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1 Introduction

While indirect cosmological observations provide abundant evidence for the existence of dark
matter (DM) [1–3], terrestrial evidence of its particle nature has been elusive. The identity of
DM stands alongside several important open questions at the intersection of cosmology and
particle physics including the missing anti-matter, the number of light degrees of freedom in
the CMB [4], and the observed absence of small-scale structure [5, 6].

Recently, the CoGeNT direct detection experiment [7] reported an excess of events in their
low-recoil bins. If this excess is interpreted as evidence of a DM particle, the natural scale
for its mass is ∼ O(10GeV). Since this energy scale does not easily fit the so-called WIMP
paradigm, the dark sector must generically be expanded to generate the right cosmological
abundance. This can be accomplished with new light states as in [8–10] or by relating the
DM abundance to the SM baryon asymmetry as in [11–25]. See [26] for a thorough treatment
of the constraints on such models.

Generic models of light DM are highly constrained by the null results of CDMS [27] and
XENON10 [28–30] experiments. The CDMS collaboration has recently reanalyzed the CDMS
II Germanium data with the detection threshold lowered to 2 keV. This analysis excludes
both the DAMA [31] and CoGeNT preferred regions for WIMP DM. XENON10 also claims
to rule out the WIMP interpretation of DAMA and CoGeNT, though there is controversy
over XENON’s scintillation efficiency Leff at low energies [32–34]. A theory which can explain
the positive signals while evading all the constraints may require some or all of the following
epicycles: additional dark species [35], momentum dependent DM/SM interactions [36] or
non-standard couplings to nucleons [37] (see Ref. [38] for a thorough study).
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In this note, we suggest that atomic dark matter (aDM) may answer a number of impor-
tant, open questions in cosmology. We find that aDM can generate the right DM abundance
and baryon asymmetry, contains additional relativistic degrees of freedom and is capable of
smoothing structure on much larger scales than conventional CDM candidates [39]. Further-
more, aDM may reconcile CoGeNT with constraints from null experiments. We also find
that the regions of aDM parameter space favored by CoGeNT are consistent with prelimi-
nary signals at CRESST [40]. Finally, we note that that the existence of both dark ions and
atoms within aDM gives rise to a unique halo structure.

Section 2 gives a brief overview of aDM; section 3.2 extends the simple framework to explain
both the dark matter abundance and the SM baryon asymmetry via the mechanism recently
proposed in [24]; section 3.3 describes and justifies the pattern of spontaneous symmetry
breaking in the dark sector; section 3.4 describes the recombination of multiple species of
dark atoms; section 4 reviews relevant direct detection signals, limits and constraints on the
aDM parameter space; subsection 4.1 includes a discussion of the novel aDM halo structure;
finally, section 5 summarizes our results and outlines future directions.

2 Review of aDM

Atomic dark matter consists of four Weyl fermions - E, Ec, P and Pc - charged under two
U(1)’s. The first, U(1)D, has vector couplings and is unbroken. The second, U(1)X , has
axial-vector couplings and is spontaneously broken by the vev of X which is also responsible
for the masses of E and P.

U(1)D U(1)X
E −1 −1
Ec 1 −1
P 1 1
Pc −1 1
X 0 2

Table 1. Field content and U(1) charges for aDM.

The axial gauge boson is kinetically mixed with SM U(1)Y through a coupling of the form
[41]

Lmix =
ǫ

2
BµνX

µν . (2.1)

This operator arises from integrating out a heavy fermion with vector couplings to both
U(1)’s so ǫ is given by:

ǫ(µ) =
gY gX
16π2

ln

(

Mheavy

µ

)

, (2.2)

where experimental constraints allow ǫ2 . 10−5 for MX & 400MeV [42–44]. Note that the
existence of a U(1)gauge boson with this mass and coupling can ameliorate the discrepancy
between the standard model prediction and the measured value of the muon g-2 [42]. The
field content and interactions above are capable of producing a successful cosmology and
unique direct detection spectrum.
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2.1 Cosmology

The possibility of U(1) charged DM with long-range interactions, has been explored in a
number of works [39, 45–48]. In the case where DM exists in ionic form, halo morphology and
bullet-cluster observations [49, 50] place tight constraints on the (αD,mDM ) parameter space.
Long-range interactions push the DM from a virial configuration toward kinetic equilibrium
and can make the scattering rate in the bullet cluster too high. The aDM scenario avoids
these problems by assembling the dark ions into atomic bound states which are net neutral
under the U(1) with a smaller fraction XE existing in ionic form. The ionic fraction is defined
as:

XE ≡ nE

nE + nH
, (2.3)

and it is most sensitive to the value of αD, tending to decrease as the coupling increases.
Similarly, XE also tends to decrease as mE increases with mP held fixed. The dependence
on mP is much weaker than the other two parameters. See Figure 2 for the light atoms
considered in this work and Figure 1 in Ref. [39] for a more general treatment.

