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ABSTRACT

Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are
one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe
an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We
present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from
a parent sample of ∼ 350,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of
0.472+0.048

−0.039(Systematic)+0.081
−0.071(Statistical)SNu at a redshift of 〈z〉 = 0.1. This value is higher than

other values at low redshift at the 1σ, but is consistent at the 3σ level. The 52 supernova candidates
used in this study comprise the third largest sample of supernovae used in a type Ia rate determination
to date. In this paper we demonstrate the potential for the described approach for detecting supernovae
in future spectroscopic surveys.

1. INTRODUCTION

Over the last decade, the study of the properties of
type Ia supernovae (abbreviated SNe in captions and
equations) has become one of the fundamental tools
used in observational cosmology. With peak luminosities
on the order of MV ∼ −19.3, type Ia supernovae can
be observed out to redshifts of z > 1. This enables a
broad range of science: enrichment of the interstellar
medium (Sivanandam et al. 2009), characterization of
the expansion history of the Universe (Schmidt et al.
1998; Perlmutter et al. 1999), and understanding the
physics of how progenitors transition into supernovae
(Mannucci et al. 2006). This scientific potential has
led to the a number of surveys of supernovae in
the local and distant universe (Wood-Vasey et al.
2004; Pritchet & For The Snls Collaboration 2005;
Hamuy et al. 2006; Miknaitis et al. 2007; Frieman et al.
2008; Hicken et al. 2009).
The primary method for detecting and characteriz-

ing supernovae is through repeated imaging of the same
region of the sky spread over several months or years.
By difference imaging multiple epochs (Alard & Lupton
1998), host galaxies can be subtracted, revealing candi-
date supernovae that can then be classified by additional
imaging or spectroscopy. Madgwick et al. (2003) demon-
strated that supernovae can also be identified in an analo-
gous way from spectroscopic observations by subtracting
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the underlying host galaxy spectrum. In this case the
detection and classification of the supernova can be de-
rived from a single observation; with a direct measure of
the redshift, type and age of the supernova. While less
efficient than imaging techniques (as the observational
cost of obtaining the spectroscopic data is much larger)
this approach can be applied serendipitously to any spec-
troscopic survey to study, for example, supernovae rates
in the local and distant universe.
Madgwick et al. (2003) found a local supernovae rate

of RIa(z ≤ 0.25) = 0.4 ± h2SNu8, which is consistent
with existing measures but was based on only 19 super-
novae. In this paper we expand upon this work to under-
take a systematic study of type Ia supernovae as found in
the SDSS main galaxy sample. We consider the statisti-
cal and systematic uncertainties that arise when classify-
ing supernovae from the SDSS spectra, the efficiency of
the detection technique (as a function of redshift, galaxy
type and signal-to-noise ratio) and discuss ways to mini-
mize the impact of systematics due to misclassification of
narrow and broad emission-line galaxies. Applying these
techniques to the 362,431 spectra from the SDSS DR5
sample we characterize the supernova population and
supernova rates for redshifts z < 0.1. For calculations
dependent on cosmology, we use Ωm = 0.3, ΩΛ = 0.7,
and Ho = 70kms−1Mpc−1 throughout this paper.

2. SPECTROSCOPIC SAMPLES

Throughout this paper, we use galaxy samples based
on the DR5 (Adelman-McCarthy et al. 2007) release
of the SDSS. The SDSS spectra are observed through
3” diameter fibers using a multi-object spectrograph
with a spectral resolution of R ≃ 1800 and a wave-
length range of 3800 – 9200 Å. Galaxy spectroscopic
target selection (Strauss et al. 2002) is based on imag-
ing from the SDSS camera (Gunn et al. 1998) using the
2.5m telescope (Gunn et al. 2006) at Apache Point Ob-
servatory. A discussion of the photometric and spec-

8 SNu = 1/1010LB⊙/100yr is the definition for the B-band
weighted supernova rate used throughout this paper.
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troscopic pipelines and the spectrophotometric calibra-
tion can be found in Stoughton et al. (2002). The
SDSS photometric system is described in detail in
Fukugita et al. (1996), Hogg et al. (2001), Smith et al.
(2002), Ivezić et al. (2004), Tucker et al. (2006), and
Padmanabhan et al. (2008); the filter response curves are
given in Fukugita et al. (1996). The astrometric calibra-
tion is described in Pier et al. (2003).
For the purpose of this work, we assume that the

SDSS spectra have accurate relative spectrophotomet-
ric calibration. Discussion of the quality of the
SDSS spectrophotometric calibration can be found in
Adelman-McCarthy et al. (2007). For this paper, how-
ever, we note that the rms dispersion in the absolute
spectrophotometry for the SDSS is σ = 0.04 mag based
on the differences between photometric fiber magnitudes
and magnitudes synthesized from the SDSS spectroscopy
(9) and that, at worst, the spectra show a 5% varia-
tion in the relative spectrophotometric calibration at the
blue end of the spectrum. All spectra are shifted to the
restframe and corrected for Galactic extinction using the
dust maps of Schlegel et al. (1998) and applying the red-
dening spectrum from Cardelli et al. (1989) with near
ultraviolet updates by O’Donnell (1994). The spectra
are re-sampled to 3 Å linear bins to match the resolution
of the available supernova templates.
Two galaxy samples were constructed for use in this

paper (see Table 1 for a synopsis of these samples). We
applied the following criteria to the 1048960 spectra in
the DR5 database: a redshift limit of z < 0.2, a positive
redshift, and the requirement that type derived from the
spectrum was not “STAR”. The redshift limit for these
data was applied in order to exclude the high redshift lu-
minous red galaxy (LRG) population. We wish to avoid
segments of the sample dominated by LRGs as this pop-
ulation would have significantly different eigen spectra
compared to the low redshift galaxy sample.
Further we define a statistical sample for use in de-

termining the cosmic supernova rate using the selection
criteria used to create the Pitt-CMU Value Added Cata-
log (VAC; 10). In the SDSS, each observed spectrum has
a set of binary flags set either by the data acquisition
system or the reduction pipeline. The statistical sample
was assembled using the flags associated with the redshift
measurement of the object. These redshift flags being set
can indicate problems with the spectrum and are for this
reason eliminated from the sample. See Stoughton et al.
(2002) for complete descriptions of the flags. These cri-
teria are:

1. Spectroscopically classed as a galaxy (SPEC-
CLASS = 2)

2. The following redshift flags are set to zero:
Z WARNING LOC – Confidence is low,
Z WARNING NO SPEC – No spectrum,
Z WARNING NO BLUE – No blue side spectrum,
and Z WARNING NO RED – No red side spec-
trum

