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Transverse coherent instability of a bunch in a ring accelerator is studied with space charge and
short wake field taken into account. It is assumed that space charge tune shift significantly exceeds
the synchrotron tune. The bunch spectrum, instability growth rate and effects of chromaticity are
studied over a wide range of parameters. Fast instability caused by coupling of transverse modes is
studied as well. It is shown that, for monotonic wakes, the TMCI is possible only with certain sign
of the wake. Its threshold is calculated precisely for different bunch and wake forms.
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I. INTRODUCTION

Transverse instability of a bunched beam in a ring ac-
celerator has been considered first by C. Pellegrini [1] and
M. Sands [2] with synchrotron oscillations taken into ac-
count (“head-tail instability”). Coherent oscillations of
a bunch were presented as a sum of uncoupled modes
∝ exp (imφ) where φ is synchrotron phase. After that,
F. Sacherer [3] investigated the effect in depth includ-
ing so called radial modes which describe dependence
of the coherent displacement on synchrotron amplitude.
Role of space charge effects has been studied first in Ref.
[4] on the assumption that the contributed tune shift is
small in comparison with synchrotron tune. It was shown
that corresponding tune spread causes Landau damping
which suppresses most of the head-tail modes. Similar
conclusion was made later in Ref. [5] by an analysis of
some comparatively simple models. The space charge
influence at low synchrotron frequency was thoroughly
investigated in recent articles [6] and [7]. Although very
similar equations have been presented there, the authors
have came to rather different conclusions.

According to Ref. [7], almost all transverse modes are
prone to Landau damping until space charge tune shift is
less then about synchrotron frequency. Only the lowest
(rigid) mode is a general exception from the rule, and 1-2
next modes can be unstable additionally, in dependence
on the bunch shape. However, the Landau damping is
shut off when the space charge shift becomes more, lower
modes being free from the decay first. Actually, it was
stated that all eigentunes of the bunch should obtain an
imaginary part in response to wake field of any nature
and strength. However, no concrete wakes were investi-
gated in this work.

In contrast to this, solutions with several specific wakes
were presented in Ref. [6]. The conclusion was done that,
at zero chromaticity, small wake cannot violate the bunch
stability, and all its eigentunes remain real numbers. The
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wake should be sufficiently strong to overcome a thresh-
old and to excite the Transverse Mode Coupling Insta-
bility due to merge of some eigentunes accompanied by
essential change of the eigenfunctions (vanished TMCI,
by the author).

The contradiction is resolved in this paper. It is shown
that some small parts of basic equation were lost at lim-
iting transition to zero frequency in Ref. [6] With the
parts recovered, all the eigentunes prove to be complex
numbers almost in all the cases, with rare exclusions due
to special combinations of the parameters. The imagi-
nary parts do increase when the TMCI arises; however,
recalculated TMCI thresholds partly differ from those
presented in Ref. [6] as it is marked and discussed in
sections. The effects of chromaticity on the instability
growth rate is studied as well.

II. BUNCH MODES EQUATION

Wake field of a beam produces transverse Lorenz force
which can be written in the form (per unit charge):

~G(L)(t, θ(L)) = −
∫ t

0

W (t − t′) ~D(L)(t′, θ(L)) dt′ (1)

where D(L)(t, θ(L)) is linear density of the beam dipole
moment in azimuth θ(L). The equation refers to the lab-
oratory frame, but corresponding rest frame is more con-
venient for our purpose. Therefore the following variables
and definitions will be used hereafter:

θ = θ(L) − Ω0t, G(t, θ) = G(L)(t, θ(L)), etc. (2)

where Ω0 is the bunch angular velocity. Then Eq. (1)
transforms to:

~G(t, θ) = −
∫ t

0

W (t − t′) ~D(t′, θ + Ω0(t − t′)) dt′ (3)

With this force and space charge field taken into account,
equation of betatron oscillations of a particle is:

d2x

dt2
+ Ω2Q2x =

eEx

(

θ, x − X̄(t, θ), y
)

mγ3
+

eGx(t, θ)

mγ
(4)
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where Ω and Q are the particle angular velocity and tune,
X̄(t, θ) is the beam transverse displacement at azimuth
θ (θ = 0 in the bunch center). The space charge electric
field Ex is, possibly, a nonlinear function of transverse
coordinates but nonlinearity of external field is not in-
cluded in the equation. Note as well that d/dt is the
total derivative in time involving longitudinal motion.