In this framework, the cosmological abundance of DM is dependent upon the existence of
an asymmetry between (E,P ) and (E,P )c and we return to the question of generating this
asymmetry in Section 3.

2.2 Direct Detection

The leading interaction between aDM and the SM is through the X − γ mixing in Eq. (2.1).
The static potential between a SM particle with charge QEM and a DM ion with charge QX

goes like

V (~SDM, ~r ) ∼ (ǫQXQEM)
(

~SDM ·~r
) e−MXr

r2
, (2.4)

with the dependence on the DM spin-operator arising from the axial-vector couplings of
U(1)X , cf. Ref. [51]. As in SM hydrogen, the aDM ground state is the n = 1 state with
anti-aligned spins and the S = 1 triplet states have a slightly higher energy so there is a
hyperfine splitting. At leading order, the interaction in Eq. (2.4) forces dark atoms to scatter
inelastically from SM nuclei by excitation into the hyperfine state. The ratio of the hyperfine
splitting Ehf to the ground state binding energy B scales as

Ehf

B
∝ α2

D

mE

mP
, (2.5)

so that Ehf can easily be O(keV) for atomic masses O(10GeV). This implies that dark
ions, which are free spins, will scatter elastically such that the ionic recoil spectrum vanishes
for small recoil energies. Thus, aDM realizes many of the mechanisms [38] necessary for
reconciling CoGeNT with other null searches. In Section 4 we show that aDM can explain
the positive signals reported by both CoGeNT and CRESST while evading bounds set by
XENON and CDMS.

3 Asymmetric Atomic Dark Matter

In this section we propose an ultraviolet completion to the above model. It both dynamically
explain the generation of the dark matter abundance (by linking it to the baryon asymmetry),
and relieves the issue of a Landau pole for the U(1) dark gauge field below the Planck scale.
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3.1 The Model

We propose a nonabelian dark sector with SU(2)D×U(1)X gauge symmetry, where the labels
D and A refer to “dark” and “axial,” respectively. By embedding U(1)D into a non-Abelian
group we avoid a Landau pole below the Planck scale. The matter Lagrangian contains

L⊃ −1

2
M i

nn
2
i + yijniℓjh+ λi

e
niEϕe + λi

p
niPϕp + yeXEEc + ypX †PP c +H.c. , (3.1)

where ℓj , h are the Standard Model lepton and Higgs doublets; the ni (for i = 1, 2) are sterile
neutrinos with GUT scale Majorana masses Mi; the ϕp, ϕe, and X are scalar fields. All
gauge representations and quantum numbers are given in Table 2.

SU(2)D U(1)X Z2

E � −1 −1
Ec � −2 −1
ϕe � 1 −1
P � 1 1

Pc � 2 1
ϕp � −1 1

X ��
� 3 1

Table 2. Field content and gauge representations for Asymmetric aDM. The U(1)X charge assign-
ments forbid nEcϕe and nP cϕp terms which would wash out the dark matter asymmetry. The
discrete Z2 parity prevents atomic annihilation in the low energy effective theory. Mixing between
U(1)Y and U(1)D is naturally tiny due to the SU(2)D embedding.

For at least two species of sterile neutrinos, the parameters yij and λi
e,p contain irreducible

complex-phases and give rise to CP violation. Out of equilibrium n decays generate both the
Standard Model lepton asymmetry and the asymmetric dark matter abundance. While lepton
number is explicitly violated by neutrino Majorana masses, it remains a good accidental
symmetry in the visible sector above the electroweak scale. In the dark sector, we impose a
Z2 symmetry to dangerous EP mass terms which allow EP annihilation into dark radiation,
see Table 2. Notice that Eq. (3.1) does not allow explicit mass terms for the fermions E and
P ; however, dark-sector symmetry breaking via the VEV 〈X 〉 ≡ vX induces these fermion
masses through the XEEc and X †PP c yukawa terms, as we will see in Section 3.3.

3.2 Connecting Atomogenesis to Leptogenesis

Following [24] and [25], we track the evolution of these asymmetries with the parameters

ǫℓ =
Γ (n1 → lh)− Γ

(

n1 → l̄h†
)

Γn1

(3.2)

ǫE =
Γ (n1 → Eϕe)− Γ

(

n1 → Ēϕ†
e

)

Γn1

(3.3)

ǫP =
Γ (n1 → Pϕp)− Γ

(

n1 → P̄ϕ†
p

)

Γn1

, (3.4)
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Since the IR phenomenology will require E and P to be stable with comparable masses, we
will simplify our discussion by considering only the asymmetry in E without loss of generality.
for each number density of interest, the yields Yi ≡ ni/s satisfy the Boltzmann equations

sH1

z
Y ′
n1

= −γD

(

Yn1

Y eq
N1

− 1

)

