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We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We
derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes),
such that staggered fermions reproduce the ’t Hooft vertex in the continuum limit. We also show
that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions
singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of
sea quark is represented by the fourth root of the staggered-fermion determinant. We then test
numerically, using the HISQ action, whether these conditions hold on realistic lattice gauge fields.
We find that the needed structure does indeed emerge.
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I. INTRODUCTION

Lattice QCD has made several notable strides over
the past decade. A wide variety of calculations with
2+1 flavors of sea quarks (corresponding to up, down,
and strange) have been found to agree with experimen-
tal measurements within ∼ 2% [1]. Charmed-meson de-
cay constants [2], semileptonic form factors [3], and the
masses of the Bc [4] and ηb [5] mesons have been com-
puted before being confirmed by measurements from ex-
periments. Calculations at nonzero temperature have
shown that QCD possesses not a first-order phase tran-
sition but a smooth crossover [6], with implications for
heavy-ion collisions and a cooling universe. Some of the
most precise determinations of the strong coupling αs [7],
quark masses [8], and flavor-changing couplings [9, 10]
come from lattice QCD. It is impractical to cite every
development here, but recent reviews [11, 12] cover the
breadth of progress well.

The results listed above [1–10] have been obtained us-
ing staggered fermions [13, 14] for the sea quarks, be-
cause this approach is numerically the fastest [15]. In the
continuum limit, one staggered fermion field yields four
species with a quantum number nowadays called “taste”.
In numerical lattice gauge theory, sea quarks are repre-
sented by a determinant, for staggered fermions,

Det
4

(Dstag +m) , (1)

where Dstag denotes the lattice Dirac operator (see be-
low), m is the quark mass, and the subscript 4 is a re-
minder that the natural outcome is 4 tastes. To simulate
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a single species of given mass with staggered fermions,
the (4-taste) determinant representing the sea is replaced
with [16] [

Det
4

(Dstag +m)
]1/4

. (2)

Below we shall refer to the systems using (1) and (2)
as “unrooted” and “rooted” staggered fermions, respec-
tively. As far as we know, there is no controversy that
lattice gauge theory with unrooted staggered fermions (1)
defines a four-species continuum gauge theory.

The fourth root is controversial, however, because it
is not standard quantum field theory. The arguments
supporting its validity hinge on structural properties of
unrooted staggered fermions, which suggest that the con-
tinuum limit of Det4(Dstag + m) in Eq. (2) factors into
four equivalent determinants [17–20]. This factorization
is verified in weak-coupling perturbation theory, where
the 1/4 from the exponent multiplies each fermion loop.
Weak coupling also suggests how the symmetries of 4
species emerge in the continuum limit. In simplified but
similar systems where one can retain analytical control,
the rooted determinant is valid [21–23]. Extensive nu-
merical studies elaborate how the procedure works in the
Schwinger model [24, 25]. Straightforward analysis of the
hadron mass spectrum as a function of lattice spacing
and quark mass, using chiral perturbation theory, sub-
stantiates this picture in detail [11, 26]. Further nonper-
turbative evidence comes from studying the eigenvalues
of the staggered-fermion operator Dstag, demonstrating
that they appear in nearly degenerate quartets [27–30].
On lattice gauge fields with nonzero topological charge,
sets of quartets with eigenvalues near zero emerge. The
number of quartets and their chirality satisfy the index
theorem [29, 30].

One issue that has not been fully addressed is the
behavior of flavor-singlet mesons. Direct calculations
of the flavor-singlet meson masses are difficult [31–33],
because they entail a contribution in which the quark-
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FIG. 1: Pattern of flavor and taste quantum numbers in
the (pseudoscalar) meson spectrum with two flavors and four
tastes. The flavor-nonsinglet (isospin 1) mesons are split by
small lattice artifacts. The flavor-singlet (isospin 0) taste-
nonsinglet mesons are no different. The flavor-taste singlet,
however, receives a contribution from mixing with purely glu-
onic states, an effect studied in Ref. [31].

antiquark of the meson annihilates into gluons, and the
gluons re-create the quark-antiquark pair. With stag-
gered fermions, it is crucial to bear in mind that only the
flavor-taste singlet can undergo this process. Low-energy
gluons are taste singlets, so a meson with nontrivial taste
cannot annihilate into them. The spectrum with two fla-
vors is sketched in Fig. 1, illustrating the roles of the
flavor and taste quantum numbers.

Building on the eigenvalue studies, this paper addres-
ses a specific concern, namely that flavor-taste-singlet
correlators could diverge as a power of m as m → 0.
Such behavior would be a clear failure of rooted staggered
fermions. We find fault with key steps in an attempted
derivation of this claim [34, 35], which uses the ’t Hooft
vertex [36, 37] to try to understand the role of near-zero
modes. A complementary examination of the same cor-
relators reduces the problem to certain properties of the
near-zero modes’ eigenvectors [19]. Then contributions
from connected and disconnected correlators cancel the
divergent behavior; with the correct combinatoric fac-
tors [18, 19, 38–40], the cancellation holds even with the
rooted determinant of Eq. (2).

In this paper, we derive the staggered-fermion ’t Hooft
vertex directly from the functional integral, both for un-
rooted and rooted staggered fermions. If unrooted stag-
gered fermions are to obtain a 4-species ’t Hooft vertex in

the continuum limit, we find that the eigenvectors must
satisfy the same properties derived in Ref. [19], namely
Eqs. (31) and (32) below. References [39, 40] tacitly as-
sumed these properties, but we examine the eigenvec-
tors numerically, plotting the quantities that enter the
’t Hooft vertex and the flavor-taste-singlet correlators.
We find that they behave in precisely the way needed for
unrooted and rooted staggered fermions to yield four or,
respectively, one species in the continuum limit.

The rest of this paper is organized as follows. Section II
discusses staggered fermions and some of the complaints
and concerns about Eq. (2). Section III reviews the con-
tinuum ’t Hooft vertex and its symmetries, constructs
the staggered-fermion ’t Hooft vertex, and sets up the
problem of flavor-taste singlets. This discussion also pin-
points where the analysis of Refs. [34, 35] goes astray.
Section IV explains details of our numerical setup, gives
our lattice results, and discusses their implications. The
data speak for themselves: they clearly show that the
needed structure emerges dynamically, ever more so for
smaller lattice spacing. Section V gives our conclusions.
It seems to us that the rooted staggered sea has passed
another test in its usual way of relying on properties of
the unrooted theory. Appendix A contains some cum-
bersome notation that lends technical completeness to
Secs. II, III, and IV. Appendix B writes out improved
actions explicitly. Appendix C remarks on issues of sec-
ondary importance, raised in Refs. [34, 35].

II. STAGGERED FERMIONS

In this section, we review unrooted staggered fermions,
because the way that four species emerge is central to
any argument that Eq. (2) is a valid regulator for one
species. We are careful to distinguish between flavor and
“taste”; the former is a label decoupled from the gauge
interaction; the latter is a property of staggered fermions,
described below.

Below we use improved actions to check numerically
whether the dynamics of staggered fermions are as ex-
pected. For the discussion here, it is enough to start
with the original, unimproved lattice action [14]:

Sstag = 1
2a

3
∑
x,µ

ηµ(x)χ̄(x)
[
Uµ(x)χ(x+ µ̂a)− U†µ(x− µ̂a)χ(x− µ̂a)

]
+ma4

∑
x

χ̄(x)χ(x), (3)

where a is the lattice spacing, χ(x) and χ̄(x) are gauge-
group multiplets of Grassman numbers for lattice site x,
Uµ(x) is a lattice gauge field connecting sites x and x+µ̂a
(such that Sstag is gauge invariant), m is the bare mass,
µ̂ is a unit vector in the µ direction, and µ ∈ {1, 2, 3, 4}.
The staggered fermion fields carry no Dirac index, and

sign factors appear instead of Dirac matrices:

ηµ(x) = (−1)
∑
ρ<µ xρ/a. (4)

The staggered Dirac operator Dstag is defined by writing

Sstag = a4
∑
x,y

χ̄(x) (Dstag +mδxy)χ(y). (5)
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The determinant (1) follows from integrating the func-
tional integral over (χ, χ̄).
Sstag is invariant under shifts

Sµ :

χ(x) 7→ ζµ(x)χ(x+ µ̂a)
χ̄(x) 7→ ζµ(x)χ̄(x+ µ̂a)
Uν(x) 7→ Uν(x+ µ̂a) ∀ν

, (6)

where

ζµ(x) = (−1)
∑
σ>µ xσ/a. (7)

Acting on fermion fields, SνSµ = −SµSν . This built-in
Clifford group Γ4 is the origin of the 4 species in the con-
tinuum limit and their quantum number “taste”. Acting
on gauge fields, SνSµ = +SµSν , from which it follows
that low-momentum gauge fields are taste-singlets. With
nf flavors of (χ, χ̄)—so 4nf species in all—there is still
only one gauge field and, thus, only one Γ4.

The kinetic term (for nf flavors) is also invariant under
a U(nf ) symmetry group:

Uε :

{
χ(x) 7→ eϕ

aTaε(x)χ(x)
χ̄(x) 7→ χ̄(x)eϕ

aTaε(x) , (8)

where the T a are (anti-Hermitian) flavor generators, in-
cluding flavor-singlet T 0 = i11nf /

√
2nf , and

ε(x) = (−1)
∑4
µ=1 xµ/a. (9)

Three crucial properties of these symmetries (8) are that

1. they are exact even at nonzero lattice spacing a;

2. they are nonsinglets with respect to taste;

3. they imply that the eigenvalue spectrum of Dstag

is pure imaginary and symmetric about 0.

The first property means that these symmetries cannot
be anomalous, so they cannot be germane to the index
theorem. The second property means that the lack of
anomaly is good: in QCD, species-nonsinglet symmetries
do not have anomalies. A corollary of the third property
ensures that if iλ is an eigenvalue of Dstag with eigen-
vector f(x), then −iλ is also an eigenvalue, now with
eigenvector ε(x)f(x). This corollary plays an important
role in Sec. IV. Unfortunately, the connection between
property 3 and the spectrum sometimes leads, it seems,
to the flavor-singlet Uε being misidentified as the ana-
log of continuum QCD’s anomalous UA(1). The first two
properties mean, however, that even the flavor-singlet Uε

cannot be related to UA(1).
The analog of the UA(1) is a flavor and taste singlet.

It is explicitly broken for a 6= 0 but restored—apart from
the anomaly and mass terms—as a→ 0 [14]. This mecha-
nism is familar in lattice gauge theory [41]; the same hap-
pens with Wilson fermions [42]. As a→ 0, an anomalous
Ward identity emerges with axial-vector current, AµI (x),

and pseudoscalar density, PI(x), that are taste-flavor sin-
glets [14, 43]. The subscript I denotes the trivial rep-
resentation of the shift symmetries (6), also called the
taste-singlet representation.

The way flavor-taste symmetries emerge is crucial to
the validity of staggered fermions. In particular,

Γ4 × SUV (nf ) ⊂ SUV (4nf ), (10)

Uε(nf )→ Uε(nf )⊗ ξ5 ⊂ SUA(4nf ), (11)

where the symmetries on the left are exact for Sstag, and
those on the right are desired for continuum QCD. The
SUV (nf ) on the left-hand side of Eq. (10) is the obvious
flavor-number symmetry of Eq. (3) for nf flavors of equal
mass. The ξ5 on the left-hand side of Eq. (11) denotes
the taste-nonsinglet nature of Uε.

