
Lattice Simulations and Infrared Conformality

T. Appelquist,1 G. T. Fleming,1 M. F. Lin,1 E. T. Neil,2 and D. A. Schaich3

1Department of Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06520, USA
2Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

3Department of Physics, Boston University, Boston, Massachusetts 02215, USA

We examine several recent lattice-simulation data sets, asking whether they are consistent with
infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac
fermions in the fundamental representation, recent simulation data can be described assuming in-
frared conformality. Lattice simulations include a fermion mass m which is then extrapolated to
zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrap-
olation. We also note that the conformal hypothesis does not work well for two theories that are
known or expected to be confining and chirally broken, and that it does work well for another theory
expected to be infrared conformal.
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I. INTRODUCTION

During the past few years, lattice simulations have
been employed to study the infrared behavior of a va-
riety of gauge theories that could be relevant to physics
beyond the standard model. Since much of the numeri-
cal code was originally developed for QCD, many of the
simulations have focused on an SU(3) gauge theory with
varying numbers of massless fermions.

The lattice simulations of Refs. [1, 2] considered both
8 and 12 massless fermions in the fundamental repre-
sentation, concluding that the former is a confining and
chirally broken theory like QCD, and indicating that the
latter is conformal in the infrared, dominated by a fixed
point. Since then, various authors have examined the 12-
fermion theory, some agreeing that it is indeed infrared
conformal [3–5], but others arguing that it is confining
and chirally broken [6, 7]. The SU(3) theory with 10
massless Dirac fermions in the fundamental representa-
tion has also been studied, with the conclusion that it is
infrared-conformal [8].

The recent study of the 12-fermion SU(3) theory by
Fodor et al [6] is particularly interesting because the
simulation-data set covers a wide range of fermion mass
values, and finite-volume effects are relatively small.
Their analysis leads them to the conclusion that their
simulation data for masses, the pseudoscalar decay con-
stant and the chiral condensate are more compatible with
confinement and chiral symmetry breaking.

In this note, we examine the simulation data of Ref.
[6] noting that it can also be described assuming that
the theory is conformal in the infrared. Lattice data for
several other theories are also considered. Since lattice
simulations are carried out by including a fermion mass
m which is then extrapolated to zero, a question for any
fit is whether the lattice data can be interpreted in terms
of a small m expansion, allowing for a controlled extrap-
olation to zero. We argue that this is the case with the
conformal hypothesis.

As a check on this conclusion, we attempt a similar fit

to an SU(3) theory with 2 fermions in the fundamental
representation, which is known to be in the broken phase,
and an SU(3) theory with 6 fermions in the fundamental
representation, which is strongly believed to be in the
broken phase. In each case the quality of the fit is poor.
We also examine the lattice data of Bursa et al [9] for
an SU(2) gauge theory with 2 fermions in the adjoint
representation, which is believed to be conformal in the
infrared [10–13]. Like the SU(3) theory with 12 fermions,
the data can be well fit by the conformal hypothesis, with
a controlled extrapolation to m = 0.

II. THE CONFORMAL FRAMEWORK

We first describe the scaling behavior we use to fit
the lattice data of Ref. [6]. The discussion is similar
to that in Refs. [14, 15], except that we also include
non-leading terms in the scaling behavior. We assume
that the infrared fixed point g? approximately governs
the behavior of the theory below some scale Λ, which, in
a lattice setting, we take to be the inverse lattice spacing.

An explicit fermion mass, m(Λ) ≡ m is introduced,
with m� Λ. At scales below Λ, the running mass takes
the form

m(µ) = m (Λ/µ)γ
?

, (1)

where γ? > 0 is the mass anomalous dimension evaluated
at the fixed point g?. At some scale M � Λ, the running
mass satisfies

m(M) = M. (2)

At scales below M , the fermions decouple, and the run-
ning coupling flows away from the fixed point, triggering
confinement. If the would-be fixed-point coupling g? is
reasonably strong, the induced confinement scale is of
order M . We assume this to be the case.