+ (2 ↔ 2) , (3.5)

sH1

z
Y ′
∆E = γD

[

ǫE

(

Yn1

Y eq
n1

−1

)

− Y∆E

2Y eq
E

BE

]

+ (2 ↔ 2 washout + transfer) (3.6)

sH1

z
Y ′
∆ℓ = γD

[

ǫℓ

(

Yn1

Y eq
n1

− 1

)

− Y∆ℓ

2Y eq
ℓ

Bℓ

]

+ (2 ↔ 2 washout + transfer) , (3.7)

where ′ denotes differentiation with respect to z ≡ Mn1/T , ∆(ℓ,E) track the particle-antiparticle
asymmetries in the two sectors, H1 is the Hubble parameter at T = Mn1 , s is the total en-
tropy density, Y eq

i are the equilibrium yields, B denote the branching fractions of n1 into the
corresponding channel and finally, γD is the thermally averaged n1 decay density

γD =
m3

n1
K1(z)

π2z
Γn1 , (3.8)

which we have written in terms of the first modified Bessel function K1.

In order to generate the observed scale of neutrino masses O(10−2 eV) via the “See-Saw”
mechanism and the correct abundance of O(10GeV) dark matter, we must work in the so-
called “strong-strong” washout regime where both SM and dark sector partial-widths satisfy
Bℓ,EΓ

2
n1

≫ Mn1H(Mn1). In this scenario the neutrinos remain coupled to the cosmological
fluid until the 2 ↔ 2 scattering terms (e.g. n1n1 ↔ ℓℓ) trigger the departure from equilibrium
after the neutrino number density becomes nonrelativistic. This allows Yn1 to drift from Y eq

n1

and leave behind asymptotic particle/antiparticle asymmetries Y ∞
∆(ℓ,E) in the z → ∞ limit.

The Lagrangian in Eq. (3.1) only displays terms that exhibit a global symmetry under which
E(P ) and ϕe(ϕp) carry opposite charge. After electroweak symmetry breaking, the scalars
ϕe,p can decay to (ℓĒ) and (ℓP̄ ) final states (Figure 1). Since the scalars acquire particle-
antiparticle excesses equivalent to their fermionic counterparts, their decays naively erase
the asymptotic fermion asymmetry Y ∞

∆E . However, the scalar potential for these fields allows
terms that violate ϕe and ϕp number by two units

V (ϕp, ϕe) ⊃ κ (ϕpϕe)
2 + h.c. , (3.9)

and thereby initiate interconversion ϕe,p ↔ ϕ†
e,p. When the dark asymmetry acquires its

asymptotic value at Tasym ≫ Mϕ, the scalars are still relativistic and the interactions in
Eq. (3.9) equilibrate with the thermal bath to washout the scalar asymmetry before they
decay out of equilibrium1 at late times. Since there is no comparable interaction for E or P ,
the resulting dark sector will only contain stable asymmetric fermions.

As with standard Leptogenesis, electroweak sphalerons generate the observed baryon number
from the lepton asymmetry at high temperatures. If the Yukawa couplings |λ| and |y| are

1Technically this requirement is too strong; the decay need not necessarily be out of equilibrium, but this is
generically the case since the only allowed process (Figure 1 ) is suppressed by powers of v/Mn1

and becomes
relevant only after interconversion has frozen out.
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ϕe

n
ν, ℓ

E

ϕp

n
ν, ℓ

P

Figure 1. Diagrams contributing to scalar doublet decay through neutrino mass insertions. After
the scalars become matter-antimatter symmetric through ϕe and ϕp number violating interactions,
these decays give no net lepton number violation and the decay products annihilate into dark/visible
radiation.

identical in magnitude and phase, then both sectors acquire the same particle-antiparticle
asymmetries. The ratio ΩDM/ΩB will therefore have the observed value of ≃ 6 if the average
mass in the dark sector is O(10GeV); we will assume this to be the case throughout the
remainder of this paper.

Finally, we note that in the limit where we ignore all interactions not included in Eq. (3.1),
we can define

σ ≡
(

σ+
σ−

)

≡
√
2

(

λ̃eE + λ̃pP

λ̃eE − λ̃pP

)

ϕ ≡
(

ϕ+

ϕ−

)

≡
√
2

(

ϕe + ϕp

ϕe − ϕp

)

, (3.10)

so that Eq. (3.1) contains

λini σ ·φ, (3.11)

where λ̃e,p ≡ λi
e,p

λi . Thus, we see explicitly that our UV theory is physically identical to that
in [24], which finds robust parameter space for thermal “See-Saw” Leptogenesis with dark
matter mass mχ ≃ 10GeV. Since the model’s IR features (e.g. direct detection, structure
formation) are not sensitive to the parameters in the UV Lagrangian, in the rest of the paper
we take the asymmetry for granted. Furthermore, we will assume that the couplings λi

e
and

λi
p
in Eq. (3.1) are such that the resulting asymmetries give equal numbers of E and P states

at late times.

