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ABSTRACT

Future orbiting observatories will survey large areas of sky in order to constrain the physics
of dark matter and dark energy using weak gravitational lensing and other methods. Lossy com-
pression of the resultant data will improve the cost and feasibility of transmitting the images
through the space communication network. We evaluate the consequences of the lossy com-
pression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing
galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the
information discarded is by construction less than the Poisson error from photon shot noise. For
simulated space-based images (without cosmic rays) digitized to the typical 16 bits per pixel,
application of the lossy compression followed by image-wise lossless compression yields images
with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compres-
sion introduces no bias in the sky background. The compression introduces a small amount of
additional digitization noise to the images, and we demonstrate a corresponding small increase
in ellipticity measurement noise. The ellipticity measurement method is biased by the addition
of noise, so the additional digitization noise is expected to induce a multiplicative bias on the
galaxies’ measured ellipticities. After correcting for this known noise-induced bias, we find a
residual multiplicative ellipticity bias of m ≈ −4 × 10−4. This bias is small when compared to
the many other issues that precision weak lensing surveys must confront, and furthermore we
expect it to be reduced further with better calibration of ellipticity measurement methods.

Subject headings: Data Analysis and Techniques

1. Introduction

Weak gravitational lensing, whereby we mea-
sure how the images of field galaxies are dis-
torted by the intervening matter distribution, is
a powerful tool for probing the physics of the
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“dark sector” (Albrecht et al. 2006, 2009), with
very promising results for large-scale cosmology in
recent years, e.g. Massey et al. (2007c,a); Fu et al.
(2008); Kilbinger et al. (2008); Schrabback et al.
(2010). As such, this technique is expected to
be at the forefront of efforts to constrain the na-
ture of dark matter and dark energy, and the most
powerful experiments will utilize space observato-
ries conducting surveys over the largest possible
area of sky (Amara & Réfrégier 2007). The Wide-
Field Infrared Survey Telescope (WFIRST)1 and
Euclid2 are proposals for such large-area space ex-
periments.

Data compression has many benefits. It al-

1http://wfirst.gsfc.nasa.gov/
2http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
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lows a reduction in onboard storage requirements,
which lowers cost and lowers power requirements
and heat output, thereby making the mission de-
sign simpler. It also lowers the need for downlink
time which is expensive on the Deep Space Net-
work (DSN). For example, for a WFIRST weak
lensing survey taking data every 180 seconds with
36 detectors each comprised of 2048 × 2048 pix-
els with an uncompressed 16 bits per pixel, we
would need to downlink 135 GB of imaging data
(plus spectra and calibration data) per day with
the DSN’s data rate of 150 MB/second. The full
range of benefits of data compression are complex
and depend on mission design, but certainly the
compression option allows flexibility in that de-
sign. The drawback of compression is possible loss
of crucial information, which is what we explore in
this study.

Note that CCD data already suffer some lossy
“compression” when the analog voltage represent-
ing the accumulated photon count is digitized into
Analog-to-Digital Units (ADUs) for storage and
transmission. One of the more popular schemes
for additional lossy compression is called “square-
root” compression (Gowen & Smith 2003), which,
as the name implies, takes the square root of the
pixel ADU values and truncates them so that they
can be represented by fewer bits per pixel. Square-
root compression is attractive because the addi-
tional error introduced by truncation is a fixed
fraction of the Poisson noise already present in
the photoelectron signal. Our goal in this study
is to find how the application of this square-
root compression algorithm modifies weak lens-
ing data and the inferences that we would draw
from them, in the absence of any attempts to
correct for the effects. We do this using simu-
lated sky images created with a “shapelets”-based
pipeline (Massey et al. 2004; Ferry et al. 2008;
Dobke et al. 2010). We apply the square-root
compression scheme of Bernstein et al. (2010),
and build upon that work by answering two ques-
tions: (1) Does this compression scheme bias the
sky background? (2) Knowing the background, is
shape information conserved?