The pattern of symmetry appears most vividly, both
for nonzero a and as a → 0, in the meson-mass spec-
trum. Meson operators can be written χ̄Γξχ, where
Γξ denotes various choices of sign factors η and paral-
lel transport within a hypercube, such that the bilinear
transforms under the ξth bosonic representation of the
shift symmetry group Γ4. As is customary, we label these
ξ ∈ {I, V, T,A, P}, with V and A each grouping together
four of these one-dimensional irreps, and T six. When
focusing on a bilinear that transforms under rotations
as a scalar, vector, tensor, axial vector, or pseudoscalar,
we shall write for Γξ either 1ξ, γ

µ
ξ , iσµνξ , γµ5

ξ , or γ5
ξ , as

the case may be. For example, in this compact notation
the taste-singlet pseudoscalar density is PI = χ̄γ5

Iχ. Ap-
pendix A contains explicit formulas for bilinears in the
taste-singlet representation I, for all Γ.

These operators create states such that [44–46]

χ̄ΓξT
aχ

.
= q̄ΓξT aq + O(a2), (12)

where q and q̄ are continuum 4nf -species fermion fields,
on the right-hand side Γ is now a (usual) Dirac matrix,
and ξ is now a four-by-four matrix generator of U(4).
Together the tensor products ξ ⊗ T generate U(4nf ).
For nonsinglet ξ ⊗ T the pseudoscalar meson masses
depend sensitively on m and a, consistent with chiral
perturbation theory [11]. The flavor-taste singlet, with
ξ ⊗ T ∝ 114nf , should have a mass larger than the rest,
cf. Fig. 1, but that has not yet been demonstrated nu-
merically [31]. In this paper, we address this problem by
studying the eigenvectors of Dstag.

These lines of theoretical and numerical results lead to
the picture that [47, 48]

Dstag +m
.
= (D/ +m)⊗ 114 + a∆, (13)

where D/ is the continuum Dirac operator, 114 is the 4× 4
unit matrix, a∆ is a taste-symmetry breaking term (lead-
ing to corrections of order a2 in observables), and generic
O(a2) corrections are suppressed. Then

Det(Dstag+m)
.
= [Det

1
(D/ +m)]4eTr4 ln a∆(D/ +m)−1

, (14)
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suggesting that

[Det(Dstag +m)]1/4
.
= Det

1
(D/ +m)×

e
1
4 Tr4 ln a∆(D/ +m)−1

. (15)

It is difficult to prove rigorously that the second fac-
tor becomes benign as a → 0, although a detailed
renormalization-group argument makes it plausible [49,
50]. At nonzero a this factor leads to nonlocality [51]
(though not the nonlocality discussed in Refs. [52, 53])
and violations of unitarity. In this paper, we have nothing
to add to the arguments marshalled elsewhere [11, 17–20]
that these problems go away as a→ 0.

A separate line of criticism [34, 35] focuses not on

the ultraviolet taste-breaking of e
1
4 Tr4 ln a∆(D/ +m)−1

but
on the interplay of the rooted determinant with correla-
tors built from valence propagators. These papers assert,
without derivation, certain symmetries and properties of
the ’t Hooft vertex that, if true, would imply an unphys-
ical m dependence of multi-point meson correlators. In
the next section, we derive, rather than assert, the form
of the staggered-fermion ’t Hooft vertex. Our derivations
pinpoint where Refs. [34, 35] go astray. Our derivation
further reveals what is needed for staggered fermions to
generate the continuum-QCD ’t Hooft vertex. Whether
staggered fermions behave in the needed way depends
on dynamics, for which a numerical test is needed. The
(favorable) results of this test are presented in Sec. IV.

III. NEAR-ZERO MODES AND THE
’T HOOFT VERTEX

In this section, we discuss the properties of the near-
zero modes in more detail. We review properties of the
’t Hooft vertex in continuum gauge theory, with 1 and
with 4 species. Then we derive the ’t Hooft vertex for

staggered fermions. We show that the eigenvectors must
exhibit a certain structure if unrooted staggered fermions
are to tend to the continuum gauge theory. This struc-
ture is precisely the criterion presented in Ref. [19] for
the rooted theory to have a sensible η′ correlator.

A. Continuum QCD

In continuum gauge theories, the Dirac operator can
have genuine zero modes. For a single species, the eigen-
functions and eigenvalues are denoted D/ φσ = iλσφσ,
where λ is real, and integer σ labels the modes. For
the modes with nonzero eigenvalue, it is convenient to
take σ > 0 (σ < 0) for modes with λ > 0 (λ < 0).
These modes come in conjugate pairs: λ−σ = −λσ,
φ−σ = γ5φσ. In the subspace of zero modes, λ = 0, the

eigenfunctions can be chosen such that γ5φ
(±)
ι = ±φ(±)

ι ,
with the integer label ι ranging from 1 to k±. For
n species, the Dirac operator is D/ 11n, with eigenfunc-
tions φσe

(τ), where the e(τ) form an orthonormal basis
in species space. The number and chirality of zero modes
is related to the topological charge Q via the index the-
orem [54, 55]

n+ − n− = nQ, (16)

where n is the number of species, and n± = nk± accounts
for the species multiplicity.

The determinant acquires a factor of mass m from each
zero mode. As m → 0 it would seem that such gauge
fields would drop out of the ensemble average. But if one
looks at the eigenvalue-eigenfunction representation of
the propagator, one finds powers of 1/m that cancel the
powers of m from the determinant. Focusing on |Q| = 1
and n = 1, so that there is one zero mode, the propagator
is (〈•〉|Q|=1 denotes average over |Q| = 1 gauge fields)

〈ψ(x)ψ̄(y)〉 =

〈
m
∏
σ>0

(λ2
σ +m2)

∑
σ

φσ(x)φ†σ(y)

iλσ +m

〉
A

=

〈∏
σ>0

(λ2
σ +m2)φ0(x)φ†0(y)

〉
|Q|=1

+ O(m), (17)

where φ0 is now used for the zero-mode eigenfunction. One sees that the mode with λ = 0 has a canceling factor of

1/m. The factor φ0(x)φ†0(y) is the ’t Hooft “vertex” [36, 37]. (If φ0 is localized, as it is around instantons, then the
“vertex” has support only for x, y near the center of localization.) For the four-point function, there are superficially
two powers of 1/m, but two contributions identical apart from their opposite sign cancel each other. This is simply
the Pauli exclusion principle arising from the Grassmann nature of the fields.

With n = 4 fermion species, each mode is replicated four times, so gauge fields with |Q| = 1 yield four zero modes,
one per species. The determinant yields a factor m4, which is not compensated until the 8-point function:〈

4∏
f=1

ψf (xf )ψ̄f (yf )

〉
=

〈∏
σ>0

(λ2
σ +m2)4

4∏
f=1

φ0(xf )φ†0(yf )

〉
|Q|=1

+ O(m), (18)

with 4 factors like that in Eq. (17). In higher-point functions, Pauli exclusion again ensures that contributions singular
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in m cancel. Below we are interested in flavor-singlet meson correlators, such as (flavor index contracted; nf = 4)〈
4∏

f=1

ψ̄Γfψ(xf )

〉
= 24

〈∏
σ>0

(λ2
σ +m2)4

4∏
f=1

φ†0Γfφ0(xf )

〉
|Q|=1

+ O(m), (19)

where the combinatoric factor 24 obtains after cancella-
tions between many (dis)connected terms.

Let us now examine a property of the ’t Hooft vertex
that is central to Creutz’s arguments [34, 35]. Under the
anomalous UA(1) transformation

ψ 7→ eiγ
5α/2ψ, ψ̄ 7→ ψ̄eiγ

5α/2, (20)

the n-species ’t Hooft vertex transforms as

n∏
f=1

φ0(xf )φ†0(yf ) 7→ e±inα
n∏
f=1

φ0(xf )φ†0(yf ), (21)

where the sign is the chirality of the zero mode, γ5φ0 =
±φ0. If α is a multiple of 2π/n, the pre-factor is unity;
thus, the ’t Hooft vertex remains invariant under a Zn
subgroup of UA(1) [56].

This invariance holds for the full determinant. Under
the transformation (20) with α = 2π/n, one has

mn(n++n−)ei(n+−n−)2π/nDet
n

′[D/ +meiγ
52π/n] =

mn(n++n−)Det
n

′[D/ +meiγ
52π/n], (22)

where Det′n denotes the n-species determinant with zero
modes projected out. The right-hand side follows be-
cause, by Eq. (16), the phase on the left-hand side is
trivial. Because ei2π/n = e−i2π(n−1)/n, the twisted mass

meiγ
52π/n can be removed with nonsinglet SUA(n) trans-

formations, namely,

ψ 7→ e−iγ
5Ξπ/nψ, ψ̄ 7→ ψ̄e−iγ

5Ξπ/n, (23)

where Ξ = diag(1, . . . 1, −(n − 1)), or any permuta-
tion thereof. The composition of transformations (23)
and (20) with α = 2π/n returns the original determi-
nant, mn(n++n−) Det′n(D/ +m). We have shown here that
the Zn in question is not only a subset of the anoma-
lous UA(1), but also the center of the exact SUA(n). In
fact, Zn is the intersection of the SUA(n) and UA(1).

B. Unrooted staggered fermions

Now we would like to see how staggered fermions repro-
duce the four-species ’t Hooft vertex. Let us now denote
the eigenvectors and eigenvalues Dstagfs(x) = iλsfs(x).
We use f for the eigenvectors of Dstag, instead of φ for the
eigenfunctions of D/ , because our aim is to study whether
and how a structure like φσe

(τ) arises from the fs. As

before, it is convenient to choose s > 0 (s < 0) for
λs > 0 (λs < 0). As mentioned above, the function
f−s(x) = ε(x)fs(x) has eigenvalue λ−s = −λs, which fol-
lows from the Uε symmetry. One must bear in mind that
the relation between eigenvectors f±s originates from a
different flavor of symmetry than the relation between
eigenfunctions φ±σ. In the notation introduced above
Eq. (12), multiplication by ε(x) corresponds to γ5

P , a
taste nonsinglet that, in a continuum 4-species theory,
looks like γ5ξ5, not γ5114.

The first step is to single out the modes analogous to
the zero modes in the continuum theory. With staggered
(and most other lattice) fermions, no exact zero modes
arise, but one expects Dstag to have some exceptionally
small eigenvalues [43]. A crisp way to identify them is
via the spectral flow of the operator [57]

Hstag = −iDstag + µγ5
I , (24)

with Hstagfs(x;µ) = λs(µ)fs(x;µ); the eigenvalues of
Dstag are iλs(0). From the Uε symmetry, f−s(x;µ) =
ε(x)fs(x;−µ), λ−s(µ) = −λs(−µ). Near-zero modes are
those with a nearby zero crossing, λ(µ0) = 0 for µ0 � Λ.
The (taste-singlet) chirality is then

X̂s = signλ′s(µ0), (25)

where the prime denotes differentiation with respect to µ.
Taking the Uε symmetry into account, we can label the

positive-chirality modes f
(+)
i with i > 0 ranging from

1, . . . , `+ (λi slightly positive) and i < 0 ranging from
−1, . . . ,−`+ (λi slightly negative). A similar labeling
scheme can be adopted for the 2`− negative-chirality

modes f
(−)
i . Note that [57]

λ′s(µ0) ≈ λ′s(0) =
∑
x

f†s (x)γ5
I fs(x) ≡ Xs, (26)

where Xs is a more common way to identify chirality [58].
Modes s and −s have the same value of taste-singlet chi-
rality (whether defined by Xs or X̂s), because γ5

I implies
transport over an even number of links and, consequently,
the ε sign factors at the two ends of γ5

I are the same.
The spectral flow is elegant but computationally de-

manding. It is also possible to identify the near-zero
modes by looking for modes with λ sufficiently small and
X sufficiently close to ±1. Although the spectral flow is
(presumably) more decisive in borderline cases, in prac-
tice, especially for the scope of this paper, the compu-
tational demand seems prohibitive. In Sec. IV, we shall
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therefore rely on our experience in Refs. [27, 30] of using
(λ,X ) to identify the near-zero modes.