3. Redshift status flags not set to 0 or 1 (0 = not
measured, 1 = failed)

9 http://www.sdss.org/DR6/products/spectra/spectrophotometry.html
10 http://nvogre.astro.washington.edu/vac

4. Redshift confidence level greater than 70%

5. The spectrum is the highest S/N example of the
object

This statistical sample contains 362,431 unique objects.
We note that these criteria are less strict than those
employed in building the SDSS Main Galaxy sample
(Strauss et al. 2002) and provides more objects for analy-
sis. All derived attributes (e.g. apparent magnitudes, ab-
solute magnitudes, and signal to noise measurements) are
taken from the VAC. In the redshift range 0.01 < z < 0.2
the VAC is 4% larger than the Main sample using the
same criteria. Although the two samples are selected us-
ing different criteria, a contributing factor to the VAC
being larger is that the Main sample is magnitude lim-
ited to mfiberr < 19.0 where the VAC has no such limit.
We randomly select a subset of galaxies from the statis-

tical sample to determine the efficiency and systematics
of the supernova detection and classification method. No
attempt was made to avoid spectra with supernova con-
tribution already present. This should not, however, af-
fect efficiency or systematics estimates, since only 0.025%
of galaxies are expected to contain a supernova. The
model sample is constructed by randomly selecting two
thirds of the runs in the DR5 release which provides
enough galaxies to capture the statistical properties of
the statistical sample but saves compute and storage re-
sources. This model sample consists of 234638 galaxies.
For each galaxy in the model sample a type Ia super-

nova template is added to the galaxy spectrum (with
the supernova age chosen at random from an interval
of -20 to +50 days from peak brightness). The absolute
luminosity of the supernova is sampled from the distribu-
tion of B-band peak brightnesses given in Dahlen et al.
(2004). The luminosity is scaled to the observation time
using the parametrization of the lightcurve introduced
in Goldhaber et al. (2001). We assume a stretch factor
s = 1 for all synthetic supernovae. The spectra are then
shifted and dimmed based on the redshift of the host
galaxy. Host galaxy extinction and reddening is applied
by choosing a V-band absorption in magnitudes, AV ,
from an exponential distribution, P (AV ) = e(−AV /m),
with the scaling parameter, m = 0.33 ± 0.09, and using
an Cardelli et al. (1989) reddening curve with updates to
the near ultraviolet by O’Donnell (1994). Galactic red-
dening is applied using the Schlegel et al. (1998) Galactic
reddening maps again assuming a Cardelli et al. (1989)
with O’Donnell (1994) reddening curve. We do not at-
tempt to correlate supernova properties with host spec-
tral properties.

3. METHOD

As described in Madgwick et al. (2003), our goal is to
identify supernova within SDSS spectra. In this sec-
tion we describe our extension of the initial work of
Madgwick et al. (2003). We approach this problem by
requiring that our technique must satisfy the following
attributes:

1. Computational Efficiency: It must be computa-
tionally tractable to classify spectra in real time.

2. Efficient and Complete Detection: Detection must
produce few false positives and reject none of the

http://www.sdss.org/DR6/products/spectra/spectrophotometry.html
http://nvogre.astro.washington.edu/vac
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candidates with more than four matched spectral
features above the noise in the spectrum.

3. Quantifiable Selection Effects: No method will be
exact, but to be useful, the method must have un-
certainties which can be quantified.

Principal component analysis (PCA) of galaxy spec-
tra has shown that, in the visible regime, spec-
tral energy distributions are inherently low dimen-
sional (Connolly et al. 1995; Folkes et al. 1996; Yip et al.
2004a). The spectra can, therefore, be represented by
a small set of orthogonal components or eigen spectra.
Yip et al. (2004a) demonstrated that between eight and
eleven components are sufficient to describe fully the
spectral variation within galaxy spectra in the Sloan
Digital Sky Survey (SDSS;York et al. (2000)). This re-
sults in a reduction in the complexity or dimensional-
ity of the spectroscopic data by a factor of 400 and
means that it is computationally tractable to fit host
galaxy spectra jointly with any additional components
(e.g. template supernovae Ia spectra). Alternative ap-
proaches such as fitting a spectral synthesis model (e.g.
(Bruzual & Charlot 2003)) can be computationally ex-
pensive due to the breadth of the phase space that must
be searched.
Based on the PCA approach we express each spectrum

as a linear combination of eigen spectra, eij , scaled by an
expansion coefficient, ai, where j indexes the wavelength
bins. In this way the spectrum, fj is represented by,

f̂j =

n−1
∑

i=0

aieij (1)

where n is the number of spectral eigencomponents used.
If the number of spectral components is less than the
dimensionality of the data, the reconstructed spectrum
is said to be a “lossy” compression. However, as the PCA
is a variance weighted statistic, this truncated expansion
preferentially suppresses the noise within a spectrum.
We use the first eight (n = 8) eigen spectra from

Yip et al. (2004a) to fit the galaxy contribution. Fig-
ure 1 shows the first six galaxy eigen spectra and the
two QSO eigen spectra used in the fitting. At this level
of truncation the contribution from higher order eigen
spectra is typically less than 1% of the total flux.
From this expansion we calculate the error weighted

log likelihood (log(L)) value for each spectrum.

log(L) =

m
∑

j=0

(fj − f̂j)/σ
2
j (2)

where fj and f̂j are the spectrum flux and reconstructed
flux, respectively, and σj is the rms error as a function
of wavelength.
To determine the best fit supernova spectrum, we refit

each SED using the same eigen spectra together with a
series of supernovae templates taken from Nugent et al.
(1997). These 91 supernova templates range in age, de-
fined as the rest frame time from peak brightness, from
-20 days to +70 days. Example supernova templates are
shown in Figure 2. For each of the supernova templates,
we recalculate the log(L) value and take the minimum

Fig. 1.— First six galaxy eigen spectra and the two QSO eigen
spectra used in the fits of our galaxy sample. The top most spec-
trum is the mean spectrum. The spectra have been re-sampled to
3Å linear bins.

Fig. 2.— Example SN templates from Nugent et al. (1997) at
various ages. Spectra have been offset for clarity.

log(L) to be the best fit age. An example of this pro-
cedure is shown in Figure 3 together with the resulting
residuals after subtracting the galaxy model.
In cases where there is strong nuclear activity, the

galaxy eigen spectra under fit broad emission line fea-
tures. Due to a conspiracy between SiII and OI absorp-
tion, type Ia supernova spectra (Branch et al. 1982) pro-
duce an apparent emission feature at ∼ 6500 Å. This ef-
fect creates false positives from confusion between this
absorption feature and broad Hα emission in type 1
Seyfert-like galaxies. Even though the fraction of AGN is
small (5%-10%), this leads to several tens of thousands of
false positives. We therefore include an additional com-
ponent in the galaxy model based on the first two QSO
eigen spectra from Yip et al. (2004b). The QSO compo-
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nent fits the broad and narrow emission which decreases
the number of false positives by an order of magnitude.