The compression algorithm essentially re-bins
the pixel values more coarsely than the original
digitization. For weak lensing surveys we are in-
terested mainly in faint objects, so the effect of
lossy compression on both the transmission rate

and the image fidelity should be primarily deter-
mined by the coarseness of this re-binning at the
sky background level. The critical parameter is

b ≡ σsky

Nstep

(1)

where σsky is the RMS of sky pixels in the image
and Nstep is the number of input ADU values that
are encoded to a common output value by the com-
pression algorithm in the vicinity of the sky level.
The ratio of these quantities is the number of bits
that span the sky noise in the compressed image.
The higher this number, the better we expect the
image properties to be reproduced in the decom-
pressed version. In particular we expect poor re-
sults when b < 1.

For a next-generation weak lensing experiment,
the cosmological biases caused by a multiplica-
tive bias m in measured galaxy ellipticities will
be safely below the experiment’s statistical errors
if m < 10−3 (Amara & Réfrégier 2007). We sim-
ulate a large enough sample of galaxies to probe
this bias requirement, and our goal is to find if to-
tal (lossy plus lossless) compression by a factor of
∼ 3 can be attained without violating it. We find
that lossy compression at b = 1 more than sat-
isfies the compression requirement, does not bias
the sky background, and induces an RMS shift in
galaxy shape of only 0.027, completely negligible
when added in quadrature the intrinsic ellipticity
spread of roughly 0.3 that sets a floor on weak
lensing measurements.

On the other hand, we find that the data com-
pression/decompression (codec) procedure biases
the magnitude of measured ellipticities, thereby
inducing a multiplicative bias on the apparent
weak lensing shear. The RRG ellipticity measure-
ment method we use (Rhodes, Réfrégier, & Groth
2000) is known to be biased by the addition of
noise, and thus we do expect the digitization noise
inherent to the compression to induce a multiplica-
tive bias on the galaxies’ measured ellipticities.
When the codec’s multiplicative bias is corrected
for this known shortcoming of the RRG method,
we find an excess compression-induced multiplica-
tive ellipticity bias of m ≈ −4 × 10−4 for b = 1,
thereby meeting the requirement |m| < 10−3 by a
factor that we expect to be increased with appro-
priate calibration, as discussed later in the paper.

This paper is organized as follows. In Section

2



2 we discuss our study, including a basic review
of the lossy compression scheme we use, our test
images, and our weak lensing analysis pipeline. In
Section 3 we give our results, and in Section 4 we
provide a discussion and recommendations. All
quoted errors and plotted error bars correspond
to one standard deviation for the entirety of the
paper.

2. Method

2.1. Compression scheme

We use the compression scheme, including bias
correction, as described in Bernstein et al. (2010).
We provide a brief description here. We assume
that the telescope design has readout performed
by electronics to produce one 16 bit number per
pixel. Computing on board will reduce this to
fewer bits per pixel using a lossy compression al-
gorithm. Further computing will apply a lossless
compression algorithm, and the goal is that we can
achieve an overall compression factor (from the
original 16 bits per pixel) of ∼ 3. The lossy com-
pression step can be expressed as a lookup table,
as the mapping for a given pixel value is always
the same. Note also that we must apply the lossy
compression before the lossless, as the lossy works
on each pixel independently and the lossless step
would interfere with this mapping.

The square-root algorithm for lossy data com-
pression described in Gowen & Smith (2003)
transforms an input value x to a compressed value
y as

y = int
(

0.5 +A+
√
B ∗ x− C

)

, (2)

where A, B, and C are constants specified by the
maximum and minimum values of the input and
compressed values, and the int function rounds to
the nearest integer. The compression transforma-
tion applies Eq. (2) with the appropriate values of
A, B, and C to calculate the compressed value.
The decompression algorithm returns the average
of all uncompressed values that yield the com-
pressed value determined by Eq. (2). The lossy
compression does not reproduce the input param-
eters exactly, by definition. The codec process has
a similar effect on the data as do read noise in the
readout electronics or Poisson statistics.