If staggered fermions generate four species in the con-
tinuum limit, then the eigenvalues should arrange them-
selves into closely-spaced quartets. For nonzero modes,
four modes should cluster around some distinctly nonzero
value. For near-zero modes, on the other hand, such
quartets lie slightly above and below the real axis. Uε

symmetry dictates that a mode and its ε partner have
the same chirality and, thus, may be assigned to the same
quartet. If the gauge-field dynamics yield even `± = 2k±,
then one has quartets. The resulting index theorem is
then (n± = 4k±)

n+ − n− = 4Q, (27)

where, in Sec. IV, we shall appeal to several pure-gauge

definitions of Q. For smooth enough fields and for ex-
tensions of Eq. (3) that smooth out the interaction, both
kinds of quartets emerge [27, 28], as does the connection
between gauge-field topology and the index [27–30].

With one fermion field but sets of four near-zero
modes, the combinatorics underlying the ’t Hooft mecha-
nism are less straightforward than in 4-species continuum
theories. Let us focus on |Q| = 1. Two pairs of near-zero
modes appear with eigenvalues ±iλi, i = 1, 2. “Small”
means |λi| ∼ (aΛ)pλΛ; a power law with pλ = 1 or 2
suffices, and we expect pλ = 2. Moreover, X1 and X2

have the same sign (with several actions [27, 30]), and
we shall see in Sec. IV that these features also hold for
the highly-improved staggered-quark (HISQ) action [59].

To derive the ’t Hooft vertex explicitly, let us examine the (fermion) 8-point function, which for staggered fermions is

〈
4∏

f=1

χ(xf )χ̄(yf )

〉
=

〈
2∏
i=1

(λ2
i +m2)

∏
s>0

(λ2
s +m2) det

(f,g)
G(xf , yg)

〉
|Q|=1

, (28)

where the propagator

G(x, y) = 〈χ(x)χ̄(y)〉χ,χ̄ =
∑
all s

fs(x)f†s (y)

iλs +m
(29)

with the sum running over near-zero and nonzero modes.
Neglecting in Eq. (28) the near-zero λi relative to m, the
near-zero mode terms contribute to Eq. (28) as

m4 det
(f,g)

G(xf , yg) = det
(i,f)

fi(xf ) det
(j,g)

f†j (yg)+O(m), (30)

where i, j ∈ {−2,−1, 1, 2}. In higher-point functions, the
Pauli exclusion again ensures that contributions singular
in m cancel.

The product of determinants on the right-hand side
of Eq. (30) is the ’t Hooft vertex for (unrooted) stag-
gered fermions. To reproduce the product of four fac-

tors of φ0φ
†
0 in Eq. (18), the four staggered eigenfunc-

tions fi, i ∈ {−2,−1, 1, 2}, must have structure sim-
ilar to φ0(x)e(i). One could seek such structure in a
basis where a taste index looks obvious, but because
taste is, fundamentally, a quantum number of the shifts,
i.e., single-link translations, gauge-dependent roughness
of the gauge field would obscure it.

The way forward is to contract the χ and χ̄ fields
into color singlets. The contractions must also be taste

singlets, because a nonsinglet corresponds to e(i)†ξe(j),
ξ 6= 114, which need not vanish when j 6= i. In Eq. (28) we

thus replace χ(xf )χ̄(yf ) with a taste singlet χ̄ΓfIχ(xf ).

Contracting Eq. (30) in this way, one is led to consider

ζΓ
ij(x) = f†i ΓIfj(x) (31)

with, recall, some parallel transport implied by ΓI . The
’t Hooft vertex simplifies in the desired way if

ζΓ
ij(x) ∝ δij [1 + O(apζΓ )] , (32)

for ΓI = 1I , γ
5
I , iσµνI . If, further, the proportionality

fulfilled by an (approximately) i-independent diagonal

ζΓ
ii(x), ζΓ

ij would then mimic φ†0Γφ0e
(i)†e(j) ∝ δij . Ap-

proaching this limit as a power law with pζΓ = 1 or 2
suffices, and we expect pζΓ = 2. Section IV presents
numerical results for these local overlaps, including a de-
pendence.

For ΓI = γµI , γµ5
I , the local overlaps ζΓ

ij behave some-
what differently. In continuum gauge theory, the zero

modes satisfy φ
(±)
ι

†
γµφ

(±)
ι = φ

(±)
ι

†
γµ5φ

(±)
ι = 0, because

γ5 anticommutes with γµ and γ5φ
(±)
ι = ±φ(±)

ι . The
spin and taste degrees of freedom emerge from staggered
fermions via the same dynamical mechanism, so the di-

agonal ζγ
µ

ii and ζγ
µ5

ii should vanish commensurately with
the off-diagonal ζΓ

ij , ΓI = 1I , γ
5
I , iσµνI .

The local overlaps of continuum nonzero modes of dif-

ferent species also vanish (trivially, because e(τ1)†e(τ2) =
δτ1τ2). Therefore, within a quartet of staggered-fermion
nonzero modes, continuum QCD is reproduced if ζΓ

rs,
r 6= s, also vanish as a→ 0.
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Assuming Eq. (32) holds, it is easy to see that〈
4∏

f=1

χ̄ΓIfχ(xf )

〉
=

〈∏
σ>0

(λ2
σ +m2)4

∑
(ijkl)

ζΓ1
ii (x1)ζΓ2

jj (x2)ζΓ3

kk (x3)ζΓ4

ll (x4)

〉
|Q|=1

+ O(m), (33)

where the sum runs over the 4! = 24 ways of choosing
distinct (ijkl) from {−2,−1, 1, 2}.

Let us now discuss the Zn (now Z4nf ) symmetry men-
tioned at the end of Sec. III A. The anomalous UA(1)
and most of the softly-broken, non-anomalous SUA(4nf )
emerge only in the continuum limit. Some passages in
Refs. [34, 35] seem to assign a pertinent role to the Uε(nf )
symmetries, which are exact even at nonzero a. These
symmetries are a distraction at best: the group Uε(nf )
intersects with the relevant Z4nf , which is the center of
SU(4nf ), only at −114nf .

C. Rooted staggered sea

With rooted staggered fermions, two changes are car-
ried out. In addition to using the rooted determinant (2),
the simple combinatorics of det(f,g)G(xf , yg) must also
change [38]. For example, the taste-singlet pseudoscalar
meson propagator is replaced with

〈χ̄γ5
Iχ(x)χ̄γ5

Iχ(y)〉U → − 1
4C(x, y) + 1

16D(x, y), (34)

where the connected and disconnected contributions are

C(x, y) =
〈
D tr

[
γ5
IG(x, y)γ5

IG(y, x)
]〉
U
, (35)

D(x, y) =
〈
D tr

[
γ5
IG(x, x)

]
tr
[
γ5
IG(y, y)

]〉
U
, (36)

where D is the rooted determinant (2), the trace is over
color, and the translations implied by γ5

I act to the right
(left) on the first (second) argument of G. The correlator
in Eq. (34) couples to the analog of the flavor-singlet η′

meson in QCD, and similar constructions hold for other
taste-singlet bilinears.

The combinatoric factors in Eq. (34) follow immedi-
ately from considering [18, 19, 39, 40]{

Det
nf

[(D/ +m)⊗ 114]

}n/4
, (37)

where—inside the braces—one has four copies of nf non-
controversial fermions. Equation (37) together with a
source for a single species provide an engine to generate
the combinatorics of rooting (in general): to obtain n
species from 4, a term with t traces over color receives a
factor [38] (

−n
4

)t
. (38)

For Eq. (37) to be relevant to staggered fermions,
the dynamics must ensure Eq. (13) and, in particular,
Eq. (32), as we now show. The single-flavor determinant
becomes (for |Q| = 1)

2∏
i=1

(λ2
i +m2)1/4

∏
s>0

(λ2
s +m2)1/4. (39)

Neglecting λi compared to m again, the first product
collapses to |m|. The near-zero-mode contributions are
then

C(x, y) =
∑
i,j

〈
|m|D′

m2
ζγ

5

ij (x) ζγ
5

ji (y)

〉
|Q|=1

, (40)

D(x, y) =
∑
i,j

〈
|m|D′

m2
ζγ

5

ii (x) ζγ
5

jj (y)

〉
|Q|=1

, (41)

where D′ is the s > 0 product in Eq. (39), and i, j ∈
{−2,−1, 1, 2}. If Eq. (32) holds, then the sum in Eq. (40)
collapses to terms with i = j, apart from lattice artifacts.
Thus, C has 4 contributions singular in 1/|m|, whereas
D has 16. With the correct combinatoric factors, they
cancel.

It is, perhaps, instructive to exhibit the 3-point cor-
relator. Assuming Eq. (32) and homing in on the zero
mode contributions,

χ̄ΓI1χ(x1)χ̄ΓI2χ(x2)χ̄ΓI3χ(x3)→ − 1
4{tr[ΓI1G(x1, x2)ΓI2G(x2, x3)ΓI3G(x3, x1)] + 1 perm}

+ 1
42 {tr[ΓI1G(x1, x1)] tr[ΓI2G(x2, x3)ΓI3G(x3, x2)] + 2 perms}

− 1
43 tr[ΓI1G(x1, x1)] tr[ΓI2G(x2, x2) tr[ΓI3G(x3, x3)] (42)

→ |m|
m3

(−2 + 3− 1) ζΓ1(x1)ζΓ2(x2)ζΓ3(x3)ζΓ4(x4), (43)

where |m| comes from the rooted determinant. Here sums over the four staggered-fermion near-zero modes cancel
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the explicit factors of 1
4 . The |m|/m2 contributions can-

cel in a similar way. Earlier work [18, 39, 40], tacitly
assumed Eq. (32); in particular, Ref. [40] shows how the
combinatorics work for higher-point ’t Hooft-vertex ef-
fects.

In Refs. [34, 35, 60], Creutz disregards the cancella-
tions stemming from the correct weighting of different
contributions to flavor-taste-singlet correlators. He con-
siders more primitive combinations, like any individual
line in Eq. (42), which clearly are singular as m→ 0. He
then draws two incorrect inferences. First, he claims that
the normal cancellations connected with Pauli statistics
cannot arise. Combining the correct weights with the
assumption (tested below) Eq. (32), one sees that this is
not the case. The outcome is not too mysterious: as taste
emerges into a species-like quantum number, the correct
set of correlators averages over them.

