Search for new physics in high \(p_T \) like-sign dilepton events at CDF II

We present a search for new physics in events with two high p_T leptons of the same electric charge, using data with an integrated luminosity of 6.1 fb$^{-1}$. The observed data are consistent with standard model predictions. We set 95% C.L. lower limits on the mass of doubly-charged scalars decaying to like-sign dileptons, $m_{H^{\pm\pm}} > 190 - 245$ GeV/c^2, depending on the decay mode and coupling.

PACS numbers: 12.60.-i, 13.85.Rm, 14.65.-q, 14.80.-j

A wide variety of models of new physics predict events with two like-sign leptons, a signature which has very low backgrounds from the standard model. Examples include doubly-charged Higgs bosons [1], supersymmetry [2], heavy neutrinos [3], like-sign top quark production [4], and fourth-generation quarks [5].

CDF examined the like-sign dilepton data with integrated luminosity of 110 pb$^{-1}$ in Run I [6] and 1 fb$^{-1}$ in Run II [7], observing in Run II a modest excess of events above the standard model expectation (44 ob-
served, 33.2 ± 4.7 expected).

In this Letter, we present a study of events with like-sign dileptons with an integrated luminosity of 6.1 fb\(^{-1}\) collected by the CDF II detector. We search for a localized excess of events in a model-independent manner by comparing the observed events to the standard model prediction using a Kolmogorov-Smirnov test in several kinematic variables and assessing the statistical consistency. In addition, we set limits on a specific model: pair production of doubly-charged scalars which decay to two like-sign charged leptons [1]. These limits supersede those from CDF in 240 pb\(^{-1}\) [8] and are stronger than those from D0 in 1.1 fb\(^{-1}\) [9] and CMS in 36 pb\(^{-1}\) [10] by an order of magnitude. A companion article [11] includes interpretations for like-sign top quark production and supersymmetric processes.

Events were recorded by CDF II [12, 13], a general purpose detector designed to study collisions at the Fermilab Tevatron p\(\bar{p}\) collider at \(\sqrt{s} = 1.96\) TeV. A charged-particle tracking system immersed in a 1.4 T magnetic field consists of a silicon microstrip tracker and a drift chamber. Electromagnetic and hadronic calorimeters surround the tracking system and measure particle energies. Drift chambers located outside the calorimeters detect muons. We examine data taken between August 2002 and September 2010, corresponding to an integrated luminosity of 6.1 fb\(^{-1}\).

The data acquisition system is triggered by e or \(\mu\) candidates [14] with transverse momentum of greater than 18 GeV/c. Electrons and muons are reconstructed offline and selected if they have a pseudorapidity of less than 1.1, \(p_T \geq 20\) GeV/c and satisfy the standard CDF identification and isolation requirements [14]. An additional requirement is made to suppress electrons from photon conversions, by rejecting electron candidates with a collinear intersecting reconstructed track. Jets are reconstructed in the calorimeter using the \textsc{jetclu} [15] algorithm with a clustering radius of 0.4 in azimuth-pseudorapidity space [13] and calibrated [17]. Jets are selected if they have \(p_T \geq 15\) GeV/c and \(|\eta| < 2.4\). Missing transverse momentum [18], \(E_T\), is reconstructed using fully corrected calorimeter and muon information [14].

We select events with at least two isolated leptons (electrons or muons), two of which have the same electric charge. The leading lepton must have \(p_T > 20\) GeV/c, \(|\eta| < 1.1\) and be isolated in both the calorimeter and the tracker. The second lepton must satisfy the same requirements, with the exception that it needs only have \(p_T > 10\) GeV/c. We require that the two leptons come from the same primary vertex and have a dilepton invariant mass \(m_{\ell\ell}\) of at least 25 GeV/c\(^2\) to reduce backgrounds from pair production of bottom quarks. Finally, we reject events with three or more leptons if they contain a pair of opposite-sign leptons or like-signed electrons in the window, \(m_{\ell\ell} \in [86, 96]\) GeV/c\(^2\). Like-signed electrons may be produced by the radiation of a hard photon, see below, which is negligible for muons. In each event, we calculate \(H_T\), the scalar sum of the lepton \(p_T\), the jet \(E_T\) and the missing transverse momentum.