An averaging of Eq. (4) over transverse phase space
gives an equation for a function X(t, θ, p) which is trans-
verse displacement of the bunch in the point (θ, p) of
longitudinal phase space [7]:

∂X

∂t
+ Ωs

∂X

∂φ
+ i Ω QX ≃ i Ω∆Q (X − X̄) +

ieGx(t, θ)

2mγΩ0Q0

(5)
Here φ and Ωs = Ω0Qs are phase and frequency of syn-
chrotron oscillations which are presumed to be linear.
The functions X(t, θ, p) and X̄(t, θ) are related by the
equation:

ρ(θ) X̄(t, θ) =

∫ ∞

−∞

F (θ, u)X(t, θ, p) dp (6)

where ρ(θ) is linear bunch density associated with longi-
tudinal distribution function F :

ρ(θ) =

∫ ∞

−∞

F (θ, p) dp. (7)

Effective space charge tune shift does not depend on
transverse coordinates in Eq. (5), demonstrating that
nonlinearity of the beam field does not affect the coherent
oscillations [8]:

∆Q(θ) =
e

2mγ3Ω2
0Q0

∫

∞

−∞

∂Ex

∂x
(θ, x, y)ρ⊥(x, y) dxdy.

(8)
where ρ⊥ is normalized steady state transverse density

of the beam which just produces the electric field ~E.
Laplace transformation in time will be applied to

Eq. (5) to obtain a new variable defined by the relation

Y (θ, p) = exp(iχθ)

∫ ∞

0

X(t, θ, p) exp(iωt) dt (9)

where

χ =
d(ΩQ)

dΩ
= Q0 + Ω0

dQ/dp

dΩ/dp
= Q0 + ζ (10)

(ζ = −ξ/η is normalized chromaticity). The exponential
factor is added before the integral to exclude dependence
of the parameters Ω and Q on momentum in Eq. (5).
With zero initial conditions, the equation transforms to

(ω − Ω0Q0)Y + i Ω0Qs
∂Y

∂φ
+ Ω0∆Q(θ) (Y − Ȳ ) (11)

=
e exp(iχθ)

2mγΩ0Q0

∫ ∞

0

W (t′)Dω(θ + Ω0t
′) exp(iωt′) dt′

where

Dω(θ) =

∫ ∞

0

Dx(t, θ) exp(iωt) dt (12)

Note that relation like Eq. (6) is valid for the functions
Y (θ, p) and Ȳ (θ) as well.

Variable θ has a range [−π, π] (one turn) whereas the
actual bunch has a less range [−θ0, θ0]. Therefore it is
more convenient to use normalized value

τ =
θ

θ0
(13)

with a range [−1, 1] (it was denoted as θ in Ref. [7], but
the symbol is occupied now). Then Eq. (6) and (7) hold
true with formal replacement τ instead of θ, because nor-
malization of the distribution function was not specified
yet. Further we will apply the condition:

∫ 1

−1

ρ(τ) dτ = 1 (14)

Then linear density of the dipole moment is:

Dω =
eX̄ω

R

dN

dθ
=

eNȲ (τ)ρ(τ)

Rθ0
exp(−iχθ0τ) (15)

where R is the machine radius, and N in number of par-
ticles in the bunch. Designating

e2NW (t)

2mγRΩ2
0Q0

= 2 Ω0q(Ω0t) (16)

one can rewrite Eq. (11) in the form:

( ω

Ω0
− Q0

)

Y + i Qs
∂Y

∂φ
+ ∆Q(θ) (Y − Ȳ ) = (17)

2

∫ ∞

0

q(θ0τ
′) exp

(

iθ0τ
′
( ω

Ω0
− χ

)

)

Ȳ (τ ′ + τ)ρ(τ ′ + τ) dτ ′

Without the right-hang part, the equation has a universal
solution (rigid mode):

Y = Ȳ = 1,
ω

Ω0
= Q0 (18)

It is an easy matter to add a contribution of a sufficiently
weak wake field to the tune. In a simplest case (constant
wake, low chromaticity, boxcar bunch), the shift is:

∆ω

Ω0
≃ q

(

1 − 2iθ0ζ

3

)

(19)

Hence, q coincides in order of value with addition to the
lowest eigentune. Note that q is negative in many practi-
cal cases (e.g. resistive wall wake). According to Eq. (19),
similar wakes should decrease eigentune of this mode and
excite its instability at ζ > 0. The statements hold true
independently on ∆Q.
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III. LOW SYNCHROTRON FREQUENCY

LIMIT

The ultimate case µ = Qs/∆Q ≪ 1 will be considered
in next sections. Then, using the methods developed in
Ref. [7], one can get equation for the function Ȳ (τ):

U2 d2Ȳ

dτ2
−

(

τ +
U2

νρc + ρ

dρ

dτ

)

dȲ

dτ
+

ν(ν + ρ/ρc)

µ2
Ȳ =

2∆Qcρ(τ)

Q2
sρc

∫

∞

0

q(θ0τ
′) exp

(

iθ0τ
′(ν∆Qc − ζ)

)

×

Ȳ (τ ′ + τ)ρ(τ ′ + τ) dτ ′ (20)

with

ν =
ω − Ω0Q0

Ω0∆Qc
, U2 =

1

ρ(τ)

∫

F (τ, u)u2du (21)

Here and after, subindex c marks the bunch center, u is
reduced particle momentum: u2 = A2 − τ2, and A =
τmax is amplitude of synchrotron oscillation.

Eq. (20) without the wake is obtained in Ref. [7] where
details of the derivation are provided as well. With
an additional assumption ν ∝ µ2 → 0, the equation
coincides with Eq. (60) of Ref. [6]. Such limiting
transition is quite legitimate in the left-hand side of
Eq. (20) which bears only real coefficients. However, it
totally annihilates the imaginary part of the right-hand
side at ζ = 0. Such was indeed in case in Ref. [6] when
the conclusion was made that, at zero chromaticity, all
eigentunes are real numbers as long as the wake reaches
the TMCI threshold. However, it is seen that the right
hand part of Eq. (20) is a complex value even at ζ = 0.
Purely real eigentunes of similar equations are possible
only in exceptional cases. This and other discrepancies
will be considered below in detail.

So the equation to be investigated is:

U2 d2Ȳ

dτ2
= R(τ) (22)

with

R(τ) =
(

τ +
U2

ρ

dρ

dτ

) dȲ

dτ
− νρ Ȳ

µ2ρc
+ (23)

2∆Qcρ(τ)

Q2
sρc

∫ 1

τ

q
(

θ0(τ
′ − τ)

)

Ȳ (τ ′)ρ(τ ′) exp(iϕ) dτ ′

and

ϕ = θ0(ν∆Qc − ζ)(τ ′ − τ) (24)

Boundary conditions are evident just from the equation
itself, because of the relation U2(±1) = 0 which fol-
lows right from definition (21) and will be reinforced by

examples in the subsequent text. Therefore any appro-
priate solution of Eq. (22) should satisfy the boundary
conditions:

R(±1) = 0. (25)

All of them are regular functions, that is Landau damping
plays no part at Qs ≪ ∆Qc [7].

Actually the solution will be performed in two steps.
Firstly, it will be solved at ϕ = 0 without additional
assumptions or approximations like perturbation theory,
independently on the wake amplitude. Thereafter the ob-
tained solution will be used to find imaginary additions
to the frequency due to non-zero ϕ. Rather serious re-
striction |ζθ0| <∼ 1 will be actually applied in this stage.
However, it allows to define at least sign of the chromatic-
ity required to depress the instability. More details are
given below by specific examples.

IV. BOXCAR MODEL, RECTANGULAR WAKE

A constant wake within a bunch of constant density is
considered in this section:

q = q0, ρ(τ) =
1

2
, U2 =

1 − τ2

2
at |τ | ≤ 1 (26)

This simple model is very pertinent to demonstrate both
characteristic features of the phenomenon and procedure
of the solving to be used.