The other misstep is to assert that the Z4nf symme-
try of the unrooted ’t Hooft vertex cannot be reduced
to Znf . This is incorrect, because, while the rooted de-
terminant clearly retains the symmetries of the unrooted
determinant, the ’t Hooft vertex stems from the com-
bined behavior of determinant and valence propagators.
The replacement of the combinatoric factors of traces
with (38) effectively projects the symmetry emerging in
the chiral limit from SU(4nf ) [taking n = 1 in (38)] to
SU(nf ). Since the relevant symmetry is the center of the
emergent flavor symmetry, one has Znf .

Many of these points have been made before [18, 39,
40, 61], but until now it has always been assumed that
the tastes decouple as posited in Eq. (32). (Refer-
ence [19] noted the necessity of this assumption.) Our ap-
proach can easily be extended to taste-nonsinglet flavor-
singlet correlators, and the properties of the local over-
laps with nonsinglet Γs will not enjoy the cancellation.
We shall now compute the ζΓ

ij nonperturbatively, to find
out whether the tastes couple to each other at the strong
scale ΛQCD or at the cutoff scale a−1.

IV. NUMERICAL RESULTS

In this section we present our numerical methods and
results. First we explain the motivation for studying
improved discretizations and why it suffices to compute
their eigenvalue spectrum on quenched gauge fields. We
present results for eigenvalues and chirality with the
HISQ action. These results are qualitatively similar to
those obtained with the Asqtad and Fat7×Asqtad actions
in Refs. [27, 30], so we focus here on |Q| = 1. Then we
show results for the overlaps, ζΓ

ij , defined in Eq. (31), and
test their behavior as a function of lattice spacing against
Eq. (32). Finally we discuss correlators for mesons of
different JP in turn, starting with pseudoscalars where
the issues are particularly important. Taken together,
our results demonstrate how the behavior of the different
contributions from near-zero and nonzero modes matches
that expected in the continuum.

TABLE I: Details of the gauge configurations used: β is the
bare gauge coupling, a the lattice spacing [64], V the space-
time volume in lattice units, and L the linear size in physical
units. The final column gives the number of configurations
in each ensemble with |Q| = 1. We refer to set 1 as having
a “coarse” lattice spacing, sets 2, 3 and 4 as “intermediate”
and set 5 as “fine”.

Ensemble β a (fm) V L (fm) #{|Q| = 1}
1 4.6 0.125 124 1.50 294
2 4.8 0.093 124 1.12 806
3 4.8 0.093 164 1.49 424
4 4.8 0.093 204 1.86 288
5 5.0 0.077 204 1.54 430

A. Methods

In this paper, we use the same ensembles of SU(3)
gauge fields as in earlier studies of eigenvalues and chi-
rality [27, 30]. They are quenched configurations, omit-
ting the effects of sea quarks. They are generated with
a Symanzik-improved gauge action, so that the tree-level
a2 errors are removed [62], and tadpole-improved cou-
plings in this action, so that loop corrections are re-
duced [63]. Three different values of the gauge coupling
are used, giving three widely separated values of the lat-
tice spacing, covering the range of typical unquenched
lattice-QCD calculations [11], so our results should per-
tain directly to them. At the middle value of the three
lattice spacings, we have three different-sized lattices in
order to check the volume dependence. The parameters
for the configurations are given in Table I.

It is sufficient to study these issues in the quenched
approximation, because we aim to test a structural prop-
erty of staggered fermions in fixed-Q sectors. In par-
ticular, omitting the determinant decouples Creutz’s in-
frared concerns from others’ ultraviolet concern that
taste-breaking remains in the continuum limit. If the
eigenvectors satisfy Eq. (32) strongly enough, then the
’t Hooft vertex and the consequent cancellation of mass-
singular contributions to the connected and disconnected
flavor-singlet meson correlators should work out in gen-
eral. We shall see that this is the case.

With the original staggered-fermion action, Eq. (3),
the interaction connects adjacent sites. Very large dis-
cretization errors arise in a wide range of observables,
washing out the expected quartet structure in the eigen-
value spectrum. These discretization errors have been
traced to taste-changing interactions from gluons with
one or more components of momentum pµ ≈ π/a [65].
Because of the gluon exchange, these effects are formally
of order αsa

2, i.e., αs times smaller than normal dis-
cretization effects [66]. In order to reduce these taste-
changing effects, it is necessary to smear the gauge field,
replacing Uµ in Eq. (3) with sums of products of Uµ ma-
trices tracing out more complicated paths between x and
x+ µ̂a [65, 67, 68].

Several staggered-fermion actions have been developed
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along these lines. The Asqtad [69] and Fat7×Asqtad [30]
actions exhibit a reduction, relative to the nearest-
neighbor action in Eq. (3), in splittings between pseu-
doscalar mesons of different taste [26, 30]. Similarly, with
these actions the quartet structure of the eigenvalue spec-
trum more clearly emerges [27, 30].

Here we have calculated low-lying eigenvalues and
eigenvectors for the highly improved staggered quark
(HISQ) action [59], reusing the same gauge-field config-
urations. The HISQ action supersedes the Fat7×Asqtad
action; it is essentially the same but corrects the smear-
ing at the second stage to remove fully the discretization
errors that the smearing introduces. As we shall see in
Sec. IV B this change makes only a small effect. The
eigenvalue quartet structure is very clear with HISQ and
this is also reflected in other properties which by now
have been thoroughly tested—small pseudoscalar mass
splittings and small discretization errors, even for heavy
quarks [9, 59, 70, 71].

Appendix B provides explicit equations for the
smeared actions.

We use the Lanczos algorithm to calculate the low-
lying eigenvalues, iλ, of the anti-hermitian massless HISQ
Dirac operator, DHISQ, defined implicitly in Eq. (B6).
Owing to its red-black checkerboard structure, the calcu-
lations can be simplified by using the Hermitian positive
semi-definite operator −D2

HISQ, projected onto either the

red (even) or black (odd) sites of the lattice. This yields
λ2, from the smallest values upwards, and eigenvector f ,
on the chosen half of the lattice. The eigenvalues of
DHISQ are then ±iλ, and the corresponding eigenvector
on the other half of the lattice is ±DHISQf/iλ. This con-
struction automatically implements the requirement that
the eigenvectors corresponding to eigenvalues iλ and −iλ
are simply related by multiplication with ε(x). Thus, on
the odd (even) sites, the −sth eigenvector is opposite
(same) in sign as the +sth eigenvector.

B. Eigenvalues and chirality with HISQ

Figure 2 shows the 4 near-zero eigenvalues as well
as the 16 pairs of nonzero eigenvalues of DHISQ with
smallest |λ|, obtained on typical |Q| = 1 configurations
from ensembles labeled 1 (coarse), 3 (intermediate), and
5 (fine) in Table I. These lattices have similar physi-
cal volume but lattice spacing varying from 0.125 fm to
0.077 fm. The anticipated picture is unmistakable: four
(and only four) very small eigenvalues appear, followed
by distinct quartets. As the lattice spacing decreases,
eigenvalues within a quartet come closer and closer to be-
ing degenerate, typically by forming two close-by almost
degenerate pairs. The near-zero modes are typically, on
these lattices, at least an order of magnitude smaller than
the low-lying nonzero modes.

The Lanczos algorithm also gives the eigenvectors cor-
responding to these eigenvalues. Normalizing them to
have modulus 1, we compute the chirality X in Eq. (26),

using the smeared Wµ matrices [Eq. (B5)] instead of Uµ.
Reference [30] showed that it makes little qualitative dif-
ference to the results whether the original Uµ, Asqtad

Vµ [Eq. (B2)], or Fat7×Asqtad W̌µ [Eq. (B8)] are used.
The numerical values of the chirality may change, but
the picture remains qualitatively the same.

Because lattice artifacts break the taste-singlet sym-
metry, the chirality defined in Eq. (26) takes values that
are not simply 1 and 0 [58]. References [27, 30] found,
however, that it is easy, especially with improved gauge
and staggered-fermion actions, to separate the near-zero
modes with relatively large chirality, close to 1, from the
other modes with chirality close to 0. The number of
near-zero modes defined this way agrees with the index
theorem, Eq. (27), and pure-gauge definitions of the topo-
logical charge. The agreement between the index and
the gauge-field topological charge improves as the lattice
spacing gets smaller. On the a = 0.077 fm ensemble,
the disagreement for Asqtad and Fat7×Asqtad is just
2% [30], which is no worse than the ambiguity between
different gluonic definitions. For this paper, we therefore
simply take the index to classify the topology.

Figure 3 shows the chirality values for the HISQ ac-
tion versus eigenvalues on all configurations defined to be
of topological charge ±1 via the index. To reduce clut-
ter, Fig. 3 shows only the two near-zero modes and the
two lowest-lying nonzero modes. (Because X−s = Xs,
we count only the positive-λ modes here.) One sees a
clear separation of large and small chirality values, es-
pecially so on the finer configurations. Although the
values corresponding to the maximum chirality do not
change very markedly from coarse to finer lattices, the
spread of results becomes much narrower. The small chi-
rality values, corresponding to nonzero eigenmodes, fall

1 2
|i|

−0.25
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−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20
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λa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|s|

a = 0.125 fm, V = 12
4

a = 0.093 fm, V = 16
4

a = 0.077 fm, V = 20
4

FIG. 2: The 4 near-zero eigenvalues (left panel) and the 16
lowest-lying nonzero pairs of DHISQ eigenvalues on a typi-
cal |Q|=1 configuration from sets 1 (red circles), 3 (green
squares), and 5 (blue triangles). For clarity, some modes are
offset horizontally.
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rapidly to zero with lattice spacing. We take X > 0.4
(drawn on the graphs) to indicate large chirality and then
count the number of eigenvalues (with positive λ) that
have large chirality. Configurations with 2 (positive-λ)
large-chirality modes are taken to be |Q| = 1 configura-
tions. Table I lists the number of such configurations for
each ensemble. More general scatter plots with results at
|Q| > 1 and the Asqtad and Fat7×Asqtad actions have
been given in Ref. [30], and with HISQ look very similar.

C. Results for ζΓ
ij

Using the eigenvectors determined in the previous sec-
tion we now go on to look in more detail at the overlaps
of the near-zero mode eigenvectors that are relevant to
the ’t Hooft vertex. Figures 4–6 show scatter plots and
histograms of the ζΓ

ij distributions for Γ = 1, γ5, and γµ,
and i, j = ±1,±2 on one or two configurations, ranging
over all x. Each figure displays this information, from
top to bottom, for the coarse (a = 0.125 fm), intermedi-
ate (a = 0.093 fm), and fine (a = 0.077 fm) lattices, at
(nearly) fixed physical volume (sets 1, 3 and 5). The four
panels in each case show the scatter of ζΓ

ij in the com-

plex plane (upper left), the histogram for Re ζΓ
ij (lower

left), the histogram for Im ζΓ
ij (upper right), and the his-

togram for |ζΓ
ij | (lower right). The number of points in

the histograms for each set is the lattice volume, V , of Ta-
ble I. Note the logarithmic scale on the histogram plots.
Red points and lines denote diagonal ζΓ

ii, and black off-
diagonal ζΓ

ij (j 6= i). In the case of the vector overlap,

Γ = γµ, we separate the off-diagonal ζΓ
ij into two. Black

is reserved for |j| 6= |i| and the case of j = −i is shown
in blue.

