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Abstract

We present one additional study of multi-muon events produced at the Fermilab Tevatron collider

and recorded by the CDF II detector. We use a data set acquired with a dedicated dimuon trigger

and corresponding to an integrated luminosity of 3.9 fb−1. We investigate the distribution of the

azimuthal angle between the two trigger muons in events containing at least four additional muon

candidates to test the compatibility of these events with originating from known QCD processes.

We find that this distribution is markedly different from what is expected from such QCD processes

and this observation strongly disfavours the possibility that multi-muon events result from an

underestimate of the rate of misidentified muons in ordinary QCD events.

PACS numbers: 13.85.-t, 14.65.Fy, 13.20.Fc
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This Letter reports on one additional test on the possible origin of multi-muon events

observed at the Tevatron. These events were identified in a previous study [1] of a data

set acquired with two central (|η| < 0.7) primary (or trigger) muons, each with transverse

momentum pT ≥ 3 GeV/c, and with invariant mass larger than 5 GeV/c2 and smaller than

80 GeV/c2. That study shows that many long-standing inconsistencies between measured

and predicted properties of the correlated bb̄ production and semileptonic decay at hadron

colliders [2–5] could be explained by the presence of a relevant source of muons which

appear to be mostly produced beyond the beam pipe of radius 1.5 cm (this contribution is

whimsically referred to as ghost events because they were unnoticed or ignored by previous

measurements). Within the large uncertainty of the prediction, mostly based on simulations,

the observed rate of ghost events is found to be consistent with being produced by muons

arising from in-flight-decays of pions and kaons, or punchthrough of hadronic prongs from

K0
S or hyperon decays. However, a search in ghost events for additional muons with pT ≥

2 GeV/c and |η| ≤ 1.1 and contained in a cos θ ≥ 0.8 cone around the direction of a

primary muon selects a small but significant fraction of events with a large content of muon

candidates that appears difficult to account for in terms of known sources with the present

understanding of the CDF II detector, trigger, and event reconstruction.

A more recent study by the CDF collaboration [6] has improved the estimate of the

contribution of ordinary sources to ghost events. This study addresses in particular the

contribution from pion and kaon in-flight-decays. In 1426 pb−1 of data, there are 54437 ±

14171 ghost events and 12169± 1319 ghost events with three or more muons which cannot

yet be accounted for with ordinary sources.

In this Letter, we investigate the distribution of the azimuthal angle (δφ) between the two

primary muons in events in which both primary muons are accompanied by at least one (or

two) additional muon candidates in a cos θ ≥ 0.8 cone around their direction, and compare

it to those for all QCD sources known to produce dimuon events: bb̄, cc̄, and Υ production or

events in which one trigger muon is due to hadrons misidentified as muons (cosmic rays are

removed from the data sample and the contribution of secondary interactions in the detector

volume is negligible [1]). As discussed in Ref. [1], known QCD sources produce a handful of

events with four and none with six muon candidates. However, if the unaccounted multi-

muon events were generated by a gross underestimate of the number of additional muons

mimicked by hadrons in ordinary QCD events, the δφ distribution of primary muons in

7



multi-muon events would be similar to that of ordinary QCD events in which the large

contribution of next-to-leading order (NLO) terms due to initial and final state radiation

results in a broader δφ distribution than that predicted by the Born (LO) approximation.

In fact, the δφ distribution of pairs of b hadrons or jets is traditionally used to determine the

relative contribution of NLO to LO terms [7]. This type of comparison was also suggested by

Ref. [8], in which the excess of multi-muon events is modeled with the decay of two colorless

particles produced through the exchange of a heavy object. In such a hypothetical case,

their deviation from the back-to-back configuration in the azimuthal angle (δφ = π) is only

caused by initial state radiation of the incoming quarks and is expected to be small.