A. Solution with ϕ = 0

First, Eq. (22) is investigated under the assumption
ϕ = 0 what means, in particular, a negligible chromatic-
ity. To satisfy boundary condition (25) in the bunch
head, we have to take at τ = 1 :

Ȳ = 1,
dȲ

dτ
=

(ω/Ω0 − Q0)∆Qc

Q2
s

(27)

With arbitrary trial ω and these initial conditions, so-
lution of Eq. (22) can be found to know the function
R(τ) everywhere, including the bunch tail τ = −1. Ap-
plying boundary condition (25) to this point, one can
select appropriate values of ω which just are the bunch
eigentunes. In practice, it is a good way to get hight pre-
cision real eigentunes including the TMCI thresholds in a
designated area. Complex eigentunes could be found by
this method as well, but it would require essentially more
widespread sorting over the trial frequencies. Therefore,
other methods will be used below to calculate the TMCI
growth rate.

The method is illustrated by Fig. 1 where the value
R(−1) (misalignment) is plotted against the real fre-
quency at different wakes being presented in terms of
the parameters h and K:

h(h + 1) =
2(ω/Ω0 − Q0)∆Qc

Q2
s

, K =
q0∆Qc

Q2
s

(28)
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FIG. 1: Misalignment R(−1) vs tune at different positive
wakes (boxcar model, rectangular wake).
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FIG. 2: Eigentunes of several modes vs modified wake
strength (boxcar model, rectangular wake).

Convenience of such a parameterization is that all the
eigennumbers are integer at K = 0: hn = n. By Fig. 1,
most of them almost do not depend on K in considered
interval. There are only two essential exclusions: the
eigentunes h0 and h1 approach each other when the
wake increases, and merge at K = 0.467 what is the
TMCI threshold. Extended picture is shown in Fig. 2
where several eigentunes are presented in a wider range
including negative wakes. It is seen that second TMCI
threshold appears at K ≃ 7 by merge of 2nd and 3rd
modes. Other TMCI modes can appear at higher K but
they never been observed with negative K.
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FIG. 3: Eigenfunctions of 0th and 1st modes (solid and
dashed) at different positive K (boxcar, rectangular wake).
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FIG. 4: Eigentunes of lower modes vs the wake strength.
Zoom of Fig. 2 + TMCI (boxcar model, rectangular wake).

The basic (K = 0) eigenfunctions of the boxcar bunch
are Legendre polynomials [3, 7]. Eigenfunctions of 0th
and 1st modes are plotted in Fig. 3 at different positive
K below the first TMCI threshold. They are about linear
functions that is can be presented as linear combinations
of corresponding basic eigenmodes. With this assump-
tion, the eigenfunctions and eigentunes are:

Ȳ (τ) = 1 − 2Kτ

1 − K ∓ S
;

ω

Ω0
− Q0 =

Q2
s

2∆Qc
(1 + K ± S)

(29)
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FIG. 5: Eigenfunctions of 0th and 1st modes (solid and dashed
lines) with negative K (boxcar model, rectangular wake).

where

S =

√

1 − 2K − K2

3
(30)

All of them are real numbers at K < 0.467 which bound-
ary almost coincides with the numerically calculated
TMCI threshold. Being continued beyond the thresh-
old, the formulae results in complex tunes which are pre-
sented in Fig. 4 where part of Fig. 2 is also replicated on
a larger scale.

Different behavior demonstrate eigenfunctions of the
bunch with negative wakes. Examples are given in
Fig. 5 where the lowest functions are plotted at several
K < 0. In contrast with Fig. 3, the bunch deviation ac-
crues about exponentially from the bunch head to tail,
and the curves diverge faster at stronger wake. Higher
modes have similar behavior leading to the conclusion
that TMCI is impossible at K < 0. Essential dissimilar-
ity of the eigenfunctions from the basic ones (Legendre
polynomials) at |K| ≫ 1 deserves an attention, too.

B. Effect of chromaticity

Considering Eq. (22) and (23) with ϕ 6= 0, we will treat
its effect as a small perturbation of the above given eigen-
modes. The assumption imposes the condition |ζθ0| < 1,
at least, which may be a rather rigorous restriction in
practice. However, it allows to determine sign of chro-
maticity required to depress the instability, at least.