The most striking feature for the scalar (Fig. 4) and
pseudoscalar (Fig. 5) is how different the diagonal and

|X |
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FIG. 3: The absolute value of the chirality |X | plotted against
eigenvalue, λa, in lattice units for the 4 lowest (positive) eigen-
values for the |Q| = 1 configurations in ensembles 1, 3, and 5.
The dotted line on each graph indicates |X | = 0.4, which is
used to separate large and small chirality in determining the
value of Q (see text).
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ij on coarse (top), intermediate (middle), and fine
(bottom) |Q| = 1 gluon field configurations, with j = i (red)
and j 6= i (black), i, j = ±1,±2. Note the logarithmic y-axis
scale for the histograms.
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off-diagonal distributions are. The diagonal scalar over-
lap ζ1

ii is a sum of absolute squares, so it is real and pos-
itive. Because f−i(x) = ε(x)fi(x) and the taste-singlet
scalar operator is local, ζ1

i,−i is equal to ζ1
i,i on even sites

but real and negative on odd sites. Upon averaging over
a hypercube in Eq. (A1), cancellations render ζ1

i,−i rela-
tively small. It is visible on Fig. 4 as a black line stretch-
ing along the negative real axis; the positive part being
invisible underneath the red line for ζ1

i,i. The off-diagonal

(|j| 6= |i|) scalar overlap ζ1
ij is a complex number of ran-

dom phase. The width of all the histograms falls going
down the column of plots as the lattices become finer.
What is crucial for the taste structure of the eigenvec-
tors, however, is the relative width of the histograms for
|ζΓ
ij | for i 6= j compared to that for |ζΓ

ii|. From the plots
it can be seen that the width of the off-diagonal distri-
bution is falling faster with lattice spacing than that of
the diagonal. Figure 4 shows a single configuration with
|Q| = 1, but we have examined others, and they look the
same.

Figure 5 for the pseudoscalar case shows two config-
urations, one each with Q = +1 and −1. The plots
behave in the same way as the scalar overlaps, except

that ζγ
5

ii is real and negative for Q = −1, as a conse-
quence of parity. From the same arguments as above,
since the taste-singlet pseudoscalar operators links odd

sites to odd sites and even sites to even sites, ζγ
5

i,−i is also

real and takes the same or opposite sign to ζγ
5

i,i on odd

sites or even sites. ζγ
5

i,−i is therefore not visible beneath

ζγ
5

i,i on Fig. 5. Once again, looking down the plots, we
see clearly that the width of the off-diagonal distribution
(combining j = −i and |j| 6= |i|) decreases with lattice
spacing, relative to the diagonal distribution.

With ζγ
µ

ij the behavior differs. Recall that ζγ
µ

ij should
vanish for all i, j, even j = i. As seen in Fig. 6, we find

ζγ
µ

ii to be pure imaginary, which follows from the defini-

tion of the operator γµI , Eq. (A2); we find ζγ
µ

i,−i to be pure
real, which follows by changing the sign of the odd pieces
of f−i(x) relative to fi(x), because the vector operator

couples even to odd sites and vice versa; and we find ζγ
µ

ij ,

|j| 6= |i|, to be complex and of random phase. In this
case, however, the widths of all three distributions not
only are the same (when nonzero) but also decrease with
decreasing lattice spacing together. Indeed the widths of

all |ζγ
µ

ij | distributions are similar to the widths of the |ζ1
ij |

and |ζγ
5

ij | distributions, j 6= i.

To visualize the lattice-spacing dependence more di-
rectly, we plot in Fig. 7 the width of the ζΓ

ij distribu-
tions, appropriately normalized, vs. a. The widths are
defined by the central 66% of the data in the lower right
histogram for |ζΓ

ij |, but calculating this histogram for 10
configurations instead of just 1 or 2. The errors are es-
timated by comparing the widths for two subsets of five
configurations. The values we obtain for the widths, and
their errors, are given in Table II. Since the eigenvectors
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FIG. 7: The top plot shows the width of |ζΓ
ij |, j 6= i, di-

vided by the width of |ζΓ
ii|, for Γ = 1, γ5, i, j = ±1,±2. The

Γ = 1 case is given by open circles (red online), along with
a representative polynomial fit as a function of lattice spac-
ing and the corresponding value in the continuum limit (filled
circles). The equivalent results for Γ = γ5 are given by open
and closed squares (blue online). The lower plot shows the

width of |ζγ
µ

ij | divided by the width of |ζγ
5

ii | plotted against
the lattice spacing. The case i = j is given by open and closed
squares (black online), the case i = −j by open and closed
circles (red online) and the case |i| 6= |j| by open and closed
triangles (blue online).

are normalized to have modulus 1 at each lattice spac-
ing, the widths do not have a physical interpretation.
The best that one can do is to normalize the off-diagonal
widths against diagonal widths, as is appropriate for the
test of Eq. (32). This ratio of widths is plotted for the
scalar and pseudoscalar in Fig. 7. For the vector, we
have no diagonal quantity that survives in the continuum
limit, so we normalize instead against the diagonal pseu-
doscalar width. Although it is difficult to be quantitative
(full ensemble averages of the widths are too costly, and
the determination of the lattice spacing in the quenched
approximation is ambiguous), the trend in Fig. 7 is clear
and consistent with what is needed according to Eq. (32).

Figure 7 shows, with dashed lines, representative fits
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TABLE II: Widths, in lattice units and multiplied by 104, obtained for different |ζΓ
ij | histograms on each set of |Q| = 1 gauge

configurations. The first column gives the set and then subsequent columns list the width, with an estimate of the error, for
different Γ and i, j combinations, i, j = ±1, ±2.

Set γ5, i = j γ5, i 6= j γµ, i = j γµ, i = −j γµ, |i| 6= |j| 1, i = j 1, i 6= j
1 3.93(31) 0.296(26) 0.242(11) 0.202(21) 0.224(1) 6.84(17) 0.285(23)
2 4.08(56) 0.180(11) 0.188(23) 0.146(12) 0.155(16) 6.07(70) 0.158(9)
3 1.49(3) 0.0635(38) 0.0567(36) 0.0541(42) 0.0561(22) 2.15(6) 0.0566(27)
4 0.548(26) 0.0390(16) 0.0242(10) 0.0246(17) 0.0258(4) 0.846(29) 0.0406(22)
5 0.716(14) 0.0230(7) 0.0211(2) 0.0206(2) 0.0219(5) 0.954(16) 0.0199(5)

as a polynomial in a to our results. The fits include a
constant plus linear to quartic powers of a. The slope of
the nth polynomial term is constrained to be ΛnQCD where
ΛQCD is taken to be 0.5 GeV. It is very easy to obtain
good fits with any combination of different polynomials,
for example including or not including a linear term, so it
is not possible to say definitively what the lowest power
of a is that appears in the a-dependence of the ζij . The
solid points on the plots in Fig. 7 give the a = 0 value
of the width ratios, compatible with zero in all cases.
Thus our results are consistent with the expectation in
Eq. (32), although we are not able to determine pζΓ .

We have also investigated the volume dependence of
the ζΓ

ij for i, j = ±1,±2 at the intermediate lattice spac-
ing (i.e., on sets 2, 3 and 4), and these results are also
included in Table II. We see that the widths again fall
as the volume of the lattice increases. Naively this is
simply a result of the normalization of the eigenvectors
to 1 over an increasing number of lattice sites. Indeed
the widths do seem to have simple behavior, inversely
proportional to 1/V , at least for the diagonal scalar and
pseudoscalar widths and the vector widths. Note that
this is not inconsistent with the fact that, for example,
the very high values of the pseudoscalar diagonal over-
laps are localized around the instantons that give rise to
the near-zero modes.

The pseudoscalar and scalar widths behave quite dif-
ferently as a function of lattice spacing than they do as
a function of volume. We can see this by comparing the
histograms in Fig. 8 for ζΓ

ij on the fine lattices, set 5,
and the large intermediate volume lattices, set 4. Both
of these have 204 lattice points. We see that the diagonal
distribution is broader on the finer lattices and the off-
diagonal distribution markedly narrower, consistent with
the fairly rapid fall with lattice spacing of the ratio of
the widths seen in Fig. 7. For the vector case, as is clear
from Table II, the behavior of the widths with the lattice
spacing is only slightly steeper than that with volume.
However, this still represents a fall to zero with lattice
spacing when compared to the diagonal scalar and pseu-
doscalar overlaps which survive the continuum limit, as
we see in Fig. 7.

We have not shown histograms for the axial vector or
tensor operators. We have looked at these operators in
terms of the relevant meson correlators (see the following
sections) and they give qualitatively identical results to

the vector and scalar/pseudoscalar cases respectively. It
therefore seems unlikely that they would upset the pic-
ture gleaned here.

D. Flavor-singlet meson correlators

Our results in Sec. IV C show how the taste-singlet
overlaps, ζΓ

ij(x), of different near-zero mode eigenvectors
behave as expected to give the correct continuum be-
havior for the ’t Hooft vertex. Here we show explicitly
how this translates into the correct continuum behavior
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FIG. 8: Histogram of |ζγ
5

ij |, for i = j (top) and i 6= j (bottom),
comparing results on the fine lattice (set 5—red/gray) and the
large intermediate lattice (set 4—black).
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for the near-zero mode contribution to the flavor-singlet
meson correlator. We also look at nonzero mode contri-
butions, as well as flavor-nonsinglet correlators, wherever
they are useful to fill out the picture obtained. As dis-
cussed in Sec. III it is sufficient to work in the quenched
approximation since the structural issue of the behavior
of the eigenvector overlaps—in a fixed-|Q| sector—is the
same whether sea quarks are included or not.

To relate results as closely as possible to those of a
complete meson correlator calculation in lattice QCD,
we consider meson correlators projected onto zero spatial
momentum by summing over spatial sites. This leads us
to consider a modification of the eigenvector overlaps

ζ
Γ

rs(t) =
∑
x

f†r (x, t)ΓIfs(x, t), (44)

summing over a timeslice instead of a 24 hypercube.
Then the zero-momentum connected and disconnected
contributions can be constructed, as in Eqs. (40) and (41)
from

XΓ
rs(T ) =

∑
t

ζ
Γ

rs(t)ζ
Γ

sr(t+ T ), (45)

Y Γ
rs(T ) =

∑
t

ζ
Γ

rr(t)ζ
Γ

ss(t+ T ). (46)

Note that XΓ
rr(T ) = Y Γ

rr(T ) by construction, and we con-
sider values for r, s that correspond to nonzero modes as
well as near-zero modes.

The full connected correlator is C(T ) =∑
x,y C(x, t;y, t + T ), with C(x, y) defined in

Eq. (35). Similarly, the disconnected correlator is
D(T ) =

∑
x,yD(x, t;y, t+ T ), following Eq. (36). C(T )

is then made up of Xrs overlaps (on the quenched
configurations that we are studying) as:

C(T ) = 〈C(T )〉U

=
∑
r,s

〈
Xrs(T )

(iλr +m)(iλs +m)

〉
U

(47)

where we have made explicit the dependence on the
eigenvalues in the denominator. For D(T ) we have:

D(T ) = 〈D(T )〉U

=
∑
r,s

〈
Yrs(T )

(iλr +m)(iλs +m)

〉
U

. (48)

The disconnected correlator factorizes into the product of

sums over diagonal overlaps ζ
Γ

rr, but the connected cor-
relator contains overlaps between different eigenvectors.