Fig. 3.— Comparison of the fits with only galaxy eigen spec-
tra (blue line) and eigen spectra with a supernova template
(red line) for a spectrum with significant supernova contribution
(SDSS J083909.65+072431.6). The original spectrum is shown in
black. The residual supernova signal from the top pane (Observed-
(Galaxy + QSO)). Note that the flux contribution from the super-
nova is greater than 50% that of the galaxy. The residual is shown
in black with the best fit supernova template in red.

3.1. Selection Criteria for supernova Candidates

To determine the low redshift supernova rate, we must
discriminate reliably between those galaxy spectra that
contain supernovae and those that do not. To accom-
plish this we consider two measures of the significance of
a supernova detection: the signal-to-noise of the residual
flux after subtraction of the galaxy and QSO compo-
nents, and the goodness of fit of the supernova template
measured by Equation 2 when the flux is estimated using
all eigen spectra plus the best fit supernova template.
We define the signal-to-noise as

S

N
=

∑6000Å
j=4500Å Rj

√

∑6000Å
j=4500Å σ2

j

, (3)

where Rj = fj −
∑n

i=0 aieij is the residual flux after
subtracting the underlying galaxy and QSO components,
and n is the number of eigen spectra used to model the
galaxy and QSO spectra (in our case the first two QSO
components were used). The signal-to-noise is measured
over the wavelength interval 4500Å – 6000Å in order to
exclude contamination of the flux due to Hα.
Following the method outlined in Richards et al.

(2004), we use a nonparametric Bayes classifier (NBC)
to select supernova candidates. For a general two class
system the NBC can be written as:

P (C1|x) =
p(x|C1)P (C1)

p(x|C1)P (C1) + p(x|C2)P (C2)
(4)

For our problem, C1 is the supernova candidate class

(SN), and C2 is the class of galaxies without supernovae
(GAL). The variable x is the two dimensional location of
a source within the S

N – log(L) space. The priors P (C1)
and P (C2) are the probability of drawing a galaxy with a
supernova (P (SN)) and without a supernova (P (GAL))
respectively. We choose P (SN) = 3/10000. This value is
consistent with estimates from historical supernova rate
calculations and with the numbers we see when the al-
gorithm is run on the statistical sample. This is a two
class system so, P (GAL) = 1− P (SN).
We estimate the relative likelihoods for the NBC using

the Statistical and Model samples described in the previ-
ous section. Figure 4 shows the probability density distri-
butions of the Statistical and Model samples within the
S
N – log(L) space. White corresponds to high probability
density and black low probability density. Overlaid on
these plots are contours of the value of P (SN | SN , log(L))
corresponding to 3, 4, and 5σ confidence levels that a
source contains a supernova.
Probability density functions for the samples have

been estimated by fitting a mixture of Gaussians us-
ing the FastMix package (Moore (1998)). The proba-
bility P (SN |x) is then derived from P ( S

N , log(L)|GAL),

and P ( S
N , log(L)|SN). For our current work we

choose to classify a galaxy as a supernova candidate if
P (SN | SN , log(L)) ≥ 0.9973. This corresponds to a 3σ
threshold. We further define a subset of supernovae the
bronze, silver, and gold candidates (see Section 5) using
thresholds of 3, 4, and 5 σ respectively.
In addition to a cut in P (SN | SN , log(L)), the available

supernovae template models require that all supernovae
−20 < Age < 70 ( i.e. the template spectra used in
the Model Sample span a finite range in supernova age).
To mitigate potential edge effects, we include only those
supernovae with ages −14 < Age < 40 within our final
candidates.
Finally, a cut is placed in both log(L) and S

N to avoid
catastrophic failures in the algorithm. These are gen-
erally due to objects that are not fit well by either
galaxy or supernova templates. By inspection, conser-
vative boundaries are set that exclude objects with both
log(L) > 4 and S

N < 150 (see Figure 5). This region is
populated by extreme emission line galaxies where the
emission lines influence the χ2-statistic such that a good
fit is impossible, and objects for which the spectral cali-
bration failed for one reason or another. These points are
not rejected by the P (SN | SN , log(L)) cut because neither
training set samples this area of parameter space well.
Together these selection criteria provide a fully auto-

mated and probabilistic approach for selection of super-
novae from galaxy spectra.

4. SIMULATED SPECTRA AND THE EFFICIENCY OF
SUPERNOVA DETECTION

The statistical and systematic properties of our su-
pernova detection and classification technique are deter-
mined through a Monte-Carlo simulation using the model
sample described in 2 (and Table 1).

4.1. Efficiency of Supernova Detection in SDSS Spectra

Host galaxy properties have a large influence on our al-
gorithm’s ability to detect the resident supernova. Herein
we examine these properties and discuss their impact on
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(a) The image shows the probability density of the mixture
model trained using the sample with synthetic supernovae
added. The contours show the 3,4, and 5σ confidence regions
for a galaxy containing a supernova given the underlying
galaxy distribution using Equation 4.

(b) The image shows the probability density of the mixture
model trained using the statistical sample. The contours are
the same as in a.

Fig. 4.— The training sets for the nonparametric Bayes classifier
described in this section. In both panels the color image indicates
the probability density of galaxies predicted by the best fit mix-
ture model. The light colors are regions of high probability density
and the darker colors are regions of low probability density. The
probability density is a proxy for the density of points, so regions
of high probability density have more points in the training set.
The points are the supernova candidates that satisfy the criterion
that P (SN | S

N
, log(L)) > 0.9973. Red points are bronze candi-

dates, gray points are silver candidates, and yellow points are gold
candidates. The thick contour marks the line where a galaxy is
equally likely to have a supernova and not have a supernova.

measuring supernova rates. Efficiencies are calculated
by applying the selection criteria introduced in the pre-
vious section, i.e. we require that the output age is
−14 < age < 40, P (SN | SN , log(L)) ≥ 0.9973, and the
region with catastrophic failures is avoided. In the fol-
lowing sections we examine the impact of host galaxy lu-
minosity, redshift, supernova age, host galaxy color and
signal-to-noise ratio on the efficiency of the method.

