSSR)

Additional corrections beyond the JES are needed to
take into account threshold and resolution effects for jets.
The JSSR corrections are determined from Z/γ → ee
+ 1 jet events. The Z/γ and the jet should be pro-
duced approximately back-to-back in φ with the same
pT . This is quantified by a pT imbalance variable,

∆S =
(

pj
T − p

Z/γ
T

)

/p
Z/γ
T . For jets with a pT well above

the reconstruction threshold, the distribution of ∆S is
Gaussian in both data and MC. The difference in the
means of these distributions yields a shift that is applied
to the MC jet energies to match the data, and a smear-
ing is applied to MC jets based on the difference in the
standard deviations of these distributions. Jets that fail

the pT > 20 GeV requirement after shifting and smearing
corrections are removed from further consideration.

5. Efficiencies

The efficiency of the MC simulation of our detector
tends to be larger than the true efficiency of the detector.
To account for this, we introduce scale factors to adjust
the MC efficiency to match that observed in data. The
efficiencies for electrons and muons are obtained using
Z → ee and Z → µµ events. One of the decay products
of the Z boson is the tag object, which is required to pass
restrictive reconstruction requirements and be matched
to an object that could have fired the trigger for the
event. Object efficiencies are then obtained using the
second object from the Z decay.

6. Track PT Resolution

Electron energies are measured in the calorimeter.
However, energy deposition does not depend on the
charge of the electron, which is determined by the cur-
vature of the associated track in the magnetic field. An
incorrectly reconstructed track can therefore lead to an
incorrect charge assignment. Bremsstrahlung from elec-
trons can affect the curvature of the tracks. Also, a soft
interaction in the inner detector can result in the process
e+ → e+e−e+, leading to charge misidentification if the
wrong sign electron track is associated with the electron.
This difficulty is also present in tau decays when at least
one hadron is produced.

Because the rate of charge misidentification is not
properly modeled in the detector simulation, we add a
scale factor to electron and tau MC events to approx-
imate the appropriate rate of charge mis-identification.
We determine this scale factor by using dielectron events
consistent with Z → ee decays; and we only consider
events with dielectron invariant mass between 70 to 110
GeV to avoid biases against physics beyond the SM.

The disagreement in track resolution between the data
and MC also affects muon pT measurement, which is cor-
rected using smearing parameters determined by com-
paring the data and MC mass peaks for Z → µµ and
J/ψ → µµ decays.

7. Electron Energy Smearing

In the simulation, the electron pT reconstructed in the
calorimeter has a better resolution than in the data. We
correct this using a Gaussian smearing function tuned to
reproduce the shape of the Z → ee peak.
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8. Jet Taggability

The jet taggability rates (Sec. III F) are found to be
different for MC and data. To correct for this difference,
correction factors are applied as scale factors depending
on pT , η and zPV of the jet [24].

9. b-tagging Rate

As detailed in Sec. III F, we apply a tagging algorithm
to both data and MC jets to select jets originating from
heavy (b/c) quarks. However, the algorithm can select
mistagged light jets. The tagging rates (for both heavy
and light parton jets) depend on the pT and η of the jets.
The heavy-quark tagging rates are measured separately
in both data and MC using dedicated samples. The per-
formance of the b-tagging algorithm in MC events is bet-
ter than in data. To correct the tagging rates in MC
events, we first determine the flavor of the tagged jet by
matching it in ∆R with the initial parton. Depending on
the flavor of the jet, we apply a per-jet scale factor given
by SF = εdata(pT , η)/ε

MC(pT , η), where εdata(pT , η) and
εMC(pT , η) are the b-tagging efficiencies for a given par-
ton flavor for data (MC) events. To maintain correct
normalization, a small downward correction is applied to
non-b-tagged jets.

10. Weak Gauge Boson pT

The pT distribution of the Z boson from alpgen MC
is corrected to match the distribution observed in data
in Z → ee decays [25]. A modified reweighting is carried
over to the W boson pT based on the theoretical ratio of
the W to Z pT spectra [26].