3.3 Symmetry breaking and IR mass spectrum

The scalar potential for the adjoint X contains

V (X ) ⊃ η (X a†X a)2 + η′ X a†X bX a†X b +M2
XX a†X a , (3.12)

where a and b are SU(2)D adjoint indices. While couplings to the other scalars are also
allowed, we demand that 〈ϕe〉 = 〈ϕp〉 = 0, so operators with these fields do not con-
tribute to the minimization conditions. We have also omitted the allowed SM Higgs coupling
H†HX a†X a and absorbed its vev into MX for simplicity.

For M2
X < 0, the adjoint scalar acquires a VEV which we can rotate into the T3 direction

without loss of generality

〈

X 3
〉

=
〈

X 3†
〉

≡ vX =

√

M2
X

2(η + η′)
. (3.13)
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Since X is an SU(2)D doublet with U(1)X charge, this implies a symmetry breaking pattern
where the axial group is broken completely SU(2)D × U(1)X → U(1)D, while the residual
unbroken U(1)D is just the T3 component of SU(2)D . Henceforth, we will refer to this
massless gauge field as the “dark photon.”

After symmetry breaking, the fermionic doublets E,P acquire masses mE,P ≡ ye,pvX and
residual U(1) charges are determined by their SU(2)D isospin.

E ≡
(

ẽ
e

)

, P ≡
(

p
p̃

)

(3.14)

As noted previously, gauge charges allow an EP mixing mass, which would allow atomic
states to annihilate, hence we demand a Z2 symmetry to forbid this mixing and stabilize our
dark matter candidate.

3.4 Recombination of Multiple Atomic Species

For sufficiently large dark couplings (e.g. αD ∼ 0.1), aDM gives robust parameter space
for early-universe recombination. The original scenario, however, assumes the minimal field
content giving rise to only one species of atom: a Hydrogen-like bound state with hier-
archical constituents (e.g. mp ∼ 100me). In the SU(2)D× U(1)X model, the field con-
tent allows four distinct atomic bound states. After X acquires a VEV, dark “electrons”
E and dark “protons” P generically receive different masses. Since both doublets have
charge ±1 components (ẽ, e) and (p, p̃) under the unbroken U(1)D symmetry, predicting
the cosmological atomic abundance requires following the evolution of 8 correlated species:
ẽ, e, p, p̃, Hep, Hẽp̃, Heẽ and Hpp̃. The residual SU(2)D global symmetry guarantees that
tilded and un-tilded fields evolve in the same way, which reduces the number of independent
species to five. Finally, we can reduce the number of independent equations to four if we
demand that the co-moving DM number density is constant, where

nDM = 2ne + 2np + 4Nep + 2Neẽ + 2Npp̃. (3.15)

If we define the following fractional yields

XenDM = 2ne

XpnDM = 2np

YepnDM = 2Nep

Ypp̃ nDM = 2Npp̃

Yeẽ nDM = 2Neẽ, (3.16)

then Eq. (3.15) becomes

1 = Xe +Xp + 2Yep + Yeẽ + Ypp̃. (3.17)

– 7 –
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Figure 2. Solid lines show the total residual ionization. In both plots the values of the residual
ionization Xe are, from top to bottom: > 0.1, 10−2 − 10−1, 10−3 − 10−2, 10−4 − 10−3, 10−5 − 10−4

and 10−6 − 10−5. Dashed lines on the left plot indicate the hyperfine splitting in keV, while dashed
lines on the right plot indicate constant values of the ratio of the self-scattering cross section to the
dark matter mass in cm2/ GeV. In both cases, the horizontal axis is the total mass of the dark atom.

Without loss of generality we set Yeẽ = 1 −Xe −Xp − 2Yep − Ypp̃ and take the independent
Boltzmann equations to be2

dXe

dt
=

2

nDM
(Cep + Ceẽ)

dXp

dt
=

2

nDM
(Cep + Cpp̃)

dYpp̃

dt
= − 2

nDM
(Cpp̃)

dYep

dt
= − 2

nDM
(Cep) (3.18)

(3.19)

The collision operator Cij for the recombination of ions i and j into bound state Hij can be
written as

Cij = 〈σ〉ij→Hijγ

(

Nij

neq
i neq

j

N eq
ij

− ninj

)

; (3.20)

the superscript “eq” refers to equilibrium number density and the full expression for the
thermally averaged recombination cross-section can be found in our earlier paper [39] and
references therein.