4.2. Efficiency as Functions of Observables

Figure 6 shows the efficiency, defined as the ratio of the
number of detected supernovae to the number of input
supernovae, as a function of r-band absolute magnitude

Fig. 5.— The blue circles are sources taken to be supernova
candidates. Well separated from this locus is a set of sources (red
diamonds) that are clear false positives. These arise due to some
spectra have systematic errors from failures in the spectroscopic
calibration process, and due to the fact that the fitting templates
do not completely span the space in which extreme galaxy emission
line spectra reside.

Fig. 6.— Efficiency of the detection algorithm as a function of
observables: (a) efficiency as a function of redshift. (b) efficiency as
a function of galaxy restframe g-r color. (c) efficiency as a function
of absolute k-corrected galaxy fiber magnitude in r. (d) efficiency
as a function of input age.

through the fiber, galaxy restframe color, age of the su-
pernova and redshift of the host galaxy.
As shown in Figure 6(a), supernova detection efficiency

decreases with redshift (as the signal-to-noise ratio of the
underlying spectra will decrease and the sampled galaxy
populations will be intrinsically more luminous). The
efficiency decreases rapidly beyond a redshift of z > 0.07,
reaching 50% efficiency at around z = 0.11. From the
efficiency-signal-to-noise ratio relation shown in Figure
7 we find that this rapid drop in efficiency corresponds
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to a median per pixel r-band S/N of 50. This value
is calculated by computing the signal-to-noise ratio for
each pixel of the spectrum covered by the r-band filter
and taking the median value over all pixels. At z = 0.1
the fraction of galaxy spectra with S/N > 50 is only 3%.
As expected, the efficiency of detection depends on

the intrinsic luminosity of the host galaxy; as the lu-
minosity of the host galaxy increases, the efficiency of
isolating the supernovae decreases. The intrinsic peak
luminosity for type Ia supernovae reaches MV = -19.5
(Gallagher et al. 2008) with under-luminous supernovae
scattering to MV ≃ −17.5. This results in a smooth tran-
sition between the regime where the supernovae domi-
nates the spectrum to where the galaxy host dominates.
Figure 6(c) demonstrates this effect, showing the de-
crease in the efficiency of detecting a supernovae remain-
ing at about 75% to Mfiberr = 18 and then dropping
quickly to 30% at Mfiber r = −20 (at which point the
galaxy is contributing about 50% more light than the
peak brightness supernova).
One might expect the detection of supernovae to be

independent of the color of the galaxy as there are spec-
tral features distributed throughout the optical spectral
range. Figure 6(b) shows, however, a color dependence in
the detection efficiency such that supernova detection in
red galaxies has a lower efficiency than for blue galaxies.
This is due to the correlation between luminosity and
intrinsic galaxy color. If the Model Sample is binned
in absolute magnitude and the efficiencies replotted as
a function of restframe color, the efficiency curve is flat
but the normalization of that curve decreases with lumi-
nosity.
We also consider the efficiency as a function of super-

nova age in Figure 6(d). The integral of this histogram
is the control time, τ , which dictates the temporal win-
dow over which a supernova is detectable. As shown in
Figure 6(d), the impact on efficiency occurs at early and
late times when the supernova luminosity is closest to a
minimum in our templates. For ages −10 < days < +20,
the efficiency of supernova detection remains above 50%.

4.3. Signal to Noise Ratio

Based on the results described above, the most im-
portant efficiency indicator for the rate of supernova de-
tection is that of S/N of the measured spectrum. The
signal-to-noise ratio incorporates all of the dependencies
on galaxy and supernova properties in the efficiency cal-
culation. In each of the previous results, the drop in
efficiency was related to a decrease in supernova signal-
to-noise ratio (either absolute or relative to the galaxy lu-
minosity). We therefore approximate the signal-to-noise
ratio of the measured spectrum (including the supernova)
as the median of the signal-to-noise ratios of the spectral
bins in the r passband. Figure 7 shows this efficiency
as a function of median r-band S/N. As expected the
efficiency decreases with lower signal-to-noise ratios, but
remains above 50% down to S/N = 23 (which represents
70% of galaxies in the statistical sample).

5. APPLICATION TO SDSS

The algorithm described in §3 and the criteria from
§3.1 were applied to the SDSS spectra from the DR5
statistical sample. To quantify the effectiveness of
these techniques we define subsamples of supernovae

Fig. 7.— Efficiency as a function of signal-to-noise ratio of the
measured (galaxy + supernova) spectrum in the r-band

as a function of their classification probability. These
supernovae, gold (P (SN | SN , log(L)) >0.99999943),

silver (P (SN | SN , log(L)) >0.999937), and bronze

(P (SN | SN , log(L)) >0.9973), are shown in Figure 5. Vi-
sual inspection of these supernova candidates shows that:
gold candidates have many (greater than four) spectral
features in the residual fit that are coincident with the
best fit template, silver candidates have at least three
features that match the template and exceed the noise
in the spectrum, and bronze class sources have at least
three well fit features, but with per pixel signal at the
level of the per pixel error. Figure 8 shows examples of
these three classes. The bronze candidate spectra were
smoothed with a 5 bin tophat filter to show more clearly
how the low frequency signal matches the template spec-
tra.
For reference, we show the distribution in color and

redshift for the statistical and candidate samples. Fig-
ure 9(a) shows that the color distribution is similar for
both populations. The redshift distributions, however,
are quite different. As seen in Figure 9(b) the candi-
date supernova population has a much flatter distribu-
tion than the parent population. This is likely due simply
to the increased efficiency of finding supernovae in nearby
galaxies. Note that the redshift distribution is truncated
at z = 0.2. In Figure 10 we show the distribution of
measured ages from peak for the candidate supernovae.
Obviously the number of candidates is not large enough
to fully sample the range of templates, but we do recover
supernovae over essentially the entire window of possible
ages.