11. ∆φ

We apply a ∆φ-dependent weight specifically for this
analysis using the inclusive distributions described in
Sec. V to correct the ∆φ between leptons in dilepton
final states and the lepton and 6ET in single-lepton + jets
final states. This reweighting affects not only the ∆φ dis-
tributions, but also other quantities that depend on the
angular distribution of particles such as the pT of the W
boson.

V. INCLUSIVE FINAL STATES

The seven inclusive non-overlapping final states are
specified in Table I by the relevant objects and their se-
lection criteria. The additional objects (X in the table)
are selected as shown in Table II. Events with photons
are rejected, mainly due to difficulties in modeling. The

seven states (e + jets, µ + jets, ee, µµ, µe, eτ , µτ ) were
each selected to correspond to a specific SM process.

TABLE I: Inclusive final states and their ob-
ject selections, where pmin

T is the minimum al-
lowed value of pT and |η|max is the maximum
allowed value of |η|.

Final State Object pmin
T (GeV) |η|max

e + jets + Xa e 35 1.1
jet 20 2.5
6ET 20 -

µ + jets + Xb µ 25 1.5
jet 20 2.5
6ET 20 -

ee + Xc e 20 1.1
µµ + Xd µ 15 1.5
µe + Xe µ 15 1.5

e 15 1.1
eτ + X f e 15 1.1

τ 15 1.1
µτ + Xg µ 15 1.5

τ 15 1.1
a X 6= e, µ, τ , γ
b X 6= e, µ, τ , γ
c X 6= µ, τ , γ
d X 6= e, τ , γ
e X 6= τ , γ
f X 6= γ
g X 6= e, γ

TABLE II: Criteria required for inclusion as
additional objects (X) in one of the seven fi-
nal states listed in Table I.

Object pmin
T (GeV) |η|max

e 15 1.1
µ 15 1.5
τ 15 1.1
jet 20 2.5

• e + jets

The electron + jets final states have more back-
ground from multijet events, where a jet is misiden-
tified as an electron, than the other electron final
states. Therefore the likelihood criterion used is
tighter than in other final states, Le > 0.95. We
also require at least one jet having ET > 20 GeV,
6ET > 20 GeV, and an e pT > 35 GeV. This fi-
nal state is dominated by W + jets events with
W → eν decays.

• µ + jets

The µ + jets final state is dominated by W +
jets events with W → µν decays. To reduce the
amount of multijet background, at least one jet
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having ET > 20 GeV is required, as well as 6ET> 20
GeV and a muon with pT > 25 GeV. Just as the e
+ jets final state, this final state is inclusive in jets
with no other additional objects allowed.

• ee
The dielectron final state requires each electron to
have pT > 20 GeV and Le > 0.85. The electrons
are also restricted to be in the central calorimeter,
|η| < 1.1, and the jets have the same criteria as for
the other final states. This final state is dominated
by Z/γ∗ → ee events.

• µµ
The dimuon final state requires at least two muons
with the muon-pT criteria lowered to pT > 15 GeV
because of the smaller contribution from multijet
background. Any jet must have pT > 20 GeV. This
final state is inclusive in both jets and muons, but
an additional e or τ lepton places the event in the
µe or µτ final states. Analogous to the ee channel,
this final state is dominated by Z/γ∗ → µµ events.

• µe
The µe final state is inclusive except for τ leptons;
eµτ events are assigned to the eτ final state. This
final state is dominated by Z/γ∗ → ττ events.

• eτ
The eτ sample is inclusive in all objects. The elec-
tron and τh pT are required to be at least 15 GeV.
The electron likelihood is set to Le > 0.95 to reduce
the large multijet background as many apparent τh
correspond to misidentified jets. The parameter
that separates electron from hadronic taus, NNe, is
set to 0.8 to reduce the contribution from dielec-
tron events. This final state is also dominated by
Z/γ∗ → ττ events.

• µτ
The µτ state contains at least one muon and one
τh. It is inclusive in all objects except electrons,
whose presence would move the event to the eτ
final state. This final state is also dominated by
Z/γ∗ → ττ events.