Note that the factor |m|D′ of Eqs. (35) and (36) from
the nf = 1 sea quark determinant is missing. This affects
the weighting of the particular configurations in the en-
semble and therefore the quantitative results obtained for
C(T ) and D(T ). However it does not affect qualitatively
the properties of the Xrs factors that we demonstrate

here, which are evident in a fixed-|Q| sector and even, in
some cases, on a configuration-by-configuration basis in
their contribution to C(T ) and D(T ).

As discussed in Sec. III, we then have to test whether
the near-zero modes give rise to a divergence in the cor-
relator for flavor-singlet meson H as m → 0, when the
connected and disconnected contributions are combined
with their appropriate taste factors of 4 and 16 [Eq. (34)]:

MH(T ) =
〈
MH(T )

〉
U

=
1

4
CH(T )− 1

16
DH(T ). (49)

To obtain a finite result as m → 0 for M(T ) we need
the near-zero mode contributions to cancel between C(T )
and D(T ). This in turn requires the off-diagonal over-
laps, Xij , i 6= j, between different near-zero eigenvectors
in the same staggered eigenvalue quartet to vanish in the
continuum limit. Then each staggered eigenvalue quartet
effectively behaves as four copies of a single mode and,
including the factors of 1/4 and 1/16, reproduces within
M(T ) the behavior expected of eigenmodes of the Dirac
operator in the continuum. We show how this works ex-
plicitly for the examples of scalar, pseudoscalar, (axial)
vector, and tensor mesons in the following subsections.
We do this with the same |Q| = 1 quenched configu-
rations used in the previous subsection. The correlator
results are, however, averaged over all |Q| = 1 configura-
tions for each ensemble, rather than just 10.

1. Flavor-singlet pseudoscalar mesons

We first discuss the important case of the calculation
of the flavor-singlet pseudoscalar meson (η′) correlator,
and the associated case of the flavor-nonsinglet meson
(π) correlator. In continuum QCD with, say, 2 equal
mass light quarks, this is readily analysed in terms of
the eigenvectors and eigenvalues of the massless Dirac
matrix. For |Q| = 1 gluon field configurations there is

one zero mode with a chirality φ†0γ5φ0 = ±1. The π
meson correlator has no disconnected contribution and
the connected contribution is readily seen to obey, on a
given gluon field configuration,∑

T

Mπ(T ) =
∑
σ

1

λ2
σ +m2

(50)

where m is the quark mass and the sum is over all eigen-
modes of the massless Dirac matrix, including the zero
mode. Each eigenmode contributes an overlap of 1 when
summed over T . For the zero mode, this comes from the
square of the chirality. The nonzero modes have chiral-
ity zero but still contribute an overlap factor of 1 be-
cause the γ5 matrix connects the modes σ and −σ with

λ−σ = −λσ. Then (continuum)
∑
t ζ
γ5

σ,−σ(t) = 1 from
eigenvector normalization.

The η′ meson correlator is made from the same eigen-
vectors but now has a disconnected contribution com-
ing from the zero mode that exactly cancels the zero
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FIG. 9: Diagonal and off-diagonal overlaps Y γ
5

ij (T ) between
eigenvectors 1 and 3 that contribute to the disconnected piece
of the η′ correlator at zero spatial momentum. Results are
given for the average over |Q| = 1 configurations in the fine
ensemble, set 5. The lower plot shows the off-diagonal overlap
summed over time separation as a function of the square of
the lattice spacing.

mode contribution to the connected correlator. Thus,
on a given configuration,

∑
T

Mη′(T ) =
∑
σ 6=0

1

λ2
σ +m2

. (51)

There is now no contribution from the zero mode and the
correlator is finite as m → 0. This continues to be true
on averaging over gauge fields and including sea quark
determinant factors.

Now let us show how staggered fermions reproduce
Eqs. (50) and (51). For the Goldstone π meson cor-
relator, it is straightforward and mechanical. Then
Γ = γ5

P = ε(x) connects eigenvectors fs and f−s, and
the overlap contribution is again 1, when summed over
T , simply from eigenvector normalization. The differ-
ence with the continuum case is that this is also true for
the near-zero modes. Thus, we obtain an equation very
similar to that in the continuum on a single gluon field
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FIG. 10: The eigenvector overlaps Xγ5

ij (T ) between near-zero
modes 1, 2 and -1 that contribute to the connected piece of the
η′ correlator at zero spatial momentum. Results are given for
the average over |Q| = 1 configurations in the fine ensemble,
set 5 (top) and the coarse ensemble, set 1 (bottom).

configuration:∑
T

Mπ(T ) =
1

4

∑
s

1

λ2
s +m2

=
∑
q

1

λ̄2
q +m2

+ O(a2), (52)

where s is a sum over all modes including the near-zero
modes and the factor of 1/4 is the same as in Eqs. (34)
and (49). Since the staggered eigenvalues come in quar-
tets that become degenerate in the a→ 0 limit, the lower
equation replaces the 4 eigenvalues in a quartet by their
mean square and sums all quartets, q, including the near-
zero mode quartet. This then clearly reproduces the con-
tinuum Eq. (50) as a→ 0.

The flavor-singlet correlator is constructed differently
and includes both connected and disconnected contribu-
tions. With staggered fermions, we must use the flavor-
taste-singlet pseudoscalar, Γ = γ5

I . In demonstrating
that Eq. (51) is reproduced, we also show that the eigen-
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vector overlaps behave so as to give a finite result for the
η′ correlator.

From our earlier results on chirality, we can anticipate

what the disconnected overlaps Y γ
5

look like. Because∑
t ζ
γ5

ss (t) = Xs we expect the large values of Y γ
5

to be
those that involve the near-zero modes with their large
chirality values. Indeed∑

T

Y γ
5

ij (T ) = XiXj . (53)

This expectation is borne out by the numerical results.

On averaging over |Q| = 1 gauge fields Y γ
5

11 , Y γ
5

22 and

Y γ
5

12 are all equal, being the “typical” product of over-

laps for two near-zero modes.
〈
Y γ

5

11

〉
|Q|=1

is shown as a

function of T in Fig. 9. Results for modes −1 and −2
from the near-zero mode quartet match these because,
as discussed above, the chirality of mode −1 is identical
to that of 1 and −2 to that of 2. Thus the sum over all
the zero modes, i = ±1;±2 and j = ±1;±2, of Y γ

5

gives
4× 4 = 16 times the square of the chirality for a typical
zero mode. This is divided by 16 in the contribution to
the disconnected correlator, as in Eq. (49), and so the
contribution becomes exactly what is required to match
that from the one zero mode for continuum quarks, up to
a renormalization factor for the taste-singlet pseudoscalar
current.

The nonzero modes, for example mode 3, have small

chirality and therefore Y γ
5

33 is small, as also shown in
Fig. 9. In the continuum this would be zero. Here it is
not zero for nonzero lattice spacing but tends to zero as
a→ 0. In fact, because we find that Yrr = Yss = Yrs for
modes in the nonzero mode quartet, i, j = 3, 4, 5, 6, then
the total contribution from the quartet, when divided by

16, cancels against the contribution from Xγ5

rr divided by
4 in the total pseudoscalar flavor-singlet correlator, as for
the near-zero mode quartet.

It is also worth discussing the cross-term Y γ
5

13 between
the near-zero mode quartet and the nonzero mode quar-
tet since this would also be identically zero in the con-

tinuum. Figure 9 shows the results for Y γ
5

13 (T ), which,
summed over T , has a value which is the square root

of the product of the sums over T of Y γ
5

11 and Y γ
5

33 . The

lower plot of Fig. 9 then shows explicitly how
∑
T Y

γ5

13 (T )
vanishes as a → 0. Similar behavior is seen for other
terms that are related to the chirality of nonzero modes.

For Xγ5

the results for the diagonal case are the same

as for Y γ
5

. The results for the off-diagonal Xγ5

are
less clear a priori. In fact, we find in all cases that the
off-diagonal overlaps within a quartet are zero when av-
eraged over gauge fields. Figure 10 illustrates this for

modes 1 and 2 in the near-zero mode quartet. Xγ5

11 and

Xγ5

22 are large (being equal to Y γ
5

11 and Y γ
5

22 ) but Xγ5

12 has
an average of zero. The same results are obtained for
the −1 and −2 modes. We also see an average of zero
for the overlaps between the positive and negative eigen-

modes within the quartet. This is illustrated for Xγ5

1,−1

in Fig. 10. Xγ5

1,−2 is very similar.
The size of eigenvector-overlap correlations changes

very little with the lattice spacing. Figure 10 also shows

results for overlaps Xγ5

on the coarsest lattices, set 1, for
comparison to the results on the finest lattices, set 5.

An average of zero is also seen for off-diagonal terms
between modes in the first nonzero mode quartet and be-
tween modes in the near-zero mode quartet and modes
in the first nonzero mode quartet. These points are illus-
trated in Fig. 11.

To understand Xγ5

more completely, we must also
study overlaps between positive and negative nonzero
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eigenmodes. Although this is not relevant to the be-
havior of the ’t Hooft vertex, it shows very clearly how
the connected contribution to the η′ correlator becomes
equal to that of the π meson in the continuum limit, up
to normalization differences coming from the fact that
the taste-singlet pseudoscalar current is not absolutely
normalized.

Figure 12 shows the overlaps, Xγ5

, between the mode
r = 3 and all the negative modes that correspond to the
first negative nonzero quartet (which is the Uε “mirror”
of the first positive nonzero quartet), i.e., s = −3, −4,
−5 and −6. Interestingly the overlaps that are nonzero

here are Xγ5

3,−5 and Xγ5

3,−6. These are equal and each

about half the size of Xγ5

1,1 = Y γ
5

1,1 (compare Fig. 10 and

Fig. 12). Likewise, the nonzero overlap for r = 5 appears

with s = −3 and−4 having the same size asXγ5

3s , s = −5,

−6. The overlaps Xγ5

4s and Xγ5

6s show the corresponding
pattern. Note the parallel with what happens in the case

of the near-zero mode quartet, where Xγ5

1,−1 and Xγ5

1,−2

tend to zero (as shown in Fig. 10), and Xγ5

3,−3 and Xγ5

3,−4

tend to zero too. The difference here is that another
pair belongs to the mirror quartet, whereas 1, 2, −1 and
−2 form a single quartet that is its own mirror. The
pattern seen in Fig. 12 is repeated for other nonzero-

mode quartets. For example, Xγ5

7,−9 and Xγ5

7,−10 ≈ 0.014,

while Xγ5

7,−7 and Xγ5

7,−8 are much much smaller.

Thus, the large contributions from nonzero modes
to the connected correlator for the taste-singlet pseu-
doscalar meson come from overlaps connecting mem-
bers of a quartet and members of its mirror quartet, in
fact members of the opposite pair of the mirror quartet.
When these overlaps are summed over a quartet they
give a result, per quartet member, approximately equal
to that of a typical near-zero mode contribution. The
near-zero mode contributions, on the other hand, come
from diagonal terms, as a result of nonzero chirality. On
adding all the modes together, as in Eq. (47), and divid-
ing by 4 we obtain a result per quartet, similar to that
in Eqs. (50) and (52). The way in which this is achieved
is rather different from that for the Goldstone π meson,
and the different mode contributions follow more closely
that of the continuum. A difference with both the con-
tinuum and the staggered Goldstone π is that there is
a constant of proportionality which is the square of the
chirality of the zero modes. The disconnected terms can-
cel all the diagonal connected contributions (having in
fact the same constant of proportionality) and therefore
we finally obtain, for the η′ correlator the result which
becomes Eq. (51) in the continuum limit, when the taste-
singlet pseudoscalar current is appropriately normalized.