While the total dark matter number density depends on the abundances of all species, the
“chargitronium” states eẽ and pp̃ do not interact with ordinary matter at leading order;

2In the rest of this discussion we assume that CP -violation is negligible, i.e. the matrix elements in these
Boltzmann equations are T -invariant.
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see Section 4.2 for a detailed discussion. In Figure 2(a) we plot the fractional cosmological
abundance of atomic states 2Yep as a function of αD and the atomic mass mDM , including
contours of constant hyperfine splitting. Observations of the bullet cluster and constraints
from DM halo morphology (see Section 2.1 in [39]) demand that σself-scattering/MDM . 1
cm2/g. The self-scattering cross sections for ion-atom and atom-atom interactions are large
– larger than the näıve geometric value 4πa20 – because the interaction potentials are long-
range, mediated by the massless dark photon. As noted in [39] and references therein, over
the relevant range of interaction velocities we consider, the actual cross-sections scale as
σself-scattering ∼ 4π(κa0)

2, where 3 ≤ κ ≤ 10 sets the scattering length. In Figure 2(b)
we plot the same parameter space with contours of constant σself-scattering/MDM. For the
rest of the paper we will focus on the regions of parameter space where 2Yep ∼ O(1) and
Xe +Xp ≤ 10%.

3.5 Light Degrees of Freedom and the CMB

The CMB is sensitive to the number of relativistic degrees of freedom in equilibrium with
the photon gas, parameterized as the effective number of neutrinos, Nν

ρrad = ργ + ρν + ργdark =

[

1 + ζ
7

8

(

4

11

)4/3

Nν

]

ργ , (3.21)

where ργdark is the radiation density due the dark photon and ζ ≃ 0.93 is a parameter
that corrects for neutrino/electron scattering and finite-temperature QED effects [52]. The
dark photon and ordinary photon are equilibrated by dark-electron visible-electron scattering
through X-boson exchange, which becomes inefficient when the dark electrons become non-
relativistic. Their number density quickly becomes Boltzmann suppressed and the the two
sectors decouple around the temperature Tdec ≈ me/20, where me is the mass of the dark
electron. Once the dark/visible photon gasses decouple, they maintain relativistic number
densities, so any temperature difference that arises between them is due entirely to the
additional freeze-out of relativistic species, which heats the visible radiation.

The dark photon’s contribution to Nν in the CMB depends strongly on whether the sectors
decouple before or after the QCD phase transition. For dark electron masses at our scale
of interest (∼ 1 GeV), the sectors decouple around 50 MeV ≪ ΛQCD, so the visible sector
only gets reheated by standard model electron, positron and neutrino freeze-out. Between
decoupling and last scattering, approximately 10 relativistic degrees of freedom freeze out in
the visible sector, so the ratio of photon densities is

ργdark
ργ

=

(

8

43

)4/3

, (3.22)

which gives Nν ≃ 3.4 at last scattering in the presence of dark radiation.

4 Direct Detection and Allowed Parameter Space

4.1 Isothermal Ionic Halo

In this section we consider the fate of dark ions that survive early-universe recombination.
For simplicity, we will assume single species of dark electrons E and protons P . In the equal

– 9 –



mass limit, mE = mP , this assumption introduces no loss of generality and the qualitative
features of this argument do not change so long as the electron and proton masses are of the
same order of magnitude. To model the cold DM, luminous disk, and bulge, we follow the
discussion in [54], however our qualitative results are robust under perturbations of model
input parameters and persist when we consider different CDM haloes (e.g. NFW).

In the allowed regions of aDM parameter space, atomic bound states are the dominant form
of DM and both atom-atom and atom-ion scattering rates are suppressed. As such, we can
safely suppose that the CDM atoms in our galaxy settle into an Einasto3 profile [53] at late
times

ρatom(r) = ρ⊙ exp

{

− 2

αe

[(

r

ah

)αe

−
(

r⊙
ah

)αe
]}

(4.1)

where ρ⊙ = 0.3GeV/cm3 is the local DM mass density, the Einasto index is αe = 0.22,
and the length scale is ah = 13kpc. We assume that the presence of dark ions does not
significantly alter the CDM profile. The luminous disk can be modeled as

ρd(r, z) =
Σd

2zd
exp

(

− r

rd

)

sech2
(

z

zd

)

(4.2)

where (r, z) are cylindrical coordinates, Σ = 1154M⊙/pc
2 is the surface density, and rd = 2.54

kpc (zd = 0.34) is the radial (axial) scale factor. Finally, the luminous “bulge” can be modeled
as a uniform sphere centered at the galactic origin. Since this lies well within the solar radius,
our model will be insensitive to the bulge profile, so the total bulge mass enclosed in radius
r is

Mb(r) = Mb

(

r

rb

)3

(4.3)

where Mb = 4.5× 109M⊙ and rb = 1.54 kpc.