VI. INCLUSIVE NORMALIZATION FITS

Our model does not provide proper normalization
of different MC contributions because, for example, of
higher-order corrections needed for the leading-order or
leading-logarithm cross section calculations. To avoid
uncertainties in normalization, we perform a fit, de-
scribed below, for each of the inclusive final states to
obtain scale factors that reproduce the distributions of
the selected data using a combination of the SM MC
and multijet predictions determined from data. We treat

the Drell-Yan (D-Y) contributions to the ee and µµ fi-
nal states without light partons separately from those
with light partons because it improves agreement be-
tween data and MC.

The fits for normalization factors are performed on
kinematic distributions of different object quantities, al-
tering the overall normalization of each input process
contributing to final state so that the χ2 probability
for that final state is minimized for the combined fit.
To avoid fitting to data at the highest values of pT ,
where new physical processes can be important, we only
use events that are not in the high pT tail, which con-
tains 10% of the events. Distributions of basic quan-
tities such as 6ET , pT , η, ∆φ(obj, 6ET ) of leptons and
jets (here obj refers to the momentum of the object con-
sidered) are used in the fits while more complex vari-
ables are used to check the quality of the overall fit.
The latter variables include the mass or transverse mass
MT =

√

(pT,1 + pT,2)2 − (~pT,1 + ~pT,2)2 of two or more
objects, jet multiplicities, and the pT of the W and Z
bosons. If an event contains any object outside the pT

range defined above, then none of the objects in the event
are used in the fit.

The list of the seven final states, the processes that are
normalized through the inclusive fits to each of the final
states, and the number of events in each final state are
shown in Table III. Once the fitted values are extracted,
the distributions are rescaled accordingly, and the total
background contribution, B, for a particular final state
is

B =

Nbkg
∑

i

SiBi (1)

where the scale factor (Si) for each background process
(Bi) is determined from the final state in which its con-
tribution is most important and that scale factor is used
in all other final states to which that background con-
tributes. Nbkg refers the total number of all the SM pro-
cesses contributing to a particular final state.

A simplified example for the e + jets + X final state
(X 6= e, µ, τ , γ) is used to illustrate the procedure. The
e + jets + X state is dominated by W → eν events,
but there is a significant contribution from multijet and
Drell-Yan events. We use the normalization factor for
the Drell-Yan process, determined through a separate fit
to the ee + X final state (X 6= µ, τ , γ), in the e + jets
fit. We also fix the scale factors to one for rare processes
which have contributions that are too small to fit accu-
rately in e + jets, such as the tt̄ contribution. We then
fit for the SM W boson and multijet contributions in the
data. The fit optimizes agreement between the distri-
butions in data and the SM prediction for the variables
listed above. The result of the fit is two overall weights,
one for W → eν and one for multijet → e+ jets.

The distributions of the variables for the input pro-
cesses are not varied, only their relative contributions.
The fit is performed using the minuit program [27]. For
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single-lepton states and hadronic τ final states, multijet
events are a significant background. We assume that the
contribution from other SM processes modeled by the
MC samples to the multijet background is small. The
scale factors of input processes for the MC events should
also account for the contributions of the processes to the
multijet background. The main effects of contributions
from any of the MC processes to the multijet background
would be to decrease the scale factor for backgrounds
modeled by MC.

The main purpose of the normalization process is
to assure that the fundamental SM processes are well-
modeled. The results of the fit are then checked for qual-
itative agreement with the data. The overall scale factors
are checked to compare to those from dedicated analyses.
If the normalization factors are properly included in the
MC, then all the scale factors should equal unity. One
histogram that is included in the overall fit and one check
histogram that is not part of the fit are shown for each
of the seven final states in Figs. 1 – 7. In the figures,
the leading and second electron are the electrons with
highest pT in the event and next highest pT in the event,
with a similar definition for leading and second muons
and jets.

The electron pT distribution in Fig. 1 shows a clear
disagreement between data and simulation in this kine-
matic region arising from the need for a large multijet
contribution at low pT , and other variables that provide
better agreement with a smaller multijet contribution.
However, the discrepancy at low pT should not mask the
presence of new physics at high pT , which is the main
focus of this analysis.