Bernstein et al. (2010) refine the basic square-

root codec in Eq. (2) with: choices for A, B, and
C which maintain constant σ/Nstep at any sig-
nal level for given detector gain and read noise; a
prescription for slight departures from (2) to pro-
duce a codec that has uniform behavior of Nstep

as the signal increases; and a correction to the de-
compressed values which eliminates small biases in
the mean signal introduced by the codec process.
We will primarily focus on an implementation of
the square-root compression algorithm that yields
b = 1, which we naively expect to provide the best
compromise between our desires for a high com-
pression level but for low image degradation, but
we will also do some tests with a coarser b = 0.71
and a finer b = 1.41 level of compression. The
lossy compression algorithms used in this paper
can all be implemented as simple lookup tables
following gain g and digitization of the analog de-
tector output. Using the notation of Bernstein et
al. (2010), these three codecs are constructed as
follows. Output code i is assigned to all input
integers in the range Ni ± (∆i − 1)/2, with ∆i

an integer giving Nstep for this output code. If
we define the range step ∆′

i = ∆i+1 − ∆i, code
i is decoded to the (half-)integer value Ni, plus a
small correction ≈ ∆′

i/6 that eliminates a small
reconstruction bias. Most of the results in this
paper will use a codec with g = 0.5 electrons per
ADU and ∆′

i = 1, which yields a codec with min-
imal reconstruction bias, a code step Nstep = σ
and b = 1, very similar to a choice of B = 2 in
Eq. (2). We will also at times employ two other
codec schemes: (1) b = 1.41, for which ∆′

i fol-
low the sequence {0, 1, 0, 1, 0, 1, . . .}; (2) b = 0.71,
which has the same lookup table as the original
codec but with g = 1 electron per ADU before
digitization. See Bernstein et al. (2010) for a com-
plete description of the compression algorithm and
the exact correction factors for decompression.

For a representative 2000×2000 pixel test image
used in our study, in the absence of cosmic rays,
the readily-available lossless compression scheme
bzip23 alone reduces the file size from the origi-
nal 16.0 MB (or equivalently, 32 bits per pixel) to
3.2 MB (6.4 bits per pixel), a reduction by a factor
of 5 and a compression level which depends crit-
ically on the gain and sky and noise levels, spec-
ified in the next subsection. On the other hand,

3http://bzip.org/
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lossy compression alone reduces the file size to 8.0
MB (16 bits per pixel), a factor of 2 reduction.
The combination of lossy compression followed by
bzip2 reduces the file size to 1.4 MB (2.8 bits per
pixel), 1.2 MB (2.4 bits per pixel), and 1.0 MB (2.0
bits per pixel) for b = 1.41, 1, and 0.71, respec-
tively. This is similar to the theoretically expected
optimum value for Gaussian-noise images, as per
Bernstein et al. (2010). Moreover, also as noted in
Bernstein et al. (2010), bzip2 is not very robust,
in that a single-bit transmission error can lead to
loss of a full image; a better algorithm, used on
over 25 space missions, is CCSDS 121B (CCSDS
1997). Bernstein et al. (2010) found CCSDS 121B
to yield very similar filesizes for weak lensing im-
ages, to within 0.1 bits per pixel of the bzip2 re-
sults.

In Figure 1, we show an example of a patch
of an image that includes an object before com-
pression on the top left, and we show the same
patch after the aforementioned codec scheme with
b = 0.71 on the top right, with the residuals (mul-
tiplied by a factor of 5 for clarity) on the bot-
tom. The coarser greyscale is apparent even by
eye in the background noise from this rather ex-
treme compression level, as one can see the smaller
number of grey levels in use. This re-binning is less
severe for the higher values of b that we use in the
remainder of this paper.

This lossy compression algorithm is designed to
remove bits per pixel which are shot noise, which
is equivalent to adding on small amount of extra
noise. Therefore the resulting compressed images
should be comparable to images with a slightly
lower exposure time, the penalty being a factor
of 1 + b2/12, which is 8% if b = 1. The com-
pression is done independently for each pixel, so
naively one would expect this added noise to be
white. We provide evidence of this in Figure 2,
which is a plot of the ratio of the two-point cor-
relation function to the variance (i.e. the zero lag
correlation function), as a function of distance in
pixels, for the difference between an original im-
age and its codec counterpart for b = 1. As we
can see, the correlations are all at least a factor of
103 smaller than the variance, which is consistent
with the properties of white noise. Further note
that the residuals in Figure 1 appear consistent
with white noise.