Imaginary addition to the tune is the most important
effect which can be described by the formula:

Im
∆ωn∆Qc

Ω0Q2
s

= Λn(K) θ0

[

ζ − Re
(ωn

Ω0
− Q0

)]

(31)
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FIG. 6: Chromaticity factor Λn(B) of different modes against
the wake strength (boxcar model, rectangular wake).
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FIG. 7: The same as in Fig. 6, zoom and 1st TMCI mode
added (boxcar model, rectangular wake).

Contribution of the last term may be small numerically,
but it shows that, with rare exclusions, the eigentunes
are complex numbers even the chromaticity is zero.

Parameter Λn is plotted against wake strength in Fig. 6
and 7. According to them, opposite signs of chromaticity
are needed to suppress 0-th or any other mode, when
the parameter |K| is sufficiently small. Similar situation
is very known in the case of “usual” (no space charge)
head-tail instability [1, 2]. However, it is seen that more
and more modes can be depressed along with 0th one at
higher |K|, if sign of chromaticity coincides with the wake
sign.
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V. GAUSSIAN BUNCH, RECTANGULAR

WAKE

Constant wake within a truncated Gaussian bunch is
considered in this section:

F ∝ exp
1 − A2

2σ2
at A ≤ 1 (32)

Characteristic functions of the bunch for Eq. (22)-(23)
are at |τ | ≤ 1:

ρ(τ) = C

[

σ

√

π

2
exp

(1 − τ2

2σ2

)

erf
(

√
1 − τ2

σ
√

2

)

−
√

1 − τ2

]

(33)
and

U2 = σ2 − C
(1 − τ2)3/2

3ρ(τ)
(34)

where C ≃ exp(−1/2σ2)/(πσ2) is a normalizing coeffi-
cient. Note that at |τ | ≃ 1

ρ(τ) ≃ C(1 − τ2)3/2

3σ2

[

1 +
1 − τ2

5σ2

]

, U2 ≃ 1 − τ2

5
(35)

It is asserted in Ref. [6] that TMCI can arise in non-
truncated Gaussian bunch at zero chromaticity and nega-
tive wake corresponding K < −180, the instability being
provoked by merge of 2nd and 3rd base modes. Positive
wakes are not presented in the work.

Our calculations lead to the conclusions that Gaussian
bunch is very similar to the boxcar one in behavior. In
particular, in both cases TMCI can be caused only by
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FIG. 8: Eigentunes of several modes against wake strength
(Gaussian bunch, rectangular wake).

positive wake, appears as a merge of 0th and 1st modes,
and has a threshold at K ≃ 1.

Examples are given below with σ = 1/3 what means
3σ truncation. The coefficient C is about 0.0339 in this
case. Method of solution is the same as in the boxcar
case with even simpler initial conditions:

Ȳ (1) = 1, Ȳ ′(1) = 0. (36)

Dependence of eigentunes on the wake strength is pre-
sented in Fig. 8 and 9 at zero chromaticity. The plots
look much like Fig. 2 and 4 presenting the boxcar model.
With negative wake, the lines diverge more and more
when the wake enhances, so that TMCI is not observed
in this region. The statement is sustained by Fig. 10
where the lowest eigenfunctions are plotted for several
negative wakes. Like previous, the curves in the graph
come apart more and more giving no way to expect the
TMCI appears.

Very different behavior is demonstrated by the eigen-
functions with positive wakes as it is shown in Fig. 11.
A reciprocal approach of 0th and 1st eigenmodes oc-
curs before the wake parameter reaches threshold value
K = 0.612. Therefore, in the threshold vicinity, the
eigenfunctions are adequately representable as a linear
combination of corresponding basic eigenfunctions (red
lines in Fig. 11). Other basic modes give an unessential
contribution because their tunes differ at least by several
units. TMCI growth rate can be obtained by applying
of this assumption above the threshold as it is shown in
Fig. 9. Second TMCI threshold appears at K = 9.78 by
merge of 2nd and 3rd eigenmodes.

Chromaticity effects are described by Eq. (31) with
coefficients Λn which are shown in Fig. 12 and 13 being
very similar to Fig. 6-7.
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FIG. 9: Eigentunes of lower modes against the wake strength.
Zoom of Fig. 8 + TMCI (Gaussian bunch, rectangular wake).
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FIG. 10: Eigenfunctions of 0th and 1st modes (solid and
dashed lines). Gaussian bunch, negative rectangular wake.
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FIG. 11: Eigenfunctions of 0th and 1st modes (solid and
dashed lines) before the TMCI appears. Gaussian bunch,
positive rectangular wake.