The mass of each physical state X is then set by
the scale M . That is, using Eqs. 1 and 2, MX '
CX m[1/(1+γ?)] [16], where the masses are expressed in
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units of Λ, and CX is a dimensionless coefficient not far
above unity. In addition, there are correction terms, the
largest of which in a small-m expansion is of order m.
Keeping only these two terms, we have

MX = CX m[1/(1+γ?)] +DX m. (3)

Since the explicit breaking of chiral symmetry is of order
M at the induced confinement scale M , there is no ap-
proximate chiral symmetry to be broken spontaneously.
Thus this scaling law applies as well to the pseudoscalar
state. The exponent [1/(1 + γ?)] is universal.

Fodor et al [6] also compute the pseudoscalar decay
constant F and the chiral condensate 〈ψ̄ψ〉 as a function
of m. Although F plays no special role in the absence of
spontaneous chiral symmetry breaking, we include it in
our fit, using an expression similar to that for the masses:

F = CFm
[1/(1+γ?)] +DFm. (4)

The chiral condensate, defined at the cutoff scale Λ,
also vanishes as m → 0. The leading, small-m term is
purely ultraviolet. This is the “contact term”, propor-
tional to mΛ2, independent of the form of the RG run-
ning of the coupling and m(µ). The second, coming from
the RG running of 〈ψ̄ψ〉 from M to Λ, is proportional to
M (3−γ?)Λγ

?

. Using Eqs. 1 and 2 to express M in terms
of m and Λ, we have

〈ψ̄ψ〉 = ACm+BCm
[(3−γ?)/(1+γ?)] + ....., (5)

where now, as in Eqs. 3 and 4, all dimensionful quantities
are expressed in terms of Λ, the inverse lattice spacing.
The coefficients are dimensionless, and m is the lattice
mass.

In addition to these terms, we expect a contribution of
order M3, analogous to the leading-order terms in MX

and F , arising from the induced confinement scale M .
And as with MX and F , there are further corrections,
one of which is of order m3. We therefore take

〈ψ̄ψ〉 = ACm+BCm
[(3−γ?)/(1+γ?)]

+CCm
[3/(1+γ?)] +DCm

3. (6)

It will turn out that 0 < γ? < 1, so that these four terms
also provide the basis for a small-m expansion.

III. FITTING THE LATTICE DATA
NEGLECTING THE D TERMS

We fit the lattice data of Ref. [6] for the masses of
the scalar, pseudoscalar, vector, axial vector, nucleon,
and parity partner of the nucleon, for the pseudoscalar
decay constant, and for the condensate, first setting the
D-term coefficients DX , DF , and DC to zero. We then
ask whether the inclusion of the D terms improves the
quality of the fit.

The simulations of Ref. [6] were performed using a
tree-level, Symanzik-improved gauge action, with lattice
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FIG. 1: Log-log plot showing masses of the pseudoscalar (P),
vector (V), and nucleon (N) states, the pseudoscalar decay
constant (F), and the condensate (C) as a function of m,
as reported in Ref. [6], along with our conformal fit to these
quantities, with the D terms set to zero. The universal slope of
the P, V, N, and F curves provides a good fit to the simulation
data.

gauge coupling β ≡ 6/g2 = 2.2. We assume here that this
lattice coupling is consistent with the theory being ap-
proximately described by the infrared-fixed-point value of
the running coupling throughout the range M < µ < Λ.

The simulations were done for fermion masses m =
0.035, 0.0325, 0.030, 0.0275, 0.025, 0.020, 0.015, 0.010
(in lattice units), with lattice volume 243 × 48 for the
heaviest 4 masses, with volume 323 × 64 for m = 0.025,
with volume 403 × 80 for m = 0.020, and with three
volumes ranging up to 483× 96 for m = 0.015 and 0.010.
In the fit reported here, we use the data at the largest
volume available at each m value [6].

Neglecting the D terms in Eqs. 3, 4 and 6 provides
a good-quality fit, determining the anomalous dimension
γ?. In Fig. 1, we show the simulation data for the pseu-
doscalar (P), vector (V), and nucleon (N) masses, for the
pseudoscalar decay condensate (F), and for the conden-
sate (C) as a function of fermion mass m, along with our
conformal fit to these quantities. The common log-log
slope for P, V, N, and F, enforced by the universal scal-
ing exponent 1/(1 + γ?), fits the data points well. The
slope of the condensate curve is determined dominantly
by the leading, linear term of Eq. 6.