Fig. 1.— A patch of an image, shown on the top
left before compression and shown on the top right
after codec with b = 0.71. The residuals (multi-
plied by a factor of 5) are shown on the bottom.

Fig. 2.— The ratio of the two-point correlation
function to the variance (the zero lag correlation
function), plotted as a function of distance in pix-
els, for the difference between an original image
and its codec counterpart for b = 1.
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2.2. Images

To test whether our codec algorithm biases the
sky background, we make images that are purely
Poissonian sky noise plus read noise. We then run
these images through the aforementioned codec
scheme, plus de-biasing, and compare the mean of
the codec image to the mean of the original. The
images that we will use for the galaxy shape por-
tion of this study are simulated with the shapelets
method, described in Dobke et al. (2010) and used
in the Shear TEsting Program (STEP) collabora-
tion shear extraction tests (Massey et al. 2007b)
and in High et al. (2007). These images are ran-
domly generated, based on Hubble Ultra Deep
Field (UDF) data. Survey characteristics such as
mirror size, exposure time, pixel scale, galaxy and
star number density, Point Spread Function (PSF)
type, and noise are freely specifiable by the user.
A known external shear can also be added to each
image.

Following the STEP methodology, we have
manufactured a large set of space-like images
meant to be similar to the data set resulting from
a survey like WFIRST or Euclid. We use the
same bandpass as the COSMOS HST/ACS sur-
vey data so that we can use the same model for
the expected galaxy population. We also use 0.07
arcsecond pixels, an 800 second exposure time, a
PSF with a 50% encircled-energy radius of 0.15
arcseconds, and an effective imager collecting area
of 0.83 m2. We assume a sky and dark current
background of 45 electrons plus Poisson noise and
a read noise of 4 electrons. We don’t put any shear
into the images, as the goal here is not to extract
a shear signal but instead to see how the codec
procedure changes raw galaxy shapes.

Throughout this paper, we will refer to any un-
altered images as the “original” images.

2.3. Weak lensing pipeline

All of the original galaxy images are run
through the codec algorithm described in Section
2. Then the original and codec images are run
through the following weak lensing pipeline:

• SExtractor (Bertin & Arnouts 1996) is run
only on the original, uncompressed, im-
ages. The resulting detections and sky back-
grounds are then used for the weak lens-

ing analyses of both the original and the
codec images. In other words, we do not run
SExtractor on the codec images and we in-
stead use the SExtractor catalogs produced
from the original images on everything. This
ensures that consistent object lists and sky
levels are used for the codec and no-codec
images.

• Galaxy shapes are measured in both origi-
nal and codec images with the RRG method
(Rhodes, Réfrégier, & Groth 2000).

• Size, ellipticity, and S/N cuts are done from
both the original and codec images. Any
objects that are cut in that stage in either
its original or codec form are not included in
our analysis. We cut all galaxies with a S/N
less than 10, a size less than 1.25 times the
PSF size, or nonphysical (i.e. greater than 1)
ellipticities.

RRG is based on the KSB+ shape mea-
surement method (Kaiser, Squires, & Broadhurst
1995; Hoekstra et al. 1998) which measures Gaussian-
weighted multipole image moments,

Jij =

∫

d2θw (θ) I (θ) θiθj , (3)

where w is a Gaussian weighting function and θ is
chosen such that the weighted barycenter is zero.
The resulting ellipticity is

(e1, e2) =
1

Jxx + Jyy
(Jxx − Jyy, 2Jxy) (4)

and we define the size to be

d =

√

1

2
(Jxx + Jyy) . (5)

We do not perform PSF deconvolution because we
are looking only at the shape change induced by
the compression process. PSF deconvolution can
induce biases larger than the effects we are try-
ing to measure here (see, e.g. the results of the
GREAT08 challenge in Bridle et al. (2010)). We
measure only the raw shape as parameterized by
the two component ellipticity defined above and
determine how this is affected by the codec pro-
cess.