VII. EXCLUSIVE FINAL STATES

After determining the normalization scale factors, the
seven inclusive subsets are merged to create an input file
for the vista algorithm [8]. Each MC and background
event is given a weight calculated from the data based
scale factors and any required corrections. The vista al-
gorithm, developed by the CDF Collaboration, is a tool
that performs a broad check of the agreement between
data and the SM. We modified the CDF algorithm for
our analysis strategy as described above. The resultant
vista@D0 algorithm focuses on the D0 high pT data to
determine whether the data can be adequately described
by the SM or if significant discrepancies can be con-
firmed. vista mainly examines discrepancies that affect
the overall distributions rather than narrow regions of
phase space, addressing the numbers of expected events
and MC/data agreement across full distributions of cho-
sen variables.

The use of standard object identification criteria
(Sec. III) provides great simplification in the analysis as
data can be partitioned into exclusive final states. The
events are separated into homogeneous subsets of events
according to the objects contained in each event, result-
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FIG. 1: (color online) e + jets final state (a) electron pT

histogram and (b) transverse mass (e, 6ET ) check histogram.

ing in 117 exclusive final states. Examples of such exclu-
sive final states include µ±τ∓ + 2 jets + 6ET , e±µ∓ + 2
jets + 6ET , e+e+ + 3 jets, and µ + 4 jets + 6ET .

vista performs two types of checks: first, it does a
normalization-only check on the number of events in
each exclusive state; the goodness of the fit is calcu-
lated using Poisson probabilities. Second, it calculates a
Kolmogorov-Smirnov statistic (and resulting fit probabil-
ity) for the consistency of all the kinematic distributions
in any final state with the predicted SM distributions.
Both of these results require additional interpretation be-
cause of the large number of trials (number of final states
and/or the number of distributions) involved. When ob-
serving many final states, some disagreement is expected
from statistical fluctuations in the data. Thus the Pois-
son probability used to determine agreement is corrected
to reflect this multiple testing. A similar effect occurs
when comparing kinematic distributions, and again the
probabilities are first converted to standard deviations
and then corrected for the number of distributions ex-
amined.

Another algorithm we use to search for new physics is
called sleuth [5], developed at the D0 experiment during
Run I (1992-1996) of the Tevatron. sleuth is an attempt
to systematically search for new physics as an excess at
the largest values of

∑

pT . This variable corresponds
to the sum of the values of the scalar pT of all objects
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FIG. 2: (color online) µ + jets final state (a) 6ET histogram
and (b) transverse mass (µ, 6ET ) check histogram.

in the event, including the 6ET . The sleuth algorithm
is quasi-model independent, where “quasi” refers to the
assumption that the physics beyond SM will appear as
an excess of events at large pT . Therefore sleuth is ex-
pected to be most sensitive to high-mass objects decaying
into relatively few final-state particles.

For sleuth, the vista exclusive 0 and 1-jet final states
are merged, as are the 2 and 3-jet final states, and light-
lepton universality is assumed, combining eX and µX
channels. Making these assumptions greatly reduces the
number of states considered in sleuth relative to vista,
and thus the trials factor, improving the statistical sensi-
tivity by diminishing the chance of observing a large fluc-
tuation. Next, the

∑

pT distribution in each channel is
scanned to find a cutoff that maximizes the significance of
any excess in data relative to the SM background, defin-
ing a lower bound for the

∑

pT selection. Finally, the
probability for consistency with the SM of the largest
values of the

∑

pT is corrected for the number of possi-
ble lower bounds in any distribution, and subsequently
for the number of final states examined by sleuth. This
corrected probability corresponds to the probability that
any individual final state would yield probabilities as
small as observed. We define a significant output from
sleuth as one with a corrected probability of < 0.001
(that is over 3 Gaussian standard deviations from the SM
prediction using a one-sided confidence interval).
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FIG. 3: (color online) ee final state (a) leading electron (with
highest pT ) pT fit histogram and (b) invariant mass (e,e) check
histogram.

VIII. SENSITIVITY TEST

To check the sensitivity of a search with sleuth, we
examine whether a top quark (produced in tt pairs) which
contributes objects with high pT would have been discov-
ered in the current data sample. For this test, we used all
the background samples, except for the tt MC. The main
concern is whether other final states would compensate
for the missing tt events, and thus sleuth would not be
sensitive to tt production in data.