To strengthen the case for the conformal fit, we re-
port in Table I the results of a fit to all the masses, the
pseudoscalar decay constant, and the chiral condensate,
with the left-hand column corresponding to setting the
D terms to zero. For this fit, the anomalous dimension is

γ? ≈ 0.386± 0.010 , (7)

and χ2/N = 2.508, with N = 53 degrees of freedom. The
(statistical) errors and χ2’s quoted here and elsewhere do
not take into account correlations of the numerical data,
which would require access to the full simulation data
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Obs. DX = 0 DF 6= 0

γ? 0.3858(98) 0.408(11)

CP 4.445(83) 4.267(85)

CS 5.99(14) 5.75(14)

CV 5.26(10) 5.05(10)

CA 6.68(15) 6.41(15)

CN 8.04(17) 7.70(17)

CN? 8.06(17) 7.73(17)

CF 0.692(13) 0.455(39)

DF — 0.61(10)

AC 13.898(28) 13.926(31)

BC -50.8(5.5) -42.2(4.8)

CC 94(11) 79.0(9.5)

χ2/dof 133/53 100/52

TABLE I: For the SU(3) theory with 12 fermions in the fun-
damental representation, best-fit results to the data of Ref.
[6], for our global conformal fit as described in the text. In
the left-hand column, all the D terms are set to zero. In the
right-hand column, DF (Eq. 4) is included. The letters S,
P , V , A, N , and N? correspond respectively to the scalar,
the pseudoscalar, the vector, the axial vector, the nucleon,
and the parity partner of the nucleon. F refers to the pseu-
doscalar decay constant and C to the condensate. For each
quantity, there are 8 data points, one for each m value.

set, and may be underestimated.

With this value of γ?, the product ML lies between
1.73 and 2.23 in the range 0.01 ≤ m ≤ 0.035 (using the
largest L value at each m). If, as we assume here, M is
the induced confinement scale, then ML is a measure of
the size of finite-volume effects. More specifically, finite-
volume effects should be relatively small if the mass spec-
trum is such that MXL ∝ ML � 1. The values of CX
in Table I indicate that this is the case, but this question
demands a more careful study in the future.

To explore further the quality of this fit, we also per-
form a separate fit to each mass, as well as to F and the
condensate. We fix a value of γ? in the range 0 < γ? < 1,
and plot the χ2 for each fit as a function of γ? in this
range. The result is shown in Fig. 2, along with the sum
of the individual χ2’s. The internal consistency is evi-
dent, with the minimum χ2 for each mass occuring at
a similar value of γ?, and the minimum for the pseu-
doscalar decay constant at a value only slightly smaller.
The condensate makes only a small contribution to the
overall χ2. The minimum of the black curve corresponds
to the total χ2 of the first column of Table I.

For the condensate, the constants AC , BC and CC are
such that the LO (AC) term strongly dominates through-
out the mass range. The NLO (BC) term, also arising
at scales of order Λ, and the NNLO (CC) term, arising
at scales of order M , are of opposite sign, with the NLO
term dominating the NNLO term except for the largest,
m = 0.035 point. This provides evidence that the ex-
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FIG. 2: For the SU(3) theory with 12 fermions in the fun-
damental representation, individual contributions to total χ2

from each channel, for a range of fixed values 0 < γ? < 1.
Here, all D terms are set to zero. Fits are to the Nf = 12
data of Ref. [6]. Parity-odd states (P,A,N?) are shown as
dashed curves in the same color as their parity partners. The
black curve is the total χ2.

isting fermion mass range includes masses small enough
such that Eq. 6 constitutes a convergent small-m expan-
sion, allowing a controlled extrapolation to m = 0. We
also note that the allowed values of BC and CC in Table I
are strongly and negatively correlated.

That the fit leads to an NLO coefficient BC of opposite
sign to the LO term is perhaps surprising, but we know of
no reason why this correction cannot be of opposite sign.
It is also possible that this is a consequence of the lim-
ited amount of simulation data for the condensate, which
is strongly dominated by the LO, linear term. Further-
more, since the condensate is so sensitive to physics at
the scale Λ, our assumption that the coupling can be
approximated by its infrared fixed-point value out to Λ,
which determines the form of the BC term, should break
down first here.