5



3. Results

3.1. Sky background

Applying this lossy compression scheme to as-
tronomical images re-bins the sky background.
Does this process bias the measured sky level? As
was found in Bernstein et al. (2010), a codec with
equally-spaced steps should not, and for other
codec schemes it is possible to de-bias during the
reconstruction process. Using the procedure as de-
scribed in Section 2, with 109 pixels and using our
codec with b = 1, we find the sky background to
be amplified by a factor of (2 ± 3)× 10−6 for the
fiducial survey we consider here. This is negligi-
ble. We find similarly insignificant biases when
trying other sky background levels, as can be seen
in Figure 3.

This test also shows that whenever we have
many pixels with the same underlying value but
different noise, the bias in the mean of them is
small, below the shot-noise level. Thus, with N
copies of a galaxy image, each with independent
noise realizations, the difference between a stacked
codec image and the original image falls as ex-
pected.

3.2. Galaxy shapes

Given perfect knowledge of the sky background,
how are galaxy shapes affected by this codec pro-
cedure? We probe this question with ∼ 2.5× 106

simulated galaxies for our fiducial survey and the
weak lensing pipeline described above. Figure 4 is
a scatter plot of resulting e1 shifts as a function of
the mean e1 before and after codec, for b = 1 and
a representative subsample of 1000 galaxies.

Firstly, we find a negligible added shape noise.
Such added noise would decrease the statistical
power of the survey but would not add a bias. The
additional noise on the ellipticities due to codec
digitization with b = 1 is, by design, a factor of√
12 lower than the noise from photon statistics

and read noise (Bernstein et al. 2010), which is
in turn typically lower than the intrinsic shape
noise. For this compression level, the standard
deviation of the ellipticity shifts induced by the
codec is 0.027. Such added noise is an order of
magnitude smaller than the ellipticity spread due
to intrinsic shape noise, and it depends on galaxy
S/N as can be seen in Figure 5 for e1. We find

Fig. 3.— The mean shift in the sky level (in units
of electrons) due to codec with b = 1, plotted as
a function of the sky level (also in electrons) in
the uncompressed images. Each data point corre-
sponds to 109 pixels.

Fig. 4.— Scatter plot of shifts in e1 resulting from
codec with b = 1, plotted as a function of the mean
e1 before and after codec.
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similar results for e2.

We also look for offset and bias, as in the
STEP papers (Heymans et al. 2006; Massey et al.
2007b). When σ = Nstep, the discreteness of the
codec will add an additional variance of approxi-
mately 1/(12b2) of the original image’s noise vari-
ance (Bernstein et al. 2010). To test the effects of
adding this slight increase in noise level, in the ab-
sence of compression, we create “noise-equalized”
images by adding this level of additional Gaus-
sian random noise to the original images. We then
measure the offset and bias that results from this
noise addition as follows. For a given galaxy, let
eoi be its ellipticity as measured in the original im-
ages and efi be what we measure from these noise-
equalized images, where i = 1, 2. We then fit the
difference as a function of the mean:

ef1 − eo1 = m1

(

ef1 + eo1
2

)

+ c1 (6)

ef2 − eo2 = m2

(

ef2 + eo2
2

)

+ c2 . (7)

Note that we fit as a function of the mean (as op-
posed to as a function of the original) so as to sym-
metrize the equations and avoid additional biases
that come from the regression of two noisy vari-
ables. We find the biases resulting from this added
noise for b = 1.41, 1, and 0.71. In other words, for
each of these values of b, we add the expected ap-
propriate amount of excess noise, measure galaxy
shapes before and after, and perform the fits in
Eqs. (6) and (7) above. For all 2.5 × 106 of the

Fig. 5.— Standard deviation of e1 shifts resulting
from codec with b = 1, as a function of galaxy
S/N.

galaxies lumped together into one large sample,
we use standard chi-squared linear regression to
find that all offsets are consistent with (i.e. within
1 − 2σ of) zero. However, we find non-negligible
multiplicative biases, with m1 = m2 to within our
statistical uncertainties. We plot these biases as a
function of total sky variance as the open triangles
in Figure 6. The error bars are smaller than the
symbols, and we include the zero added noise data
point. Fitting these data to a line, we find

m = α+ β

(

v

ADU2

)

, (8)

where α = −0.084±0.002, β = 0.000344±6×10−6,
and v is the sky variance in ADU2. This fit is plot-
ted as the solid (green) line in Figure 6. Note that
this relation is specific to the shape measurement
pipeline used here.