We examine the `jjbb̄6ET final state, which we expect
to be dominated by tt̄ events. Figure 8 shows that pres-
ence or absence of a tt̄ signal has a great impact. With a
threshold of 0.001, the sleuth test, including the tt MC,
yields a statistical probability of compatibility of 0.98 af-
ter correcting for the number of trials. However, without
the tt contribution this probability is < 1.1 × 10−5. In
Fig. 8 and other sleuth plots, the insets show the results
for data and MC that pass the

∑

pT cut maximizing the
significance of excess in data.
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FIG. 4: (color online) µµ final state (a) leading muon pT fit
histogram and (b) invariant mass (µ, µ) check histogram.

IX. RESULTS

A. Numerical discrepancy using the vista analysis

In vista, the separation of the input data into final
states completely defined by the objects in an event,
yields a total of 117 unique exclusive final states. The
probability (P̃) that the yield observed in data results
from a statistical fluctuation of the SM sample in chan-
nel fs is determined from

P̃ = 1 − (1 − pfs)
Nfs

pfs�1

≈ Nfs × pfs (2)

where Nfs is the number of trials and pfs is the probabil-
ity that the number of events predicted for the channel
fs in the SM would fluctuate to what is observed in data,
before applying the correction for the number of trials.
The number of trials is Nfs = 117, corresponding to the
number of final states, and

pfs =

∫ ∞

0

exp

[

− (N −NB)2

2σ2
B

]

dN

∞
∑

Ndata

N i

i!
e−N , (3)

where NB and σB are the expected SM event yield from
background and its uncertainty, respectively, and Ndata

is the number of events observed in any channel. The
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FIG. 5: (color online) µe final state (a) electron pT fit his-
togram and (b) invariant mass (µ, e) check histogram.

Gaussian significance is the value of σ that satisfies the
equation

∫ ∞

σ

1√
2π
e−

x2

2 dx = P̃. (4)

The final state probabilities converted into standard de-
viations, before the correction factor for the number of
trials, are shown in Fig. 9. This distribution shows most
final states near σ = 0, with some excess for σ > 3. Of
the 117 final states, two show significant discrepancy af-
ter correction for the number of trials. These are the
final states µ + 2 jets + 6ET , with a probability corre-
sponding to a 4.5 σ discrepancy, and µ+µ− + 6ET with a
discrepancy of 6.7σ (also shown in Fig 9).

The discrepancy for the µ + 2 jets + 6ET final state
shows the greatest difference from the SM prediction in
the modeling of jet distributions. There is a significant
excess in the number of jets at high |η|, which points to
likely problems with modeling ISR/FSR jets in the for-
ward region, as can be seen in Fig. 10a. This difference is
observed in dedicated analyses [28], and the discrepancy
becomes less severe when using sherpa [29] MC events.

The µ+µ− + 6ET discrepancy can be attributed to dif-
ficulties modeling the muon momentum distribution for
high pT muons. As noted in Sec. IV B 6, the muon smear-
ing modeling is based on muons from Z and J/ψ decays,
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FIG. 6: (color online) eτ final state (a) The ∆φ(e,6ET ) fit
histogram and (b) invariant mass (e,τ ) check histogram.

dominated by muons below 60 GeV, and is not as reliable
at high pT . The prime signature of poorly simulated high
pT muons is an excess of 6ET because of the mismodeling
of the resolution of the mismeasured track. The ∆φ be-
tween the positive muon and 6ET in the µ+µ− + 6ET final
state is shown in Fig. 10b, where the excess tends to be
for events where the 6ET is collinear with a muon.

B. vista Shape Analysis of Discrepancies in

Distributions

The 117 final states contribute a total of 5543 indi-
vidual one-dimensional distributions in various variables,
and comparison between simulation and data is per-
formed for each. The trials-factor adjusted probability
is determined from P̃ = 1 − (1 − pshp)

5543, where pshp

is the Kolmogorov-Smirnov (KS) probability to observe
a discrepancy for any individual distribution (before ap-
plying the correction for 5543 trials). As with the prob-
ability for a final state normalization discrepancy in any
final state, the probability for a discrepancy in a spec-
trum is converted into units of standard deviation. Any
deviation >3σ is considered discrepant. The distribution
of deviations before correction for the number of trials is
shown in Fig. 11.