Let us now demonstrate the cancellation between the
connected and disconnected contributions from the near-
zero modes more explicitly. Figure 13 shows histograms
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FIG. 13: A histogram of values of the combination
−X(Tmid)/4 + Y (Tmid)/16 calculated from the near-zero
modes i, j = ±1,±2 for the |Q| = 1 configurations for sets
1, 3 and 5. The results are plotted for time separation, Tmid,
set to the midpoint of the lattice.

for 〈 ∑
i,j=±1,±2

−
Xγ5

ij (T )

4
+
Y γ

5

ij (T )

16

〉
|Q|=1

, (54)

evaluated at the midpoint of the lattice, T = Tmid for the
three sets—1, 3 and 5—that have the same lattice volume
but different lattice spacings. Then Tmid corresponds ap-
proximately to the same physical time separation in each
case. From Fig. 13 it is clear that this combination of
X and Y , which skeptics have worried could be trou-
blesome, is in fact zero on average at every value of the
lattice spacing. The histogram of values shows that the
distribution is somewhat broader on the coarser lattices,
but there is no other effect from the lattice spacing.

In the above discussion, we have focussed on the |Q| =
1 case because that is the easiest one with which to study
near-zero and nonzero modes. However, results on con-
figurations with other Q values also behave exactly as
expected from this picture. Figure 14 shows results for

overlaps Xγ5

ij for 27 configurations with |Q| = 2 from the
finest, set 5 lattices. The overlaps are between modes 1
and 3 which are now members of two separate near-zero
mode quartets. We see that there is negligible overlap
between modes from different zero mode quartets, so the
counting for each quartet, taken care of by the subsequent
division by 4 for the connected contribution, is exactly
as for the |Q| = 1 case.

2. Flavor-singlet scalar mesons

The flavor-singlet scalar case is easy to analyze both
in the continuum and for staggered fermions because of
the simple form of the taste-singlet scalar, Γ = 1I . The
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FIG. 14: Overlaps Xγ5

ij averaged over the 27 lattices from the
finest ensemble, set 5, that had topological charge |Q| = 2.
Results are shown for mode 1 from the first near-zero mode
quartet and mode 3 from the second near-zero mode quartet.

orthogonality and normalization of the eigenvectors gives∑
t ζ

1

rs(t) = δrs. Thus the disconnected contribution in
the continuum becomes:∑

T

Dσ(T ) =
∑
r,s

1

(iλr +m)(iλs +m)
(55)

where the sum is over all eigenmodes. The connected
contribution is∑

T

Cσ(T ) =
∑
r

1

(iλr +m)2
(56)

and we see that it is cancelled by diagonal terms from
Eq. (55). In particular, for |Q| = 1, the single zero
mode contribution to the total flavor-singlet correlator
cancels between D and C to give a finite result for Mσ

for m→ 0. For staggered fermion Eqs. (55) and (56) still
hold, with a sum over the total number of eigenmodes.
By taking a suitable average over the eigenvalues in a
quartet, the cancellation of diagonal terms quartet by
quartet mimics that of the continuum. In particular,
neglecting the near-zero λi relative to m and dividing
C by 4 and D by 16, it is clear that exactly the same
cancellation of the contributions from the near-zero mode
quartet occurs as in the continuum.

Figures 15 and 16 show a representative sample of Y 1
rs

and X1
rs, plotted as a function of T for set 5. Figure 15

shows overlaps Y 1
11 for a near-zero mode and Y 1

33 for a
nonzero mode as well as the off-diagonal Y 1

13. Set 5 lat-
tices have a time extent of 20, so we expect values around
0.05, such that the sum over T yields 1. The results for all
members of the near-zero mode quartet agree with those
of Y 1

11 and those of the first nonzero mode quartet agree
with those of Y 1

33. Unlike the pseudoscalar case, Y 1
13 is

not zero but as large as Y 1
11 and Y 1

33 since
∑
T Y

1
rs(T ) = 1

for all r, s both in the continuum and on the lattice.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  5  10  15  20

Y
1 ij(

T)

T

Y1
11 Y1

33 Y1
13

FIG. 15: Diagonal and off-diagonal overlaps Y 1
rs(T ) between

eigenvectors 1 and 3 that contribute to the disconnected piece
of the flavor-singlet scalar meson correlator at zero spatial
momentum. Results are given for the average over |Q| = 1
configurations in the fine ensemble, set 5.

Figure 16 shows the overlaps for X1
rs(T ). Here∑

T X
1
rs(T ) = δrs, and it is clear that the diagonal over-

laps are the same as those of the appropriate Y 1 and the
off-diagonal overlaps are zero in each case.

Further detail is shown in Fig. 17 which gives the X1
rs

between nonzero modes in mirror quartets. and between
the positive and negative eigenmodes of the zero mode
quartet. Some of these overlaps are large in the pseu-
doscalar case. None of them is large here and all yield
zero after summing over T . Quite different behavior is
seen in the different overlaps, however. In particular, we
see once again in these overlaps the distinction between
different pairs in the nonzero mode quartets.

Figure 18 shows histograms for〈 ∑
i,j=±1,±2

−
X1
ij(T )

4
+
Y 1
ij(T )

16

〉
|Q|=1

, (57)

evaluated at Tmid for the three sets—1, 3, and 5—that
have the same lattice volume but different lattice spac-
ings. From Fig. 18 it is clear that, as in the pseudoscalar
case, this combination of X and Y , which corresponds
to the potentially divergent contribution of the near-zero
modes to the scalar meson correlator, actually vanishes
on average at every value of the lattice spacing. The
width of the histogram distribution is the quantity which
changes with lattice spacing, becoming more narrowly
peaked around zero as the lattice spacing goes to zero.

3. Flavor-singlet vector, axial vector and tensor mesons

The overlaps for the flavor-singlet tensor case behave
similarly to the pseudoscalar and scalar. No simple anal-
ysis of overlaps in terms of the chirality or normaliza-
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FIG. 16: The eigenvector overlaps X1
rs(T ) between near-zero

modes 1, 2 and -1 (top) and between near-zero mode 1 and
nonzero mode 3 (bottom) that contribute to the connected
piece of the flavor-singlet scalar meson correlator at zero spa-
tial momentum. Results are given for the average over |Q| = 1
configurations in the fine ensemble, set 5.

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0  5  10  15  20

X
1 ij(

T)

T

X1
3,-3 X1

3,-4 X1
3,-5 X1

3,-6

FIG. 17: Eigenvector overlaps X1
rs(T ) between nonzero mode

3 and modes −3, −4, −5 and −6 from its “mirror” quartet.
Results are averaged over |Q| = 1 configurations for set 5.
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FIG. 18: A histogram of values of the combination
−X1(Tmid)/4 + Y 1(Tmid)/16 calculated from the near-zero
modes for the |Q| = 1 configurations for sets 1, 3 and 5. The
results are plotted for time separation set to the midpoint of
the lattice, Tmid.
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FIG. 19: The eigenvector overlaps Xσxy

ij (T ) between near-
zero modes 1 and 2 that contribute to the connected piece
of the flavor-singlet tensor meson correlator at zero spatial
momentum. Results are given for the average over |Q| = 1
configurations in the fine ensemble, set 5.

tion of the modes is possible and, indeed, we find that
none of the overlaps is large. Figure 19 shows that the
key requirement for a sensible flavor-singlet correlator
holds, i.e., that the off-diagonal overlaps between differ-
ent members of the near-zero mode quartet are consistent
with zero. This means, as above, that the connected and
disconnected near-zero mode contributions cancel rather
than giving a potentially divergent piece.

The flavor-singlet vector and axial vector cases behave
somewhat differently, which can be traced back to the
fact that the taste-singlet versions of these operators cou-
ple even and odd lattice sites together rather than even-
to-even or odd-to-odd as with the other examples. The
axial vector and vector behave in the same way, so we
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FIG. 20: The eigenvector overlaps Y γ
µ

ij (T ) for µ = x between
near-zero modes 1 and −1 that contribute to the disconnected
piece of the flavor-singlet vector meson correlator at zero spa-
tial momentum. Results are given for the average over |Q| = 1
configurations in the fine ensemble, set 5.

only show results here for the vector case. As discussed
in Sec. III, in the continuum there is no zero mode con-
tribution to the disconnected piece of the flavor-singlet
vector meson correlator because γµ and γ5 anticommute.
We show in Fig. 20 how this works for staggered fermions.

Because ζ
γµ

ii couples odd and even sites, and f−1 has the

opposite sign on odd sites to f1, then ζ
γµ

11 and ζ
γµ

−1−1

have opposite sign. This means that the near-zero mode

contribution to the disconnected correlator from Y γ
µ

11 has

opposite sign to that from Y γ
µ

1−1. This is shown clearly
for µ = x in Fig. 20. Summing over i, j = ±1,±2
then clearly gives a total disconnected contribution to
the flavor-singlet vector meson correlator of zero.

The connected contributions are not zero timeslice by

timeslice as we see from Fig. 21. Xγµ

ii (equal to their
Y counterparts in Fig. 20) overlaps become pure oscil-
lations, (−1)T , that cancel upon summing over T . Os-
cillatory terms are a feature of staggered meson correla-
tors, stemming from opposite-parity contributions to the
correlator and, ultimately, the remaining time-doubling.
They do not then affect the properties of the ground state
meson, in this case the flavor-singlet vector meson. The

off-diagonal Xγµ

ij are close to zero and also oscillatory.
Thus once again there is no significant net contribution
from near-zero modes to the flavor-singlet vector meson.

4. Summary

We conclude that the behavior of the staggered flavor-
taste singlet meson correlators in every case follows that
expected in continuum QCD. In particular no divergence
results from the near-zero modes. In all cases we find
that the Yij take the same average value for i, j both
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FIG. 21: The eigenvector overlaps Xγµ

ij (T ) for µ = x between
near-zero modes 1 and 2 that contribute to the disconnected
piece of the flavor-singlet vector meson correlator at zero spa-
tial momentum. Results are given for the average over |Q| = 1
configurations in the fine ensemble, set 5.

in a given quartet. Thus the disconnected contribution
from a quartet of degenerate eigenvalues is 4 × 4 = 16
times that of a single mode. The off-diagonal overlaps
Xij are zero for i, j within a quartet in every case. This
means that the connected contributions give instead 4
times that of a single mode. Including the factors of
4 and 16 in Eq. (49) means that the correlator is ef-
fectively made of single-species contributions, as in con-
tinuum QCD, and, in particular, the contribution from
near-zero modes cancels as it does there.