We now have a relation for the multiplicative
bias as a function of image variance, Eq. (8), found
by adding excess noise in the absence of any com-
pression. Now we need to check how well the
above theoretical noise estimates correspond to
the noise level actually seen resulting from our
codec procedure. We do this with blank-sky im-
ages, which have a variance of 244 ADU2 in our
simulations in the absence of added noise or codec.
From averaging over 3 × 106 pixels of blank sky,
we find the codec images to have a variance of
262.5± 0.2 ADU2 for b = 1, which is 1.007± 0.001
lower than naively predicted above. We find a
similar deficit by a factor of 1.005 for b = 1.41.
Note that some mismatch is to be expected, as this
added variance was estimated while assuming that
the digitization error is uniformly distributed be-
tween +1/2 and −1/2 the width of the code step,
whereas this is not quite true since the noise dis-
tribution is not flat. Furthermore, the digitization
noise from the codec is not uniform because the
input data are already digitized, so the induced
errors are only a few possible integer values.

Plugging our result for the codec-induced vari-
ance for b = 1, v = 262.5±0.2 ADU2, into Eq. (8),
we predict a multiplicative bias of 0.0065±0.0001.
We then measure this bias by fitting Eqs. (6)
and (7) to a line for our 2.5 × 106 simulated
galaxies, where now superscript “f” denotes el-
lipticities measured from the codec images and
once again “o” denotes ellipticities in the origi-
nal unaltered images. We find both offsets to be

7



within 1σ of zero, and m1 = 0.00605 ± 0.00007
and m2 = 0.00607 ± 0.00007. These measure-
ments are represented in Figure 6 as the filled red
triangle. Hence, after correcting for the added
noise, we find a residual multiplicative bias of
−0.0004± 0.0001 for the b = 1 case. Performing a
similar analysis for the finer compression scheme
with b = 1.41, we similarly find no statistically-
significant offsets, andm1 = 0.00363±0.00005 and
m2 = 0.00360 ± 0.00005; from Eq. (8) we would
have expected m = 0.0032± 0.0001 for this case.
Thus we find that, after correcting for the known
bias due to the additional digitization variance,
codec with b = 1.41 induces an excess multiplica-
tive bias of 0.0004± 0.0001.

We can easily see these trends if we sort the
galaxies into five wide ellipticity bins and look at
the mean shifts (efi−eoi , where “o” denotes original
images and “f” denotes codec images), as shown
in Figure 7. We also find that this multiplicative
bias depends on galaxy S/N, as displayed in Fig-
ure 8 for the b = 1 case, once again fitting the
ellipticities from the codec images to those from
the original images. This dependence is qualita-
tively consistent with what we find from the noise-
equalization procedure.

We can perform a similar analysis to find how
our codec procedure affects the measured sizes of
galaxies, given by Eq. (5). Let do correspond to
galaxy sizes as measured in the original images
and df correspond to what we measure from the
codec images. We then fit

df − do = md

(

df + do

2

)

+ cd (9)

to find cd = −0.00014 ± 0.00005 and md =
0.00006±0.00001, for b = 1. From Figure 9, where
we bin the galaxies by size, we find that these er-
rors come from the smallest galaxies, as is also the
case with noise-equalization alone.

4. Discussion and Recommendations

We have studied some of the effects of apply-
ing a square-root lossy compression algorithm to
images intended for weak lensing, taking the con-
servative approach wherein we do not make any
attempt to correct for said effects. As such, the er-
rors found above are upper limits on what should
be expected in a realistic situation, and even so we

Fig. 6.— The ellipticity multiplicative bias as a
function of variance for our simulations. The open
triangles correspond to the results for our noise-
equalized images (no codec) and the green solid
line is the result of fitting the open triangle points
to a straight line. The red filled triangle corre-
sponds to the codec image result for b = 1.