Irreducible backgrounds to the like-sign dilepton signature with prompt like-sign leptons are rare in the SM; they are largely from WZ and ZZ production. These backgrounds are modeled using simulated events generated by \textsc{pythia} [19] with the detector response simulated with a \textsc{geant}-based algorithm \textsc{cdfsimg} [20].

The dominant reducible background comes from \(W+jets\) production or \(t\bar{t}\) production with semi-leptonic decays, with one prompt lepton and a second lepton due to the semi-leptonic decay of a b- or c-quark meson. This (“fake”) background is described using a lepton misidentification model from inclusive jet data applied to \(W+jets\) events, validated in orthogonal jet samples and in events with like-sign dileptons but low invariant mass: \(m_{\ell\ell} \in [15, 25]\) GeV/c\(^2\).

The second largest source of background comes from processes which produce electron-positron pairs; either the electron or positron emits a hard photon leading to an asymmetric conversion (e.g. \(e^-\gamma \rightarrow e^-_{\text{soft}}\gamma \rightarrow e^-_{\text{soft}}e^-_{\text{hard}}\)) where the track for the \(e^-_{\text{hard}}\) determines the charge. This mechanism is well-described by the detector simulation, and is validated in events with like-sign electron pairs which have a conversion-tagged electron. The major contributions via this mechanism are from \(Z/\gamma^*\)+jets and \(t\bar{t}\) production with fully leptonic decays. Estimates of the backgrounds from \(Z/\gamma^*\)+jets processes are modeled using simulated events generated by \textsc{pythia} normalized to data in opposite-sign events. The detector response for both \(Z\)+jets and \(t\bar{t}\) processes is evaluated using \textsc{cdfsimg}, where, to avoid double-counting, the like-sign leptons are required to originate from the \(W\) or \(Z\) boson decays rather than from misidentified jets.

An additional contribution to the background is due to associated production of a \(W\) boson with a prompt photon. If the \(W\) boson decays to an electron (muon) and the photon converts too early to be identified as a conversion, the event can be reconstructed with a like-sign \(\mu e\) (\(e\mu\)) signature. The rate of \(W\gamma\) production the efficiency for finding conversions is validated in a sample of like-sign dilepton events with a conversion-tagged electron.

Backgrounds from charge-mismeasurement are insignificant, as the charge of a particle with momentum of 100 GeV/c is typically determined with a significance greater than 5\(\sigma\) [16].

The dominant systematic uncertainty is the 50% uncertainty of the lepton misidentification rate, due to possible contamination of leptons from \(W\) and \(Z\) boson decays in the inclusive jet data. This gives a 20% uncertainty on the total background. Additional uncertainties are due to the jet energy scale [17], contributions from additional interactions, and descriptions of initial and fi-
The dilepton mass spectrum is in good agreement with the standard model prediction, and we calculate 95% confidence level upper limits on the production cross section of doubly-charged Higgs bosons, using frequentist statistics with the unified ordering scheme [25]. The Z/γ^* coupling and therefore production cross-section of the doubly-charged Higgs boson depends on whether it is a member of a singlet, doublet or triplet, as shown in Fig. 3 and Tables III and IV.

In summary, we present a search for new physics in events with two high p_T leptons of the same electric charge using data with an integrated luminosity of 6.1 fb$^{-1}$. The observed data are consistent with standard model predictions. We set 95% confidence level lower limits on the mass of doubly-charged scalars decaying to like-sign electron pairs, muon pairs or electron-muon pairs. Simulated events are generated with MADEVENT [24], showering and hadronization is performed by PYTHIA passed through the CDF II full detector simulation. Figure 2 shows the observed and expected standard model spectra in the $ee, \mu\mu$ and $e\mu$ channels.

The largest uncertainties on the signal model are due to energy resolution and lepton identification efficiencies, which are minor compared to the background uncertainties. In each case, we treat the unknown underlying quantity as a nuisance parameter and measure the distortion of the dilepton mass spectrum for positive and negative fluctuations.