5.1. Direct Confirmation of supernovae

To validate the accuracy of the detection algorithm we
undertake a number of tests on the derived spectra. The
first of these is a comparison of the fiber magnitudes
measured from the photometry with synthetic magni-
tudes calculated from the observed spectra. The fiber
magnitudes are computed by placing a 3” diameter aper-
ture at the centroid of the seeing convolved object. The
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Fig. 8.— Six examples of supernova candidates selected using
the algorithm presented in this paper. The top two panes are for
the ”gold” sample, the middle two panes are for the ”silver” sam-
ple, and the bottom two panes are for the ”bronze” sample. The
residual after the galaxy component is subtracted is shown in black.
The best fit template is plotted in red and the rms uncertainty as
reported by the pipeline is in gray. The plate, mjd, and fiber are
provided in the upper right of each pane.

synthetic magnitudes are calculated by integrating the
product of the filter transmission curves and the observed
spectrum. We obtain the fiber and synthetic magnitudes
in the r-band for all objects in the full sample. In the ab-
sence of transient events one would expect the two values
to be equivalent. Figure 11 shows the difference between
the fiber and synthetic magnitudes as a function of fiber
magnitude (for the statistical sample). The supernova
candidates are plotted as circles. Yellow circles are gold
candidates, gray circles are silver candidates and red cir-
cles are bronze candidates.
Of the 52 supernova candidates, all show a brighten-

ing in the synthetic magnitude as compared to the fiber
magnitude. This is consistent with additional flux con-
tribution from transient sources.
Of the 52 supernovae used in the rate calculation, four

were observed spectroscopically on more than one oc-
casion. All four cases show a brightening in the su-
pernova containing spectrum. In all four cases the dif-
ference of the two epochs show similar feature to the
residual spectrum from the fitting algorithm. A typi-
cal example, SDSS J124733.40+000557.1, was observed
on MJD 51660 and 268 days later on MJD 51928. The
supernova was detected in the later epoch with an esti-
mated age of 27 days after maximum. This candidate
was detected as a member of the bronze sample with
P (SN | SN , log(L)) = 0.9986. Given these repeat obser-
vations we subtract the two spectra (which removes the
uncertainty in the modeling of the host galaxy spectrum)
and show the two spectra together in the top pane of Fig-
ure 12. In the middle pane we plot the difference of the
flux in the two epochs with the best fit template spec-
trum scaled as calculated by the algorithm. Clearly the
difference spectrum and the template agree. Finally, we
plot the ratio of the difference spectrum to the supernova
signal from epoch 2. At shorter wavelengths it appears

(a) Comparison of fiber u− r color distribution for the sta-
tistical sample (solid) and supernovae (dotted). The mag-
nitudes are absolute K-corrected fiber magnitudes.

(b) Comparison of redshift distribution for the statistical
sample (solid) and supernovae (dotted).

Fig. 9.— Comparison of supernova candidate distributions to the
distribution of the statistical sample.

that the fitting algorithm is under-subtracting the galaxy
contribution. In this example the under-subtraction is
< 5% of the total spectrum flux. This shows that the
fitting algorithm does a very good job in this case of
superimposed galaxy and supernova signal.
These two pieces of evidence, the brightening of objects

in the spectrum relative to the photometry, and multi-
epoch spectroscopic observations showing supernova sig-
natures indicate strongly that the algorithm is selecting
real supernova signatures.

6. TYPE IA LUMINOSITY WEIGHTED SUPERNOVA RATE

Based on the efficiency calculations in §4 and the su-
pernovae identified in the statistical sample we calculate
the supernovae rate for galaxies at a mean redshift of
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Fig. 10.— Distribution of measured rest frame ages for the 52
SN candidates used in the rate calculation.

Fig. 11.— For all detected supernovae, we plot the difference
in the r-band fiber and synthetic magnitudes against the r-band
fiber magnitude. Fiber magnitudes are aperture magnitudes cal-
culated from the photometry. Synthetic magnitudes are calculated
by integrating the observed spectrum convolved with fiducial fil-
ter curves. The density plot is the entire SDSS DR5 spectroscopic
sample. Gold candidates are plotted in yellow (diamonds), silver
in gray (squares), and bronze in red (circles). In general, the spec-
tra are brighter than their photometric counterparts, suggesting an
extra flux contribution.

z = 0.1. The luminosity weighted supernova rate (rL) is
traditionally defined as:

〈NSN 〉 = rL × S, (5)

where 〈NSN〉 is the expected number of type Ia super-
novae and S is the sum of the probability of detecting a
supernova in a given galaxy, weighted by the luminosity
in the B-band, in units of L⊙,

S =

Ngal
∑

i

Liǫiτi. (6)

Fig. 12.— An example of an object with two epochs in spec-
troscopy of object SDSS j124733.40+000557.1. In the upper panel
Epoch 2 (black) with the SN contribution is obviously brighter
than the spectrum taken at the earlier Epoch 1 (gray). The mid-
dle panel shows the comparison of the difference of Epoch 2 and
Epoch 1 (black) to the best fit template as chosen by the SN selec-
tion algorithm (red dashed). The best fit template is age 27 days.
The bottom panel is the ratio of the difference spectrum to the
galaxy subtracted supernova.

The sum runs over all galaxies in the statistical sam-
ple. Li is the rest frame B-band luminosity in units of
L⊙ and τi is the time period we are sensitive to identify
supernova. The efficiency ǫ is a function of redshift, ap-
parent magnitude, luminosity, galaxy type, seeing, and
other observables. As in Dilday et al. (2008), we avoid
the complexity involved in modeling the efficiency as a
joint distribution of all characteristics by using the effi-
ciency as a function of signal-to-noise ratio. The control
time τ is then defined as:

τ =

z=0.2
∑

z=0.0

ǫz(z) ∗

∫ t2

t1

ǫt(t, z)dt (7)

where t is the age of the supernova with peak brightness
occurring at t = 0 and ǫ(t) is the efficiency as a function
of supernova age. We use the window −14 ≤ age ≤
40 as this is the interval over which ǫ(t) was evaluated.
We use a redshift averaged value of τ using the redshift
distribution for the statistical sample (see Figure 9(b)) to
obtain the typical detection window for the survey as a
whole. We evaluate this integral to obtain the fraction of
a year over which the algorithm is sensitive to detecting
type Ia supernovae. For this survey τ = 0.1 yr.
We calculate the luminosity weight in two ways. First,

we consider only the contribution of flux from within the
fiber. This takes a local view of the luminosity weight-
ing by allowing for only stellar light encompassed by the
fiber. A second approach is to rescale the luminosity by
the covering factor of the fiber relative to the galaxy total
flux. This covering factor is calculated as:

cf = 10(Mmodel−Mfiber)/2.5. (8)