Although recombination leaves behind a global ionized fraction XE (see Eq. (2.3)), after
galaxy formation, the dark-ion mass distribution inside the halo can deviate significantly from
a standard profile. To investigate this phenomenon, we assume a conservative initial condition
in which the ions are initially distributed in an Einsasto profile ρion(t = 0; r) = XE ρatom(r),
which becomes distorted as they scatter. While this approach does not take into account
the initial ionic power spectrum, it sets an upper bound on the local ionized fraction; ions
encounter more friction during galactic infall and, therefore, comprise a smaller fraction of
the total halo than our naive estimate (∼ XE) would suggest.

Following the discussions in [45, 46] we consider the relaxation time τ for an ion to exchange
an O(1) fraction of its kinetic energy. The classical scattering rate is

Γ = nion(r⊙)σ v(r⊙) =
4α2

Dnion(r⊙)

m2
ionv

3
(4.4)

3The qualitative results of this section do not change when we use the NFW profile [5] to model the
dominant atomic CDM halo.
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where nion is the ion density and implicitly depends on XE and we have used the geometric
cross section σ ∼ b2, where b = 2α/mionv

2 is the hard-scattering impact parameter . Com-
paring the relaxation time, τ = Γ−1 to the galactic period, we demand that a typical ion
undergoes many hard scatters during the lifetime of the galaxy

τ

T
≃ G2M(r⊙)

2m2
ion

8π2α2
D r3⊙ nion(r⊙)

≪ 50 ; (4.5)

where T = 2πr⊙/v is the galactic period and M(r) is the total (non-ionic) mass enclosed
in radius r. In the parameter space we consider, this condition is trivially satisfied, and the
ions reach kinetic equilibrium, settling into an independent isothermal halo.

The final equilibrium temperature of the ionic halo is set by a weighted average of the initial
ionic speed distribution. If we assume the ions are initially distributed virially, then by the
virial and equipartition theorems, the temperature as a function of position is

T (r) =
Gmion

3 r
M(r) , (4.6)

whereM(r) is the total galactic mass enclosed in radius r. This gives an average temperature

T =
1

MG

∫

d3rρG(r)T (r) , (4.7)

where ρG and MG are the galactic mass-density and total-mass respectively. The isothermal
ion number density is, therefore

nion(r) = C e−
U(r)

T , (4.8)

where U(r) is the galactic gravitational potential4 and C is a normalization constant5 set by
the global ionized fraction XE .

For benchmark values of mion = 5GeV and αD = 0.1, the condition in Eq. (4.5) is trivially
satisfied and the local ionized fraction becomes

XE(r⊙) ≡
nion(r⊙)

nion(r⊙) + nCDM (r⊙)
∼ 10−3 . (4.9)

As the ion-ion scattering thermalizes, transferring heat from the core to the edge, the ions
spread out away from each other to form an independent halo with farther reach than the
atomic CDM distribution. This dramatic local dilution opens up a new region of parameter
space previously thought to be excluded by direct detection bounds. In Figure 3 we plot the
radial profiles for both neutral (atomic) and ionized mass densities.

Although the bullet cluster bounds allow global XE . 30% [39], to be conservative, we will
only consider values around 10% for the remainder of this paper. For larger global values, the
assumptions of this section are not satisfied and, furthermore, DM self-scattering constraints
seem to rule out XE > 10%. In any case, a dedicated numerical study is necessary to truly
characterize the properties of the ionic halo. We also note that, unlike visible matter, our
dark ions do not form a disk because the usual energy loss mechanisms (e.g. cooling via
bremsstrahlung and molecular de-excitation) are either suppressed or unavailable.

4For XE ≪ 1, U(r) is approximately independent of the ionized fraction so the result in Eq. (4.9) varies
linearly with XE .

5Since ion velocities do not vary spatially at equilibrium, the kinetic term in the Boltzmann weight has
been absorbed into the normalization.
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Figure 3. Plot of both atomic (red, higher) and ionized (blue, lower) mass densities as a function
of distance from the galactic center with mE = mP = 5 GeV and global ionized fraction XE = 0.1.
The three lines corresponding to each distribution are calculated using best fit and ±σ deviations of
the virial concentration parameter Cv [54] which determines the inner slope of the Einasto profile.
The vertical line at r⊙ = 8.25 kpc marks the local galactic position. While 1 σ variations of the
concentration parameter modifies these distributions by half an order of magnitude, their qualitative
behavior is robust and the ionic density near the Sun’s galactic position is generically suppressed
by orders of magnitude relative to the global XE . Similar corrections obtain unders ±1σ variation
in other CDM halo inputs (e.g. galactic virial mass – local DM density); the local ionized fraction
remains of order XE(r⊙) ∼ 10−3.