Sixteen distributions are found to be discrepant at the
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FIG. 7: (color online) µτ final state (a) muon pT fit histogram
and (b) invariant mass (µ, τ ) check histogram.

3σ level after correcting for the trials. The majority of
these are related to spatial distributions involving jets.
All these discrepancies are related to known simplifica-
tions in our modeling assumptions, e.g., no systematic
uncertainties taken into account, aside from the adjust-
ments made by the normalization factors. These dis-
crepancies would not be expected to severely affect the
sleuth search for new physics at high pT tails. All 16
discrepant distributions are shown in Figs. 12–15 and are
listed in Table IV. In the figures, the second jet refers to
the lower pT jet in the two jet final states.

C. sleuth

All vista final states are used as input to sleuth, and
the 117 inclusive final states are folded into 31 final states
after applying global charge conjugation invariance, re-
binning in the number of jets, and assuming light lepton
universality. The two vista final states that show broad
numerical excesses are found again with the sleuth al-
gorithm, as expected. No additional final states have a
significant sleuth output, as defined in Sec. VII.

In the sleuth runs performed at CDF, using a slightly
different analysis strategy, the four most interesting ob-
served final states were µ±e±, µ±e± + 2 jets + 6ET , µ±e±

+ 6ET , and `±`∓ `
′

+ 6ET in 2.0 fb−1 [9] of integrated lumi-

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 
 



14

TABLE III: The contributions used in the in-
clusive fits for each of the inclusive final states
and the number of data events in each final
state. The dominant SM process is listed first
for each final state. In the eτ and µτ final
states, the multijet background also includes
a contribution from W + jets.

State SM process Events
e + jets + X W + jets 40k

Multijet

W/Z + HF

µ + jets + X W + jets 50k
Multijet

W/Z + HF

ee + X D-Y + 0lp 25k
D-Y 1-3lp ratio

W/Z + HF

µµ + X D-Y + 0 lp 24k
D-Y + 1-3 lp

W/Z + HF

µe + X Z → ττ 0.34k
Multijet

W/Z + HF

eτ + X Z → ττ 1.3k
Multijet

W/Z + HF

µτ + X Z → ττ 1.0k
Multijet

W/Z + HF

nosity. These states were also among the most discrepant
observed by CDF in 0.9 pb−1 [8] of integrated luminosity.
Our results for these states are shown in Figs. 16, 17, and
18, except for µ±e± + 2 jets + 6ET , for which we find no
events with 0.16 events expected. Figure 19 shows the
similar final state, where the muon and electron are of
opposite sign rather than of the same sign where CDF
sees a discrepancy. None of these states are significantly
discrepant in our analysis.

The sleuth final states with P̃ ≤ 0.99 are shown in
Table V. A plot including all of the final state probabil-
ities converted to units of σ can be seen in Fig. 20. The
final state `± + τ∓ + 6ET , which was not identified as hav-
ing a significant discrepancy between data and the SM
expectation in vista, falls close to our sleuth thresh-
old. Figure 21 shows the

∑

pT distribution for this final
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FIG. 8: (color online) Sensitivity to new physics test using the
tt final state. (a) The tt MC is included, yielding only minor
differences between data and SM background. The statisti-
cal agreement between the data and MC for the distribution
shown on inset is nearly 2 σ. (b) The results of the entire
analysis without the tt MC. In this case, sleuth passes the
criterion of interest at 0.001 for this final state. The insets
shows the distribution beyond the

P

pT cutoff. “Other” refers
to contributions too small to list, including W + bb → eνbb
events, W + cc → `νcc events, W + lp → `ν + lp events, and
diboson events.

state.