In the above equation, the k-corrected, absolute magni-
tudes may be in any band but, as the galaxy sample is
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r-band selected, we use the r-band to calculate the cov-
ering factor. In some cases, however, the fiber magnitude
is brighter than the model magnitude due to blending of
overlapping galaxies. In order to avoid these issues, we
discard galaxies where Mfiber < Mmodel. This situation
is encountered in 0.5% of the galaxy sample. This results
in 360,698 galaxies used in the covering factor method of
calculating the rate.
In general, using the flux through the fiber is prefer-

able since there is no dependence on photometric model
fitting. The model fitting could potentially introduce a
bias in the covering factor as a function of galaxy mor-
phology. For this reason, we use the fiber-based B-band
luminosity weighted rate for comparison to other pub-
lished values and in reporting the rate as a function of
galaxy color.
We further subdivide the sample into red and blue sub-

sets using a color cut of Mu − Mr = 2.2 to estimate
the supernova rate as a function of galaxy spectral type.
Strateva et al. (2001) suggest that a value of 2.2 gives
optimal separation between early and late type galaxies.
We use this value to separate the statistical sample into
an early (red) and late (blue) galaxy sample. In this case
these values have been calculated using the measured
fiber flux in order to maximize the size of the supernova
sample.
Solving Equation 5 for rL, and applying the calcu-

lated values of S and NSN , we obtain a value of rL
given a given value from Equation 4. In order to get
the best estimate of the rate given the variance inher-
ent in the sample we select many values of the cutoff:
0.9973 ≤ P (SN | SN , Log(L)) ≤ 1.0. The lower limit cor-
responds to a 3σ and is the cut used in producing the
plots presented in Figures 6 and 7. In practice, new ef-
ficiency curves are calculated for each selected value of
the probability cut. We calculate the rate for 100 dif-
ferent selections of the selection cutoff. We then find
the inverse variance weighted mean of the rates. This
weighting was chosen with the expectation that more
stringent cuts would produce less candidates but be less
likely to include false positives. If there is no contam-
ination from interlopers, even at the 3σ level, the in-
verse variance weighting should have no impact on the
mean. See §6.1.4 for discussion of systematic error con-
tribution of varying the threshold. The weighted mean
yields rL = 0.472± 0.08h2

70SNu which assumes that the
supernova rate is proportional to the rest frame B-band
galaxy luminosity. The statistical error is the central
68.3% Poisson confidence interval assuming the median
number of supernova candidates (45) for the 100 data
points. The supernova rate values and details of the er-
rors are summarized in Table 2. Note that the total
number of supernovae listed in the table in column 6 dif-
fers from that listed in Table 1. This is due solely to the
fact that the −14 < Age(Days) < 40 age cut was not ap-
plied to the candidates selected from the Statistical Sam-
ple. The supernova rates for the red and blue samples
are rL(red) = 0.379± 0.08 and rL(blue) = 0.394± 0.12,
respectively. As seen in other samples, the luminosity
weighted rate from blue galaxies is higher than that from
red galaxies, however they are consistent within errors.

6.1. Systematic Errors in Supernovae Rates

We consider potential systematics in our derived values
of rL.

6.1.1. Color corrections to a B-band luminosity

We compare the derived B luminosity for the host
galaxies using two relations for color transformations
between the SDSS and Johnson B passbands. These
color corrections are taken from Lupton (2005)11 and
Jester et al. (2005). Specifically the corrections are:

B = g + 0.33 ∗ (g − r) + 0.20Jesteretal.(2005) (9)

B = g + 0.3130 ∗ (g − r) + 0.2271 (10)

The difference between these solutions amounts to
±3% in the derived luminosities.

6.1.2. Type Ib/c Contamination

Since we use only type Ia templates for candidate se-
lection, it is possible that type Ib/c supernovae could be
a source of false positives. To test how sensitive this al-
gorithm is to type Ib/c interlopers, we simulate perfect
galaxy subtraction by fitting our set of type Ia templates
directly to type Ib/c templates (Levan et al. (2005)) at
various signal to noise levels. We can then plot the re-
sults of the fit directly on in the same space as that used
for candidate selection. Figure 13 shows where the type
Ib/c spectra fall on the Log(L) − − S

N space. Many are
excluded by the 3σ confidence threshold (dashed line).
Those that do pass are well separated from the candi-
dates in our sample. If we had candidates in the region of
the discriminate space occupied by the type Ib/c spectra,
we would need to account for the possibility of contam-
ination. The locus of our sample is very well separated
from that of the type Ib/c candidates, our sample shows
no evidence of contamination by type Ib/c supernovae.

Fig. 13.— Type Ia candidates (circles) plotted with the results
of fitting type Ib/c spectra with type Ia templates (stars). The
size of the point indicates the age of the type Ib/c candidate. The
dotted line is the 3σ threshold applied when selecting candidates.
Many of the candidates are ruled out by the threshold.

11 http://www.sdss.org/dr7/algorithms/
sdssUBVRITransform.htmlk#Lupton2005

http://www.sdss.org/dr7/algorithms/
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6.1.3. Efficiency Uncertainty

The efficiency histogram has an intrinsic uncertainty
due to shot noise (based on the number of galaxies in each
bin). Propagating Poisson errors on the signal-to-noise
ratio efficiency shows an uncertainty of not more than 2%
in the rate calculation when 1σ errors are considered. We
adopt a value of 2% for the contribution of uncertainty
of efficiency.

6.1.4. Uncertainty in Threshold Cut

The value of Equation 4 gives a good discriminant for
distinguishing supernova candidates, but the choice of
the cutoff value influences the calculated value of the
rate. To get a handle on how much this affects the rate
value we calculate rates using 100 different choices for the
cutoff. We then calculate the inverse variance weighted
mean of the rate give the 100 data points. We then quan-
tify the scatter by calculating the standard deviation of
the sample greater than the mean and the standard de-
viation of the sample less than the mean. This analysis
gives a positive scatter of 9.5% and a negative scatter
of 7.5%. The fact that the scatter to higher values of
the rate is larger than to lower values suggests that there
is some contamination from interlopers, but that when
several values of the cutoff are taken, the effect on the
measured rate is small.
Adding these contributions in quadrature this estimate

of the systematic error corresponds to +10.2%
−8.3% .

7. COMPARISON TO MODELS

Many type Ia supernova rate (SNRIa) measures have
recently appeared in the literature, often at higher red-
shift than previously sampled. Measures at high red-
shift (z > 1) are generally given in units of the co-
moving volumetric element. In order to directly com-
pare the rate derived in this paper with those in the
literature, we convert luminosity weighted rates to volu-
metric rates using the B-band luminosity density. As
in Horesh et al. (2008) we use the redshift dependent
form jB(z) = (1.03 + 1.76 × z) × 108L⊙Mpc−3 from
Botticella et al. (2008). Table 3 is a collation of SNRIa

from the literature. We have ordered them in mean
redshift to facilitate comparison of values at similar dis-
tances.
The cosmic supernova rate is notoriously difficult to

measure as the number of events is usually small, the
systematics are numerous and hard to correct for, and
even the data on a per object basis can be less than
ideal because of their transient nature. All these factors
contribute to large errors, which make differentiation be-
tween different predictions difficult.
Two formulations of the analytic SNRIa are typi-

cally used. The delay time distribution (DTD) formula-
tion can be expressed using the the notation of Greggio
(2005), the SNRIa(t) is defined:

SNRIa(t) = kα

∫ min(t,τx)

τi

AIa(t− τ)ρ̇(t− τ)fIa(τ)dτ

(11)
where kα is the normalization of the initial mass func-
tion (taken to be 2.83 for the Salpeter IMF), AIa is the
efficiency of the progenitor channel, ρ̇ is the cosmic star

formation rate, and fIa is the distribution of times be-
tween birth and explosion also denoted DTDIa. AIa is
typically taken to be constant with time, but in general
can evolve with the stellar population.
The “A+B” model formalized in Sullivan et al. (2006)

scales a tardy component and a prompt component based
on the integrated stellar mass build-up and instantaneous
star formation rate, respectively. Using the notation of
Hopkins & Beacom (2006),

SNRIa = Aρ∗(t) +Bρ̇∗(t). (12)

Both the DTD and “A+B” methods can have short
and long timescale contributions to the total SNRIa

at any given time, but the DTD formulation allows
much more latitude in the spectrum of the delay times.
Hopkins & Beacom (2006) modified the “A+B” model
by allowing for a delta function delay time in the prompt
component effectively setting a characteristic delay time.
They found that they could set the tardy component to
zero, yielding:

SNRIa = Bρ̇(t− τ) (13)

where τ is the delay time and is 3Gyr.
Most DTD models rely on white dwarf binary sys-

tems as progenitors of type Ia supernovae. However,
it is not yet clear what the companion star is in these
binary systems (Branch et al. 1995; Parthasarathy et al.
2007). Many groups have attempted to constrain DTDs
(see Valiante et al. 2009; Ruiter et al. 2009; Totani et al.
2008; Hachisu et al. 2008; Greggio et al. 2008, and oth-
ers). Recent measurements and models of the type Ia
DTD imply a featureless power law. The two main
channels for type Ia supernova progenitors are the sin-
gle degenerate (SD; white dwarf with non-degenerate
star (Whelan & Iben 1973)) and double degenerate (DD;
white dwarf binary(Iben & Tutukov 1984)) scenarios.
Models of the DD path show that a featureless power
law is in agreement with the predicted DTD from the
DD contribution (Totani et al. (2008) and references
therein). Recently, it was shown that the SD path can
produce a power law DTD when both white dwarf +
main sequence and white dwarf + red giant systems are
considered (Hachisu et al. 2008). Direct measurements
also support power law DTDs for type Ia supernovae
(Totani et al. 2008; Pritchet et al. 2008). The power law
DTD is attractive because of it’s simplicity and the fact
that it has contribution from both prompt and tardy
components.
There is much discussion about which model for the

evolution of the cosmic type Ia supernova rate is the most
appropriate, but even for power law DTD models expo-
nent of the power law α is under debate. Theoretical
values seem to point to a steep power law α ≃ −1.0
from both SD and DD channels (Hachisu et al. 2008;
Yungelson & Livio 2000; Greggio 2005). The value as
measured from data in (Totani et al. 2008) agrees well
with α = −1.0, although Pritchet et al. (2008) find a
shallower power law with α ≃ −0.5.
Changing from cosmic time to redshift and substitut-

ing a power law for the DTD model, we produce the
following formula:

SNRIa(z) = ka

∫ t(z)

0.3

AIaρ̇∗(t(z)− τ)ταdτ (14)
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where t(z) is the cosmic time at redshift z, ρ̇∗ is the cos-
mic star formation rate, t is the delay time and α is the
slope of the power law. The product of kaAIa is the con-
stant for which we fit. It should be noted that we are not
attempting to pin down any physical constants to higher
precision than is already reported in the literature. The
error bars used are statistical in all cases. No attempt
has been made to cull the data of unreliable data points
as the model fitting is intended to be illustrative rather
than diagnostic. Figure 14 shows the data from the lit-
erature fit using the above models with α = −1 (dashed
line). This model, supported by theory and data, over
predicts the rate at both low and high redshift, except
for the point at z = 1.2 from Poznanski et al. (2007),
who question the sharp decline in SNRIa after z = 1.5.
The A+B model appears to be too flat to account for

both the rise in rate from z = 0 to z ≃ 1.0 and the de-
cline after z = 1.5. Since a large part of the best fit A+B
model is contributed by the prompt (ρ̇∗) component
which does not peak until z ≃ 2, it is not surprising that
it continues to rise at high redshift. As mentioned above,
Hopkins & Beacom (2006) noticed that a modified A+B
(SNR = Aρ∗(t)+Bρ̇∗(τ − τIa); Scannapieco & Bildsten
(2005)) type model with A = 0 and a delta function de-
lay time distribution do just as well in describing the
observed downturn at z ≃ 1. Figure 14 shows the best
fit Scannapieco & Bildsten (2005) model with fixed de-
lay time τIa = 3Gyr. In this scenario, the accrued stel-
lar mass contributes nothing to the cosmic SNR. Instead,
type Ia supernovae arise after a fixed waiting period after
a star formation event. This model is certainly an over
simplification as a broad distribution of assembly times
surely exist for both the SD and DD scenarios.
The result from this work is higher than other measure-

ments at low redshift, but is within the error bars of all
of them. A possible explanation of the higher measure-
ment is that systematic effects tend to drive efficiency
down. This leads to lower predicted rate measurements
if these effects are not taken into account. This argues
for a greater level of correction in the measurement from
this paper as compared to others for z < 0.3. Despite
being higher than other measurements, our value is still
lower than two of the three models explored in this pa-
per. The model that is closest to the low redshift values
is that of the constant delta function delay time model.
Current models for the DTD of type Ia supernovae

show good agreement with the data despite DTDs as
different as power law and delta functions. The ability
for observed supernova rates to distinguish between these
models will depend on reliable SNR measurements at
z = 2.0.