4.2 Direct Detection

In this section we explore the (MA, MAtom, Ehf) parameter space in light of the positive
signals at DAMA and CoGeNT, the constraints from XENON and CMDS, and recent pre-
liminary results from CRESST [40]. We will limit ourselves to portions of parameter space
where the dark matter is primarily in atomic states, though this simplification still leaves
four bound states to contend with: the chargitronia (e, ẽ) and (p, p̃) and the Hydrogen-like
states (e, p) and (ẽ, p̃). In order to predict count rates at the various experiments we need to
know both their cross-sections for scattering from standard model nuclei and their relative
cosmological abundances.

First, we consider scattering rates. For a bound state of the form (A,B) the interaction
Hamiltonian which allows scattering off of standard model nuclei through a dark atomic
hyperfine transition has the following form

Ĥint ∼ QA

~SA · ~q
µnA

FA

(

µAtom

mA
q

)

+QB

~SB · ~q
µnB

FB

(

µAtom

mB
q

)

, (4.10)

where the QI are the axial charges of the atomic constituents, µAtom is the atomic reduced
mass, the ~SI are the spin operators for the atomic constituents, ~q is the momentum trans-
ferred to the nucleus, the mI are the masses of the atomic constituents, the µnI are the
reduced masses between nucleon and atomic constituents and the function FI is the form
factor for scattering off atomic constituent I. The scattering rate is then proportional to
the matrix element of this Hamiltonian between initial and final dark atom - nucleus states.
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In particular, the initial atomic state has total spin zero and the final atomic state is one
of the three possible spin - 1 states. For the chargitronia, the two terms in Eq. (4.10) are
identical, so that interaction Hamiltonian is proportional to the total spin of the chargitron.
For this reason, the chargitronium atoms do not scatter from ordinary nuclei at leading order
in couplings. In this regime, all the scattering rates have the same functional form, but only
a fraction of the total dark matter abundance able to scatter at direct detection experiments.

Given the above argument, it is important to understand the asymptotic value of 2Yep,
since the number of atoms able to scatter is proportional to this quantity. Furthermore, the
recombination rate for bound states is proportional to

α5m
3/2
lite√

µAtom
, (4.11)

where mlite is the mass of the lightest atomic constituent; see our earlier work for details.
This indicates that (p, p̃) recombines most efficiently and (e, ẽ) combines more efficiently than
the Hydrogen-like states. Note, however, that in the limit where all dark matter masses are
equal, the recombination rates are equal. If we consider case where this master recombination
rate leaves very few ions around, then the final abundances of each of the four bound states
will be one quarter of the total dark matter abundance and 2Yep = 1/2. For the remainder of
this section we work in the equal mass limit and study the direct detection parameter space
as a function of three parameters MX , Ehf and MAtom.

In Figure 4, we find the 90% and 95% favored regions for DAMA and CoGeNT in the
feff, MDM parameter space for four different values of hyperfine splitting and with me fixed
to equal mp; where f4

eff ≡ M4
X/(2(gX ǫ cW )2) controls the overall size of the scattering cross-

section, gX is the U(1)X coupling, and cW is the cosine of the weak mixing angle. We find
these regions by scanning over χ2 per degree of freedom, based on the spectra reported in
[31] and [7] respectively. In the DAMA case the χ2 is weighted by the reported uncertainties
for each bin, whereas for CoGeNT we use Poisson statistics for the uncertainties. Figure 4
also includes constraint lines for XENON10 [29] and the low-threshold re-analysis of CDMS
Ge [27] where we have also used Poisson statistics to define the error bars. To account for
the controversy over the low-threshold behavior of Leff bin at XENON, we plot a modified
exclusion line which omits the 2 - 5 keV recoil bin entirely. Any other treatment of the
low-threshold behavior of XENON’s detector interpolates between these two contours. The
CDMS exclusion is calculated via a χ2 by taking the 95% confidence limit of the spectrum
reported in [27] and weighting the χ2 with Poisson uncertainties. We find that this method
adequately reproduces the “vanilla” WIMP exclusion lines reported by CDMS.