X. CONCLUSIONS

We have done a global study of D0 high pT data to
search for significant deviations from the standard model
expectations. This broad search for BSM physics has
been done on 1.1 fb−1 of integrated luminosity collected
in Run II of the Fermilab Tevatron Collider in the D0 ex-
periment. Using the vista algorithm, a total of 117 ex-
clusive final states and 5543 kinematic distributions were
compared to the SM background predictions. Only two
out of 117 exclusive final states, µ± + 2 jets + 6ET and
µ+µ− + 6ET , show a statistically significant discrepancy.
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FIG. 11: (color online) The σ distribution for the 5543 vista
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curve represents a Gaussian distribution centered at zero to
guide the eye. There are 116 distributions in the underflow
bin with σ ≤ −10. This is expected as histograms with KS
probabilities > 0.99999 are rounded to 1, and appear in the
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TABLE IV: The full list of vista results with dis-
crepant distributions listed by final state.

vista Final State Histogram σ
µ± + 2 jets + 6ET MT (W ,j2) 4.4

∆R(µ, j2) 4.4
M(µ,j2) 4.0

∆η(j1, j2) 3.8
µ± + 1 jet + 6ET pT (W ) 8.1

ΣpT 5.1
pT (µ) 4.1

MT (µ±, 6ET ) 4.1
∆φ(µ, j) 3.1

e± + 2 jets +6ET ∆η(j1, j2) 4.2
MT (j2, 6ET ) 4.0
MT (W ,j2) 3.0

e± + 1 jet + 6ET ∆φ(e+, j) 5.5
pT (e±) 4.4
pT (W ) 3.8
6ET 3.1

Given the known modeling difficulties in both final states
together with our neglect in this study of systematical
uncertainties, we cannot attribute the observed discrep-
ancies to sources of physics beyond the standard model.
A quasi-model-independent search for new physics was
also performed using the algorithm sleuth by looking
for statistically significant excess at high

∑

pT in a wide
array of exclusive final states. No additional final states
cross the discovery threshold in sleuth beyond the ex-
cesses noted by vista.
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FIG. 12: (color online) The discrepant distributions in the µ
+ 2 jets + 6ET exclusive final state. (a) The transverse mass
distribution of the W boson plus second jet, (b) the ∆R be-
tween the muon and the second jet, (c) the invariant mass
distribution of the µ + second jet, and (d) ∆η between the
highest pT jet and the second jet. “Other” contains distribu-
tions too small to list individually, W + bb̄, diboson, tt̄, and
D-Y + 0 lp.

TABLE V: The sleuth states with P̃ < 0.99. The
value of P represents the corresponding probability
without taking into account the trial factor.

Final State P P̃a

`+`− + 6ET < 10−5 < 0.001
`± +2j + 6ET < 10−5 < 0.001
`± + τ∓ + 6ET 8.9 × 10−5 0.0050
`± + 6ET + 1j 0.00036 0.019
e±µ∓ +2b + 6ET 0.0028 0.12
`±τ± + 2j + 6ET 0.0028 0.12
`± + 2b + 6ET 0.0077 0.3
e±µ∓ + 6ET 0.0081 0.31

`±τ± 0.057 0.91
`± + 2b + 2j + 6ET 0.099 0.98

a The value of P̃ is not necessarily accurate below 0.001.
The important check is whether the value drops below
the threshold. Further discussion can be found in [8].
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FIG. 15: (color online) The discrepant distributions in the e
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FIG. 16: (color online) Check of most discrepant CDF plots
from [9], µ±e±. The inset shows the distribution above the
ΣpT cut.
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FIG. 17: (color online) Check of most discrepant CDF plots
from [9], µ±e± + 6ET . The inset shows the distribution above
the ΣpT cut.
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FIG. 18: (color online) Check of most discrepant CDF plots

from [9], `±`∓`
′

+ 6ET . The inset shows the distribution above
the ΣpT cut.
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FIG. 19: (color online) Since there are no data events in the
µ± e± + 2 jets + 6ET final state, the distribution for µ± e∓ +
2 jets + 6ET is shown. The inset shows the distribution above
the ΣpT cut. “Other” contains the Z → µµ and W/Z + bb̄
distributions.
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FIG. 20: (color online) Distribution of final state sleuth

probabilities converted into units of σ before inclusion of the
final state trials factor.
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inset shows the distribution above the ΣpT cut. “Other” in-
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events, and tt̄ events.
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