Fig. 7.— Shifts in e1 (blue, dotted line) and e2
(black, dashed line) for codec with b = 1 as a
function of the mean e1 and e2, respectively, when
the galaxies are sorted into five wide bins and the
shifts (codec vs. original) are averaged. For com-
parison, the same is plotted for e1 (green, solid
line) and e2 (magenta, dot-dashed line) for the
less-severe codec with b = 1.41.
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Fig. 8.— Multiplicative bias for e1 (blue, solid
line) and e2 (black, dashed line) for codec with
b = 1, shown as a function of galaxy S/N. The
black dotted line is the prediction using Eq. (8).

Fig. 9.— Shifts in measured galaxy size from
codec with b = 1 as a function of the mean size,
when the galaxies are sorted into four wide bins.

find that they are small when compared the errors
resulting from the myriad of other issues that pre-
cision weak lensing surveys must confront, such
as compensating for small variations in S/N. We
found no change to the sky background to within
one part in 106, a negligible increase in the shape
noise, and an added digitization noise which in-
duces a multiplicative bias on measured galaxy el-
lipticities and sizes. Comparing these effects to
what would happen just from adding the equiv-
alent amount of noise, we found that the codec
process combined with our shape measurement
scheme leads to an excess multiplicative bias on
ellipticities at the −4× 10−4 level for compression
to 2.4 bits per pixel. A more sensitive test would
require calibration or improvement of the shape
biases in the measurement scheme. All of these
results are for our fiducial WFIRST-like images,
produced using our shapelets-based pipeline and
analyzed with RRG.

Our study has implications for future space-
based weak lensing missions such as WFIRST or
Euclid. Clearly some compression is possible with
a negligible loss in statistical power. This does
induce possible multiplicative shape measurement
biases, but they are below the maximum level al-
lowed as described in Amara & Réfrégier (2007)
and possibly related to limitations in the shape
measurement algorithm. Moreover, these biases
can certainly be lowered by calibration with some
subset of images which are not compressed and
we recommend that onboard image compression
be an option for future missions to allow uncom-
pressed calibration data. What we have demon-
strated here is a method for testing the bias in-
duced in a specific weak lensing imaging survey by
a specified level of image compression. We leave to
future work the calculation of the allowable com-
pression for any specific survey design.

There are a few things to note about our
method. For one, the pipeline used to manufac-
ture our simulated images is somewhat simplified,
as the PSF lacks sharp features like diffraction
spikes and it is constant and uniform across the
field. We do not add a realistic shear signal to
the galaxy images, but the typical cosmological
signal is an order of magnitude less than the in-
trinsic shape noise of field galaxies. We assume
a constant PSF across the field and do not per-
form PSF deconvolution since we are interested
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in shape changes rather than very accurate ab-
solute shape measurements. As such we believe
that our shapelets-based package is sufficiently re-
alistic so that the compression-induced effects of
extra shape noise and ellipticity bias should be
the same in real data. The addition of cosmic
rays may reduce the compression ratio achiev-
able with the compression level discussed here
(Bernstein et al. 2010), but to what extent is ex-
tremely mission-specific and is still very uncertain
for L2. One further caveat is that we did not ex-
plore other survey options, and it may be that the
compression effects are sensitive to some of these
options. We further have not attempted to show
that detector non-linearities could be successfully
removed from codec images in the same way they
could be removed from images that had not been
compressed. Finally, our weak lensing pipeline is
somewhat simplified, in that we used detections
and sky measurement from the original images,
and we also only used one shape measurement
algorithm.

Nevertheless we have shown what generically
happens to weak lensing data when it has been
compressed using this square-root algorithm for a
simulated survey that serves as a good example
of what will likely be expected in next-generation
space-based weak lensing missions. Once the ac-
tual survey strategy is determined, we will do more
specific simulations to pinpoint exactly how much
compression would be acceptable for a given cos-
mological parameter error threshold. There is also
the possibility that this bias could be calibrated if
it could be accurately enough characterized. The
benefits of such calibration and potential strate-
gies for its implementation are left to future work.
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