The pseudoscalar and scalar cases are particularly sim-
ple to analyse, both for zero and nonzero modes, and
to see the clear correspondence with continuum behav-
ior. The eigenvector overlaps for the taste-singlet pseu-
doscalar between mirror quartets are a striking demon-
stration of how staggered fermions conspire to the give
the “right” answer, but sometimes in a rather non-trivial
way. The match demonstrated between the taste-singlet
and the Goldstone pseudoscalar also leads to a practical
suggestion that may improve the determination of the
η′ mass using staggered fermions. The calculation of the
taste-singlet connected and disconnected contributions is
particularly statistically noisy because of the point-split
nature of the taste-singlet operator. It may be preferable,
although numerically challenging, to determine instead
the near-zero mode eigenvectors and then subtract their
contribution from the Goldstone pseudoscalar correlator.
This must agree with the η′ correlator in the continuum
limit and yet is constructed of local operators and so has
significantly less gauge noise.
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V. CONCLUSIONS

This paper adds weight to the growing evidence that
shows that staggered fermions behave in the correct way
to reproduce QCD in the continuum limit, even with the
rooted determinant. Here we have focused on the eigen-
vectors of the staggered-fermion Dirac operator and the
way in which the ’t Hooft vertex and flavor-singlet meson
correlators are built from the overlaps between different
eigenvectors, using the appropriate taste singlets. The
important overlaps are those between eigenvectors within
a near-zero quartet since these could have generated dan-
gerous singular terms as m → 0. From our theoretical
results we determine a condition for the eigenvector over-
laps that needs to hold and then test this numerically
and demonstrate that it does. Indeed we see that the
near-zero mode quartet in all cases behaves functionally
in such a way to reproduce the required behavior of 4
copies of a single mode that mimics the expected behav-
ior in the continuum.

Most of our results are not surprising, but in provid-
ing a clear link between the theoretical requirements and
the numerical results for the eigenvector overlaps, we add
further confidence to the soundness of the framework for

the accurate phenomenology that is being done with stag-
gered fermions. We demonstrate most directly that a cal-
culation of flavor-singlet meson masses, notably that of
the η′ meson, should give the correct QCD result. This
is not a substitute for doing the full calculation and this
is underway [31].
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Appendix A: Detailed Formulas

For Sec. IV C it is convenient to spread staggered-fermion bilinears over a hypercube, inserting the lattice gauge
field to preserve gauge invariance. An explicit construction is

SI(x) =
1

16

∑
b

χ̄(x+ b)χ(x+ b), (A1)

V µI (x) =
i

16

∑
b

ηµ(x+ b) χ̄(x+ b̄(µ))U(x+ b̄(µ), x+ b)χ(x+ b), (A2)

TµνI (x) = − 1

16

∑
b

ηµ(x+ b̄(µν))ην(x+ b) χ̄(x+ b̄(µν))Ū(x+ b̄(µν), x+ b)χ(x+ b), ν 6= µ, (A3)

AµI (x) =
i

16

∑
b

ηµ(x+ d− b̄(µ)) η1(x+ b)η2(x+ b)η3(x+ b)η4(x+ b)×

χ̄(x+ d− b̄(µ))Ū(x+ d− b̄(µ), x+ b)χ(x+ b), (A4)

PI(x) =
1

16

∑
b

η1(x+ b)η2(x+ b)η3(x+ b)η4(x+ b) χ̄(x+ d− b)Ū(x+ d− b, x+ b)χ(x+ b), (A5)

where b runs over the 24-site hypercube with origin x;

b̄
(µ)
µ = a−bµ but b̄

(µ)
ρ = bρ, ρ 6= µ; b̄

(µν)
λ = a−bλ, λ = µ, ν,

but b̄
(µν)
ρ = bρ, ρ 6= µ, ν; and d = (1̂ + 2̂ + 3̂ + 4̂)a. Gauge

invariance is ensured via averages of parallel transport

over paths from x to x′, Ū(x, x′).1 Under shift symmetry
these are all taste singlets. The vector current and scalar
density satisfy the Ward identity corresponding to quark-
number conservation for all a, and the axial-vector and
pseudoscalar density satisfy the anomalous Ward identity

1 There is no bar on U(x + b̄(µ), x + b) because only the one-link
path enters.
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as a → 0. In practice, we use in place of U the HISQ-
smeared gauge field W , defined in Eq. (B5) below.

For brevity and clarity, it is then helpful to write

SI(x) = χ̄1Iχ, (A6)

V µI (x) = iχ̄γµI χ, (A7)

TµνI (x) = χ̄iσµνI χ, (A8)

AµI (x) = iχ̄γµ5
I χ, (A9)

PI(x) = χ̄γ5
Iχ, (A10)

which with Eqs. (A1)–(A5) define 1I , γ
µ
I , iσµνI , γµ5

I , and
γ5
I , when acting on χ, χ̄, and the eigenvectors of Dstag

for the analysis of ζΓ
ij in Sec. IV C.

When contructing the correlators for the η′ and other
flavor-taste singlet correlators, it is more customary to
restrict the operators to one timeslice. In Sec. IV D 1,
therefore, we average over spatial cubes only [and then
timeslices, cf. Eqs. (46)]. V 4

I and AI remain as in
Eqs. (A2) and (A4), because they naturally extend over a
timelike link or 3-dimensional cube. For PI , the operator
is defined as attached to point on a timeslice by averaging
over all hypercubes that have a corner at that point, i.e.
extending both forwards and backwards in time. Then
averaging over a timeslice is straightforward.

Appendix B: Improved Staggered Actions

To introduce improved staggered-fermion actions, it
is convenient to proceed in steps, introducing notation
along the way. The first step is “Fat7” smearing [68],

FµUµ =

sym∏
ρ 6=µ

[
1 + 1

4 (Tρ + T−ρ − 2)
]
Uµ, (B1)

which yields paths of length 3, 5, and 7. Here
T±ρUµ(x) = U±ρ(x)Uµ(x ± ρ̂a)U∓ρ(x ± ρ̂a), U−ρ(x) =
U†ρ(x − ρ̂a). It is easy to check that the smearing intro-
duces a form factor that reduces the coupling to taste-
changing gluons [65].

As is often the case with smearing algorithms, Fat7
smearing introduces additional discretization errors.
These can be removed by introducing an order-a2 im-
provement [69]

Vµ =
(
Fµ − 1

4Lµ
)
Uµ, (B2)

where

LµUµ =
∑
ρ 6=µ

(Tρ − T−ρ)2Uµ, (B3)

introduces the 5-link Lepage term. The discretization
error of the simple difference operator in Eq. (3) can be
removed with the 3-link Naik term [66],

SNaik = − 1
12a

3
∑
x,µ

ηµ(x)χ̄(x) (Tµ − T−µ)
3
χ(x), (B4)

where now T±µχ(x) = U±µ(x)χ(x± µ̂a).
For the HISQ action, Fat7 smearing is applied twice,

with the Lepage correction taken at the second step

Wµ =
(
Fµ − 1

2Lµ
)
UFµUµ, (B5)

where U denotes a reunitarization and projection to
SU(3). (The SU(3) projection makes little difference in
practice.) The HISQ action is then

SHISQ = Sstag(Wµ) + SNaik(UFµUµ), (B6)

substituting for the original gauge field Uµ as shown.
For completeness we write the Fat7×Asqtad [30] and

Asqtad [69] actions in this notation:

SFat7×Asqtad = Sstag(W̌µ) + SNaik(UFµUµ), (B7)

W̌µ =
(
Fµ − 1

4Lµ
)
UFµUµ, (B8)

SAsqtad = Sstag(Vµ) + SNaik(Uµ), (B9)

Unfortunately, Ref. [27] referred to Fat7×Asqtad as
“HISQ”. The Asqtad action defines the rooted determi-
nant in the MILC ensembles [11, 26], which have been
used by the zero-temperature results cited in the intro-
duction. For this action there is an additional tadpole-
improvement step in which one replaces T±ρχ and T±ρUµ
by u−1

0 T±ρχ and u−2
0 T±ρUµ, respectively, where u0 is a

measure of the mean link. In MILC’s simulations of the
Asqtad action [11], u0 is set by the fourth root of the
1 × 1 Wilson loop (the plaquette). (The reunitarization
in HISQ makes tadpole improvement unnecessary.)

Appendix C: Further remarks on Refs. [34, 35]

Creutz [34, 35] makes several remarks that sound sim-
ple, and thus seem to be accepted by nonexperts, but
they do not withstand careful scrutiny. One, explained
elsewhere [19], is that the different tastes have differ-
ent chirality. As discussed above, all near-zero modes
within a common quartet possess (identically for mir-
rors; empirically otherwise) the same taste-singlet chi-
rality, Eqs. (25) or (26). The nonzero modes all have
(nearly) zero taste-singlet chirality. Finally, all modes
have no net Goldstone chirality,

∑
x fs(x)γ5

P fs(x) =∑
x ε(x)fs(x)fs(x) =

∑
x f−s(x)fs(x) = 0.

Another incorrect statement [35] concerns the θ angle
of the strong CP problem, which can appear via a mod-
ified mass term

mψ̄ψ 7→ m cos(θ) ψ̄ψ + im sin(θ) ψ̄γ5ψ. (C1)

Creutz states correctly that θ obtains a physical meaning
via the anomaly and, hence, the ultraviolet regulator. He
also states, incorrectly, that staggered fermions cannot
possess this property, owing to the exact Uε symmetry.

With this symmetry, the following two mass terms are,
of course, equivalent:

mχ̄χ(x)↔ m cos(ϕ) χ̄χ(x)+im sin(ϕ) ε(x)χ̄χ(x). (C2)
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In the continuum limit, however, this corresponds to

m q̄q(x)↔ m cos(ϕ) q̄q(x) + im sin(ϕ) q̄γ5ξ5q(x), (C3)

namely is a taste nonsinglet. It is precisely the kind
of transformation used to set up twisted-mass Wilson
fermions [72].

The correct analog of Eq. (C1) is

mχ̄χ(x) 7→ mχ̄
[
cos(θ) + i sin(θ)γ5

I

]
χ(x). (C4)

The taste singlet γ5
I extends across a hypercube and de-

pends on the lattice gauge field. It thus relies on the
regulator for its definition, as it must. To simulate the
θ vacuum via the fermion mass, one needs to implement
Eq. (C4), not Eq. (C2) [25, 58].
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[67] J. F. Lagaë and D. K. Sinclair, Phys. Rev. D59, 014511

(1999), arXiv:hep-lat/9806014.
[68] MILC, K. Orginos, D. Toussaint, and R. L. Sugar, Phys.

Rev. D60, 054503 (1999), arXiv:hep-lat/9903032.
[69] G. P. Lepage, Phys. Rev. D59, 074502 (1999), arXiv:hep-

lat/9809157.
[70] HPQCD, E. Follana, C. T. H. Davies, G. P. Lepage, and

J. Shigemitsu, Phys. Rev. Lett. 100, 062002 (2008),
arXiv:0706.1726.

[71] MILC, A. Bazavov et al., Phys. Rev. D82, 074501 (2010),
arXiv:1004.0342.

[72] R. Frezzotti, Nucl. Phys. Proc. Suppl. 140, 134 (2005),
arXiv:hep-lat/0409138.


	Introduction
	Staggered fermions
	Near-zero modes and the 't Hooft vertex
	Continuum QCD
	Unrooted staggered fermions
	Rooted staggered sea

	Numerical Results
	Methods
	Eigenvalues and chirality with HISQ
	Results for ij
	Flavor-singlet meson correlators
	Flavor-singlet pseudoscalar mesons
	Flavor-singlet scalar mesons
	Flavor-singlet vector, axial vector and tensor mesons
	Summary


	Conclusions
	Acknowledgments
	Detailed Formulas
	Improved Staggered Actions
	Further remarks on Refs. Creutz:2007rk,Creutz:2008nk
	References