A few comments are in order. First, we see that while increasing the hyperfine splitting
moves the DAMA and CoGeNT regions closer to one another – as one would expect since
Germanium is a heavier nucleus than Sodium – there is no overlap between the two. As
the hyperfine splitting is pushed to even higher values the CoGeNT allowed region becomes
a very narrow, nearly vertical strip around 6 GeV. We note that variations in the galactic
CDM Halo – especially the escape velocity – as well as known uncertainties in the DAMA
quenching can improve agreement between DAMA and CoGeNT [55]. The regions plotted
above are conservative in the sense that they do not take advantage of these variations.
Second, note that the aDM parameter space favored by DAMA is completely ruled out by
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(b) Ehf = 15 keV

Figure 4. DAMA (yellow/green) and CoGeNT (purple/blue) 90% and 95% favored regions with
CDMS-II Soudan exclusion lines (red, solid). In (a) we also include the older XENON 10 bounds
[28, 29] using the published low-recoil sensitivity (black, dashed) and a modified efficiency which
omits the lowest bin (black, dotted) to take into account the uncertainty in Leff . In (b) we use
the most recent XENON 10 release [30] which is more constraining for larger hyperfine splittings.
Similar considerations result in two exclusion lines using the published low-threshold sensitivity (black,
dashed) and a modified efficiency (black, dotted) with a 2 keV threshold. The CoGeNT favored
region is not constrained by XENON 100 because the low-energy threshold is above the characteristic
nuclear recoil energies that explain CoGeNT . Both plots assume a local dark matter density of
ρdm = 0.3GeV/cm3, however only (ep) bound states scatter, so the effective density of scattering
particles is ρdm/2. Following the discussion in Section 4.1, we neglect the effects of dark-ion scattering
as their local density is highly suppressed.

the most recent CDMS analysis and the more constraining XENON exclusion, while the less
aggressive treatment of XENON’s low-threshold behavior does leave some parameter space
for DAMA6. Third, note that increasing the hyperfine splitting does not have much of an
effect on the allowed region for CoGeNT. This is reasonable, given that CDMS puts the
tightest constraints on aDM and both CoGeNT and CDMS both look for Ge recoils. Dark
atoms are not ruled out by the low-threshold results of CDMS or XENON, while light WIMPS
apparently are, because the aDM recoil spectrum goes to zero linearly at low energies. In
contrast, WIMP scattering is exponentially more likely at low recoil.

Finally, there is the matter of CRESST. Since the CRESST detector is made of Calcium -
Tungstate (CaWO4) crystals, and the Oxygen/Tungsten recoils bands are distinguishable,
CRESST is able to contemporaneously search for light DM scattering and heavy DM scatter-
ing, respectively. Preliminary results suggest that with O(550) kg-days of exposure CRESST
sees roughly 23 events in the Oxygen band [40]. We find that the regions preferred by Co-
GeNT for Ehf = 5, 15 keV are consistent at the 90% confidence level, with the count rate in
Oxygen at CRESST. We find that, generically, the DAMA preferred region predicts a count
rate at CRESST which is about four times too large.

5 Discussion

In this article we have studied the rich cosmology and parameter space of atomically bound
dark matter. The abundance of dark atoms can be tied to the baryon asymmetry in which

6We also point out that the tension between DAMA and CoGeNT is not alleviated by ignoring the shape
of the DAMA spectrum and considering only the net count rate.
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the decays of heavy sterile neutrinos generate both dark and visible sector abundances. For
natural couplings to heavy neutrinos, both sectors acquire equal number densities, so the
dark sector mass scale must be O(5GeV) to reproduce the observed DM abundance. Since
the gauge field that binds the dark atoms must be embedded in a non-Abelian group to avoid
a Landau pole below the Planck scale, the dark matter is divided into four atomic species
whose asymptotic abundances are very sensitive to the dark fine structure constant and the
mass of each binding combination. The ionic species generically interact rapidly enough to
maintain kinetic equilibrium and thereby form a separate, more diffuse halo than that of the
cold atoms.

Our analysis has emphasized the limit where all atomic constituents have equal masses. By
symmetry, the atomic species in this limit comprise equally abundant populations of “char-
gitronium.” Because the dark atoms are light compared to the weak scale, the most significant
constraints on aDM come from the low-threshold reanalyses at CDMS and XENON10/100.
While there is significant tension between DAMA and CoGeNT, the parameter space favored
by the CoGeNT signal – and allowed by null results – predicts a large signal at CRESST of
the right order to explain the excess reported in preliminary results.

There are a number of directions for further study. The cosmology of aDM is intricate and
a full numerical study of the parameter space for both the asymmetry and recombination
would be interesting. Furthermore, while it is clear that kinetic equilibrium will lead to a
distinct ionic halo, the details of the aDM phase space distribution can only be determined
through numerical simulations, which require knowledge of the initial power spectrum. It
would also be interesting to consider the observational consequences of the ionic halo; for
example, in principle there could be long range dipole-dipole interactions between galactic
halos. For simplicity, the model has an exact parity that prevents dark atom decay. It
would be interesting to consider soft violations of this parity and the potentially observable
consequences. Finally, we have only studied the direct detection parameter space only in
the case of a fully degenerate dark sector. Since both the abundance of atoms and shape
of the direct detection spectrum are sensitive to the masses of the atomic constituents, the
parameter space for more generic combinations is difficult to map. The possibility of better
agreement between the various positive signals and null results makes a more thorough study
valuable.
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