The dilepton mass spectrum is in good agreement with the standard model prediction, and we calculate 95% confidence level upper limits on the production cross section of doubly-charged Higgs bosons, using frequentist statistics with the unified ordering scheme [25]. The Z/γ^* coupling and therefore production cross-section of the doubly-charged Higgs boson depends on whether it is a member of a singlet, doublet or triplet, as shown in Fig. 3 and Tables III and IV.

In summary, we present a search for new physics in events with two high p_T leptons of the same electric charge using data with an integrated luminosity of 6.1 fb$^{-1}$. The observed data are consistent with standard model predictions. We set 95% confidence level lower limits on the mass of doubly-charged scalars decaying to like-sign electron pairs, muon pairs or electron-muon pairs. Simulated events are generated with MADEVENT [24], showering and hadronization is performed by PYTHIA passed through the CDF II full detector simulation. Figure 2 shows the observed and expected standard model spectra in the $ee, \mu\mu$ and $e\mu$ channels.
FIG. 2: The observed and expected standard model spectra in the ee, $\mu\mu$ channels. The doubly-charged Higgs boson signal is shown for typical masses. The VV contribution includes WW, WZ, ZZ and $W\gamma$.

TABLE III: For various Higgs masses, the NLO cross-sections for singlet (σ_1), doublet (σ_2), triplet (σ_3) production, expected and observed 95% C.L. limits in the $ee, e\mu$ and $\mu\mu$ channels. All cross-sections are in femtobarns.

<table>
<thead>
<tr>
<th>$m_{H^{\pm \pm}}$ (GeV/c^2)</th>
<th>Theory</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_1</td>
<td>σ_2</td>
<td>σ_3</td>
</tr>
<tr>
<td>100</td>
<td>48</td>
<td>53</td>
<td>120</td>
</tr>
<tr>
<td>120</td>
<td>23</td>
<td>27</td>
<td>55</td>
</tr>
<tr>
<td>140</td>
<td>11</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>160</td>
<td>6.0</td>
<td>7.2</td>
<td>14</td>
</tr>
<tr>
<td>180</td>
<td>3.2</td>
<td>3.9</td>
<td>7.7</td>
</tr>
<tr>
<td>200</td>
<td>1.8</td>
<td>2.2</td>
<td>4.2</td>
</tr>
<tr>
<td>220</td>
<td>1.0</td>
<td>1.2</td>
<td>2.4</td>
</tr>
<tr>
<td>240</td>
<td>0.6</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>260</td>
<td>0.3</td>
<td>0.4</td>
<td>0.8</td>
</tr>
</tbody>
</table>

FIG. 3: Observed upper limits at 95% C.L. on the production cross-section for doubly-charged Higgs, assuming 100% branching fraction to $ee, \mu\mu$ or $e\mu$, compared to results from D0 [9]. Also shown are next-to-leading-order theoretical calculations of the cross-section, assuming the Higgs is a member of a singlet, doublet or triplet.

TABLE IV: Lower limits at 95% C.L. on $H^{\pm \pm}$ masses by channel, for singlet, doublet and triplet theories. All in units of GeV/c^2.

<table>
<thead>
<tr>
<th>Theory</th>
<th>Channel</th>
<th>Triplet</th>
<th>Doublet</th>
<th>Singlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee</td>
<td>225</td>
<td>210</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>e\mu</td>
<td>210</td>
<td>195</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>\mu\mu</td>
<td>245</td>
<td>220</td>
<td>205</td>
<td></td>
</tr>
</tbody>
</table>

Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

[10] CMS PAS HIG-11-001
[13] CDF uses a cylindrical coordinate system with the z axis along the proton beam axis. Pseudorapidity is $\eta \equiv -\ln(\tan(\theta/2))$, where θ is the polar angle relative to the proton beam direction, and ϕ is the azimuthal angle while $p_T = |p| \sin \theta$, $E_T = E \sin \theta$.
[18] Missing transverse momentum, E_T, is defined as the magnitude of the vector $-\sum_i E_T \hat{n}_i$ where E_T are the magnitudes of transverse energy contained in each calorimeter tower i, and \hat{n}_i is the unit vector from the interaction vertex to the tower in the transverse (x,y) plane.