Finally, it is interesting to note that for the masses, the
CX coefficients of Table I are such that for small m, none
of the states can decay into a combination of the others.
Recalling that there is induced confinement in this theory
at scale M ∝ m[1/(1+γ?)], decay into the fundamental
fermion and gauge-boson constituents is forbidden. Since
there is no reason for other states such as the 0++ to be
lighter, it appears that each of these states is stable for
arbitrarily small m, but with an induced confinement
radius diverging as m→ 0.

IV. INCLUSION OF HIGHER-ORDER TERMS

We next comment on the role of the D terms in Eqs.
3, 4 and 6, inserting one D term at a time and repeating
the above global fit. For the data set of Ref. [6], the
inclusion of the D term in any one of the masses does not
improve the quality of the fit. The value of each DX is
consistent with 0, with errors such that the DX (NLO)
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term is small compared to the CX (LO) term for the full
range of m values. The inclusion of the DC (NNNLO)
term in the condensate also does not improve the quality
of the fit, with DC consistent with 0 and the errors such
that this term is relatively small throughout the range of
m values.

The inclusion of the DF (NLO) term in the pseu-
doscalar decay constant does improve the global fit,
shown in the second column of Table I, giving χ2/N =
1.92 with N = 52. We find DF = 0.61 ± 0.10, showing
that the NLO term is small compared to the LO term
for the full range of m values. Addition of the DF term
also modifies the F curve of Fig. 2, flattening it out and
shifting the minimum to larger γ?. These limits on the
DX , DC , and DF coefficients again indicate that Eq’s 3,
4, and 6 describe a small-m expansion for the existing
range of m values.

If a global fit including all the D terms is attempted
for the data set of Ref. [6], the χ2 dependence on γ?

becomes very flat, slightly favoring larger values in the
range 0 < γ? < 1, and leading to poor determinations of
the D coefficients, with errors comparable in magnitude
to the central values. We conclude that the current data
set is not extensive enough to perform a global fit with
all the parameters of Eqs. 3, 4 and 6. The availability of
additional simulation data for larger m values would be
especially helpful in allowing a global fit that constrains
the D terms.

V. TESTING INFRARED CONFORMALITY ON
OTHER GAUGE THEORIES

As a check on our conclusion that the simulation data
of Ref. [6] are consistent with infrared conformality, we
have tested our conformal fit on two theories for which
it should not work well and one for which it should. The
former are an SU(3) gauge theory with 2 fermions in the
fundamental representation, known to be in the broken
phase, and an SU(3) gauge theory with 6 fermions in
the fundamental representation, strongly believed to be
in the broken phase. Here we fit the simulation data
of Refs. [17, 18]. In each case the quality of the fit is
indeed poor, as shown in Fig. 3, plotting the χ2 for each
individual fit, as well as the overall χ2, as function of γ?.
No clear minimum in χ2 appears for any channel except
the Nf = 6 pseudoscalar mass, where it is at γ? close to
1. For Nf = 2, a minimum appears at γ? ≈ 1. With

chiral symmetry breaking, MP ∼ m1/2 in lowest order
chiral perturbation theory, corresponding effectively to
γ? = 1.

It is worth noting that for the SU(3) gauge theory with
2 or 6 fermions in the fundamental representation, the
poorness of the conformal fit should not be due to finite-
volume effects. Within the conformal hypothesis, as we
noted in the case of the 12-fermion theory, a measure of
finite-volume effects is given by ML = m1/(1+γ?)L. Here,
the value of γ? emerging from the poor fit is of order
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FIG. 3: For the SU(3) theory with 2 and 6 fermions in the
fundamental representation, individual contributions to total
χ2 from each channel, for a range of fixed values 0 < γ? <
1. Total number of degrees of freedom is 27 in both cases.
All D terms are set to zero. The top (bottom) panel shows
results from fitting to Nf = 2 (Nf = 6) data, obtained from
the simulations detailed in [17, 18]. Parity-odd states (P,A)
are shown as dashed curves in the same color as their parity
partners.

unity, and L = 32, so ML > 2.3 for the entire range of
m values. Each of the associated masses is larger than
M , so finite-volume effects should be relatively small.