8. CONCLUSIONS

From a sample of 362,431 galaxies we detect 57 (52
of which meet all criterion for calculating the supernova
rate) type Ia supernovae within SDSS spectroscopic ob-
servations by modeling and subtracting the host galaxy
component. Extensive Monte Carlo simulations of the
efficiencies and systematics present in these samples are
used to determine a type Ia supernova rate of 0.472
h2
70SNu at a mean redshift of z = 0.1. The measure-

ment published here is higher than others at z < 0.2,
but agrees within 1 sigma statistical errors with the other
published values. It is interesting to note that the bias

Fig. 14.— Latest volumetric supernova rates with three models:
a constant delay time of 3Gyr, an A+B model and a power law
model with α = −1.0. The value from this work with error bars is
plotted in red.

for this study is strongly toward finding supernovae in
the central parts of galaxies. This is opposite to the bias
of difference imaging type surveys which are slightly bi-
ased away from finding supernovae in the central parts
of galaxies due to the brightness of the cores as well as
dust extinction.
Despite our measurement being slightly higher than

others at similar redshift, there is still a significant rise
in the type Ia rate from our value at z = 0.1 to redshift
of unity. One possible explanation for this trend is that
we were able to incorporate many contributors to the
efficiency calculation including realistic estimates of host
extinction and peak supernova luminosity. Almost any
modeled physical effect will tend to drive efficiency down
resulting in higher recovered rate measurements. This
study is based on one of the largest samples of supernovae
in the local universe. Subdividing the galaxy population
into red and blue components, we find no evidence for a
difference in supernova rate as a function of host galaxy
rest frame color within errors.
The success of this study demonstrates that spectro-

scopic surveys can be used to identify and classify su-
pernova and supernova rates in the local and distant
universe in a serendipitous manner. The next genera-
tion of wide field spectroscopic surveys such as BOSS
(Schlegel et al. 2009) we will have the potential to detect
thousands of supernova in a much larger volume than
that sampled by the SDSS spectroscopic sample.
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Sample Number of Spectra NSNe Notes
Statistical Sample 362,431 52 G=7,S=7,B=43
Model Sample 234638 N/A

TABLE 1
The samples used in this paper. The first column gives the name of the sample as it is used in the text. Column 2 gives the

sample size. In Column 3 we report the number of supernova candidates in the sample. This is the total number of
candidates. The number listed here includes all selection criteria listed in §3.1. This number increases to 57 if no age cut
is applied. Any notes are given in Column 4. In particular, the number of gold (G), silver (S), and bronze (B) candidates

are noted. For a description of how the gold, silver and bronze candidates are defined, see §3.1.
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Method Value (SNu) Sys. Error (SNu) Stat. Error (SNu) NSN NSN

Covering Factor 0.454 +0.046

−0.038

+0.079

−0.068
44 51

Fiber 0.472 +0.048

−0.039

+0.081

−0.070
45 52

Red 0.379 +0.039

−0.031

+0.080

−0.067
32 36

Blue 0.394 +0.040

−0.033

+0.142

−0.108
13 16

TABLE 2
The results from applying the algorithm to the SDSS Statistical Sample. Column 1 describes the method used, the value

of the rate is reported in Column 2, systematic and statistical errors are in Columns 3 and 4 respectively. Column 5
contains the median number of supernova candidates in the samples used to calculate the weighted mean of the rate.

Finally, we report the number of candidates used in each of the methods in Column 6.
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TABLE 3 Compilation of volumetric supernova rates from the literature.
Column 1 gives the minimum redshift, column 2 is the maximum redshift,

column 3 is the average redshift, column 4 is the volumetric rate, column 5 is
the systematic error, column 6 is the statistical error, column 7 is the number
of SNe used in the measurement and column 8 contains the reference code

(see footnote 4).

Min(z) Max(z) < z > Rate3 Stat. Syst. NSN Reference4

0.0 0.0 0.0 2.8 +0.9

−0.9
70 g,e

0.0 0.12 0.09 2.9 +0.9

−0.7

+0.2

−0.0
17 f

0.0 0.19 0.098 3.12 +1.58

−1.58
19 h,e

0 0.2 0.1 5.69 +0.98

−0.85

+0.58

−0.47
52 p

0.0 0.3 0.13 2.0 +0.7

−0.5

+0.5

−0.5
14 e

0.02 0.2 0.14 3.43 +2.7

−1.6

+1.1

−0.6
4 i,e

0.0 0.5 0.25 0 +2.4

−0.0
0 b

0.2 0.3 0.25 1.7 +1.7

−1.7
1 n

0.18 0.37 0.25 2.86 1 j,e
0.3 0.4 0.35 5.3 +2.4

−2.4
5 n

0.25 0.50 0.38 6.52 3 k,e
0.2 0.6 0.4 6.9 +3.4

−2.7

+15.4

−2.5
3 o

0.2 0.6 0.4 5.3 +3.9

−1.7
5.44 a

0.4 0.5 0.45 7.3 +2.4

−2.4
9 n

0.25 0.6 0.46 4.8 +1.7

−1.7
8 l,e

0.2 0.6 0.47 8.0 +3.7

−2.7

+16.6

−2.6
8.8 c

0.2 0.6 0.47 4.2 +0.6

−0.6

+1.3

−0.9
73 d

0.25 0.85 0.55 5.4 +0.74

−0.66

+0.84

−0.82
37 m

0.5 0.6 0.55 20.4 +3.8

−3.8
29 n

0.6 0.7 0.65 14.9 +3.1

−3.1
23 n

0.5 1.0 0.75 4.3 +3.6

−3.2
5.5 b

0.7 0.8 0.75 17.8 +3.4

−3.4
28 n

0.6 1.0 0.8 15.7 +4.4

−2.5

+7.5

−5.3
14 o

0.6 1.0 0.8 9.3 +2.5

−2.5
18.33 a

0.6 1.0 0.83 13.0 +3.3

−2.7

+7.3

−5.1
23.5 c

0.87 1.27 0.9 9.32 5 j,e
1.0 1.4 1.2 7.5 +3.5

−3.0
8.87 a

1.0 1.4 1.2 11.5 +4.7

−2.6

+3.2

−4.4
6 o

1.0 1.4 1.21 13.2 +3.6

−2.9

+3.8

−3.2
20.2 c

1.0 1.5 1.25 10.5 +4.5
−5.6

10.0 b

1.4 1.7 1.55 1.2 +5.8

−1.2
0.35 a

1.4 1.8 1.6 4.4 +3.2

−2.5

+1.4

−1.1
2 o

1.4 1.8 1.61 4.2 +3.9

−2.3

+1.9

−1.4
3.1 c

1.5 2.0 1.75 8.1 +7.9

−6.0
3.0 b

3 10−5SNe (Mpc/h70)−3yr−1

4 a) Kuznetsova et al. (2008), b) Poznanski et al. (2007),
c) Dahlen et al. (2008), d) Neill et al. (2006), e) Blanc et al.
(2004), f) Dilday et al. (2008), g) Cappellaro et al. (1999), h)
Madgwick et al. (2003), i) Hardin et al. (2000), j) Gal-Yam et al.

(2002), k) Pain et al. (1996), l)Tonry et al. (2003), m) Pain et al.
(2002), n) Barris & Tonry (2006), o) Dahlen et al. (2004), p) This
paper
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