The study presented here uses a dimuon data set corresponding to an integrated lumi-

nosity of 3.9 fb−1 and selected with the same requirements used in Ref. [1]. High precision

charged particle tracking is provided by a large central drift chamber surrounding a trio of

silicon tracking devices composed of eight layers of silicon microstrip detectors ranging in

radius from 1.5 to 28 cm in the pseudorapidity region |η| < 1 [9]. The tracking detectors

are inside a 1.4 T solenoid which in turn is surrounded by electromagnetic and hadronic

calorimeters. Outside the calorimeters, drift chambers in the region |η| ≤ 1.1 provide muon

identification. We search events for additional muons using tracks with pT ≥ 2 GeV/c and

|η| ≤ 1.1. The rate of additional muons mimicked by hadronic punchthrough is estimated

with a probability per track derived by using kaons and pions from D∗± → π±D0 with

D0 → K+π− decays [1, 6, 10]. The difference between observed additional muons and

predicted misidentifications is referred to as real muons.

The δφ distribution for all 3.9 M events is shown in Fig. 1. Figure 2 compares to the

corresponding heavy flavor simulations the δφ distribution of trigger muons due to bb̄ and

cc̄ production. This figure is reproduced from Ref. [10] that has measured σb→µ,b̄→µ and

σc→µ,c̄→µ in a dimuon data set corresponding to a luminosity of 742 pb−1. In the bb̄ case, the

distribution has an average of 2.5 with a rms deviation of 0.8 rad. The long and important tail

extending to δφ = 0 is due to NLO terms and the non-perturbative fragmentation function

of b quarks. In cc̄ events, because of the smaller quark mass, NLO terms are approximately

a factor of three larger and the fragmentation function is much softer. Accordingly, the δφ

distribution has a smaller average (2.4 rad) and a larger rms deviation (0.9 rad).

The azimuthal-angle distribution for primary muons produced by Υ(1S) decays is ex-

pected to be similar to those for heavy flavors because the final state contains a bleaching

8
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FIG. 1: Distribution of the azimuthal angle δφ between the two trigger muons for all events.

gluon recoiling against the Υ meson. This distribution, shown in Fig. 3, is constructed using

muon pairs with invariant mass in the range 9.28−9.6 GeV/c2. As in Ref. [10], the combina-

torial background under the Υ(1S) signal is removed with a sideband subtraction technique.

A similar δφ distribution is also expected for those cases in which one muon is mimicked by

a track in the jet recoiling against a muon due to a heavy-quark semileptonic decay. Figure 3

shows the δφ distribution of primary muons when one of them is mimicked by pions pro-

duced by K0
S decays. As in Ref. [6], we select K0

S → π+π− with a π → µ misidentification

by combining primary muons with tracks of opposite charge and pT ≥ 0.5 GeV/c. We select

pairs consistent to those arising from a common three-dimensional vertex. We also take

advantage of the K0
S long lifetime to suppress the combinatorial background. We further

require that the distance between the K0
S vertex and the event primary vertex, corrected by

the K0
S Lorentz boost, corresponds to ct > 0.1 cm. We select K0

S candidates with invariant

mass in the range 0.47− 0.52 GeV/c2 (see Fig. 3 of Ref. [6]), and remove the combinatorial

background with a sideband subtraction technique.

In summary, the δφ distributions of primary muons produced by known QCD processes

peak at δφ ≃ π, and exhibit a significant tail extending to δφ = 0. Depending on the

production mechanism, the mean and rms deviation of these distributions are in the range

of 2.4− 2.5 rad and 0.7− 0.9 rad, respectively.
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FIG. 2: The distributions (•) of the azimuthal angle δφ between trigger muons due to (left) bb̄ and

(right) cc̄ production are compared to the corresponding heavy flavor simulations (◦). Distributions

are normalized to unit area.

The δφ distributions in the subset of events in which each trigger muon is accompanied by

at least one or at least two additional real muons are shown in Fig. 4. These δφ distributions,

with mean of 2.9 rad and rms deviation of 0.2 rad and without any tail below δφ = 2.5 rad,

are different from those of primary muons due to all known QCD sources.

In conclusion, as mentioned earlier, within our present understanding of the CDF-detector

response no known sources produce events in which each cos θ ≥ 0.8 angular cone around a

primary muon contain at least two additional real muons. Had the additional muons been

produced by a subtle failure of our method to evaluate the fake-muon contribution, the

resulting δφ distribution of primary muons would have been found consistent with those

typical of ordinary QCD processes.
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