We also note that for the SU(3) gauge theory with
2 fermions in the fundamental representation, a fit us-
ing chiral perturbation theory for a confining and chiral-
breaking theory does work well [19]. For the SU(3) gauge
theory with 6 fermions in the fundamental representa-
tion, a smaller set of fermion masses will be required to
apply chiral perturbation theory [19]. But there is strong
evidence from lattice simulations of the running coupling
that this theory is in the broken phase [1, 2].

A theory for which a conformal fit should work well
is an SU(2) gauge theory with 2 fermions in the adjoint
representation, widely believed to be conformal in the in-
frared [10–13]. We have fit the simulation data of Bursa
et al [9] for the pseudoscalar and vector masses and pseu-
doscalar decay constant, assuming as before that M is
the induced confinement scale up to a coefficient of order
unity. The data are used only in the range m < 0.2, in
order to ensure that our formulas based on a small-m ex-
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FIG. 4: For the SU(2) theory with two fermions in the adjoint
representation, individual contributions to total χ2 from each
channel, for a range of fixed values 0 < γ? < 1. Total number
of degrees of freedom is 14. All D terms are fixed to zero.
Fits are to the SU(2) two-flavor adjoint data of Bursa et al
[9], with the restriction m < 0.2.

pansion can be applied. Fig. 4 shows χ2 versus γ? for each
channel, as well as the overall χ2, based on conformal fits
as in Eqs. 3 and 4. We find a clear minimum in χ2 at the
best-fit value of γ? = 0.17 ± 0.05, where again our error
estimate does not include the full data covariance matrix
and may be underestimated. This value is roughly con-
sistent with previous determinations of γ? [10, 13]. The
relatively large contribution of the decay constant to the
overall χ2 may be due to underestimation of statistical
errors, as the data as shown in Ref. [9] are difficult to
describe with any smooth function of m.

VI. CONCLUDING COMMENTS

We have argued that the simulation data of Ref. [6]
are consistent with the hypothesis that an SU(3) gauge
theory with 12 massless fermions in the fundamental rep-
resentation is conformal in the infrared. This conclusion
is based on a simple fit to the data, in particular assum-
ing that the gauge coupling can be approximated by its
infrared-fixed-point value g? out to the UV cutoff Λ (the
inverse lattice spacing). The mass anomalous dimension
γ is then set to its fixed-point value γ?. Remarkably, this
fit is of good quality, describing a controlled small-m ex-
pansion covering the range of fermion masses used in the
simulations, and leading to a mass anomalous dimension
in the range 0 < γ? < 1.

Although not described in detail here, we have also
used the infrared-conformal hypothesis to fit the simula-
tion data of Ref. [6] for the static quark potential. Since
confinement is induced at scale M , an effective string

tension σ ∝ M2 ∝ m[2/(1+γ?)] can be determined from
the data assuming that string breaking has not yet set in.
The fit works well, with a value of γ? in good agreement
with the other fits and an acceptable χ2.

We stress that we have not argued conclusively that the
simulation data of Ref. [6] demonstrates that the SU(3)
theory with 12 massless fermions is infrared conformal.
The simulation data can be described with similar fit
quality by the chirally broken functional forms used in
[6], with a slope and intercept. But the large value of the
slope term compared to the intercept, for the existing
range of m values, does not provide the basis for a small-
m expansion in the spirit of chiral perturbation theory
with a controlled extrapolation to m = 0. Further simu-
lations at additional m values will help to distinguish the
two scenarios.

As a check on the validity of our infrared-conformal
fit to the SU(3) theory with 12 fermions, we have ob-
served that it does not work well for an SU(3) gauge
theory with 2 fermions in the fundamental representa-
tion, which is known to be in the broken phase, or an
SU(3) gauge theory with 6 fermions in the fundamental
representation, which is strongly believed to be in the
broken phase. On the other hand, it does work well for
an SU(2) gauge theory with 2 fermions in the adjoint
representation, believed to be in the infrared-conformal
phase. We have fit the pseudoscalar and vector masses
and decay constants, with a γ? consistent with other ref-
erences. Here, too, we have fit the string tension induced
at finite m with an anomalous dimension in agreement
with the other fits.

It will next be important to address several of the sim-
plifying assumptions made in these fits. Finite-volume
effects should be examined, as well as corrections due to
the running of the coupling and mass anomalous dimen-
sion at higher mass scales. Also, a possible hierarchy
between M and the induced confinement scale should be
considered.
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