VI. GAUSSIAN BUNCH, EXPONENTIAL

WAKE

Gaussian bunch from previous section is combined here
with the exponential wake:

W (t) ∝ exp
(

− t

t0

)

(37)

that is q = q0 exp(−ατ) where α = θ0/(Ω0t0). The same
method of solution is adaptable and effective in this case
because the wake field factor breaks up in the equation
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FIG. 12: Chromaticity factor Λn(K) for several modes against
the wake strength (Gaussian bunch, rectangular wake).
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FIG. 13: Zoom of Fig. 12 to show two TMCI thresholds
(Gaussian bunch, rectangular wake). Chromaticity contri-
bution above first TMCI threshold is shown as well.

into independent parts:

q
(

θ0(τ
′ − τ)

)

= q0 exp(ατ) exp(−ατ ′) (38)

The results are presented at α = 1 in Fig. (14) and (15)
being very similar to the case of rectangular wake. As
before, TMCI is possible only with positive wake though
the TMCI thresholds are a bit higher: 1.03 instead of
0.612 and 14.4 instead of 9.8 (Fig. 14). Depression factor
1.5-1.7 is just consistent with what is expected from aver-
age wake decay in the range of the bunch. Chromaticity
effects are decreased by about by same factors (Fig. 15).
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FIG. 14: Eigentunes of lower modes including TMCI with
positive wake (Gaussian bunch, exponential wake).
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FIG. 15: The same as in Fig. 6 at positive wake. Two TMCI
thresholds are seen (Gaussian bunch, exponential wake).

VII. SUMMARY AND DISCUSSION

Basic equation for transverse bunch oscillations is ob-
tained in the article using two general assumptions:

Qs ≪ ∆Qc and
∣

∣

∣

ω

Ω0
− Q0

∣

∣

∣
≪ ∆Qc

As it shown in the paper, second of them is equivalent to
the condition:

|q| ≪ ∆Qc

which is valid for the lower eigenmodes, at least. It means
that space charge dominates in the impedance budget,
whereas the wake is relatively weak. In spite of this, the
wake can cause a radical change of the bunch spectrum, a
circumstance which seriously restricts applicability of the
perturbation methods for solution of the equation. Such
methods are certainly valid at the additional condition

|K| =
|q|∆Qc

Q2
s

< 1

but a special analysis is required if it is violated.

Most of presented results are obtained with no using
of the perturbation methods. It is shown that, with zero
chromaticity and monotonically decreasing wakes, only
positive wakes can excite Transverse Mode Coupling In-
stability by a confluence of two lowest eigenmodes. Its
lowest threshold is located at K ≃ 1 so the perturbation
theory can be used to determine the instability growth
rate. Effects of chromaticity are studies as well with ad-
ditional assumption that contributed phase advance is
∼ 1 or less within the bunch.

Doubtless, resistive wall wake q ∝ −1/
√

τ is of most
interest in practice. The wake decays very slowly so that
multi-bunch and multi-turns effects should be necessarily
taken into account for its full investigation. Nevertheless,
it can be predicted right now that this negative wake
does not cause a merge or approach of the eigenmodes
producing TMCI like effects.

[1] C. Pellegrini, Nuovo Cimento A64, 447 (1969).
[2] M. Sands, SLAC TN-69-8 (1969).
[3] F. Sacherer, CERN-SI-BR-72-5 (1972).
[4] V. Balbekov, Sov. Phys. Tech. Phys., Vol.21, No.7, 837

(1976).
[5] M. Blaskiewicz, Phys. Rev. ST Accel. Beams 1, 044201

(1998).

[6] A. Burov, Phys. Rev. ST Accel. Beams 12, 044202 and
109901 (2009).

[7] V. Balbekov, Phys. Rev. ST Accel. Beams 12, 124402
(2009).

[8] D. Mohl and H. Shonauer, in Proceedings of the IX Inter-

national Conference on High Energy Accelerators, Stan-

ford 1974 (AEC, Washington, D.C., 1974), p. 380.




