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We calculate the impedance and the wake functions for laminated structures with parallel-plane
and circular geometries. We critically examine the approximations used in the literature for the
coupling impedance in laminated chambers and find that most of them are not justified because
the wall surface impedance is large. A comparison between the flat and the circular geometry
impedance is presented. We apply our calculation in a state-of-the-art beam dynamics simulation
of the Fermilab Booster which includes not only wake field effects, but also non-linear optics and
three-dimensional space charge. We find good agreement between our calculation of the coherent
tune shift at injection energy and recent experimental measurements.

I. INTRODUCTION

Wake fields are an important component of beam dynamics in high-intensity accelerators, being a potential cause
for losses and instabilities. While there is satisfactory understanding of wake fields in metallic chambers with smooth
geometries, the attempts to describe the impedance effect in structures with laminations are not in very good agreement
with experimental measurements. Magnetic elements for guiding and focusing beams are often constructed from
stacks of iron laminations alternating with the layers of epoxy holding them together. In the absence of beam pipe the
presence of laminations produces large wake effects. Due to the strong demand for increasing intensity in machines
with laminated chambers, such as the Fermilab Booster synchrotron, theoretical investigation of wake effects in the
presence of laminations is of paramount importance.

In addition to improved calculations of the effects of wake fields, realistic simulations which consider the interplay
between wake fields and other effects in accelerators must be employed to accurately describe beam dynamics and
and to compare with measurements. While most of the analytical investigations of wake effects have been done in the
frequency domain and require an impedance function over some finite frequency range, beam simulation algorithms
require point-charge wake functions in the time-and-space domain. The impedance calculation is in general much
easier; the wake fields are related to the impedance via a Fourier transform. However, this method requires knowledge
of the impedance over a large frequency domain as well as the asymptotic behavior at both small and large frequencies.

In this paper we calculate the impedance and the wake functions for laminated structures with parallel-plane and
circular geometries. First the coupling impedance is derived as a function of the wall surface impedance. Then the
surface impedance is calculated by solving the Maxwell equations inside the lamination and the crack regions. A critical
analysis of the resistive-wall impedance for metallic chambers and the approximations involved in its derivations is
also presented.

The Fermilab Booster is a good example of a machine where the beam is exposed to laminations. It is currently
running with beam intensities roughly twice its design value. Direct measurements using a stretched wire between
the gradient magnets ends indicate a large longitudinal coupling impedance [3]. The coherent tune shift, which shows
horizontal tune increase and vertical tune decrease, presents strong evidence for large transverse wakes [4]. Since the
effect on the transverse tunes is specific to geometries without circular symmetries [5], these measurements also stress
the importance of choosing the right chamber geometry for any calculation which address the wakes in the Booster
magnets.

There are several calculations of the impedance due to laminated structures with applications for the Fermilab
Booster [6–9]. Most of them [6–8] address only circular geometry, which is a poor approximation for the Booster
magnets. Moreover, the resistive-wall specific relation they use to connect the wall surface impedance to the coupling
impedance is not valid for structures with large surface impedance and flat chambers such as the laminated magnets in
the Booster. Even for the circular geometry they address only the longitudinal impedance for uniform round beams,
i.e. only the m = 0 angular channel. However, since the commonly encountered relation valid for metallic pipes which
connects the longitudinal impedance Z

||
0 (in the m = 0 channel) and the transverse impedance Z⊥1 (in the m = 1

channel) is not valid for the laminated structures, calculations in the m = 1 channel are necessary to address the
transverse impedance. K. Y. Ng [9] addresses both the parallel-plane geometry, which is close to the real geometry
of the Booster magnets [10], and the transverse impedance. However, for the sake of simplicity, he assumes a beam
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which extends to infinity in the horizontal direction. While this approximation works for metallic pipes, it produces
wakes which are too large for laminated chambers. When applied to the Fermilab Booster magnets, we find that our
derivation of the longitudinal impedance gives a better agreement with the one measured by Crisp and Fellenz [3]
than do the previous calculations.

We employ the Synergia code to run realistic beam simulations which include wake interactions specific to laminated
structures. Synergia is an extensible beam dynamics framework developed at Fermilab [1, 2] which incorporates a
large collection of physical models, specialized modules and numerical libraries. Synergia simulates complex beam
dynamics, employing high order maps to describe single particle propagation through accelerators and considers
collective effects such as space charge forces and wake field interactions. Our Synergia simulations of the Booster with
wake fields predict transverse tune shifts in good agreement with experiment [4].

The paper is organized as follows. In Section II we calculate the impedance and the wake functions for flat chambers
with laminations. We discuss the approximations involved in the calculation at length. In Section III we perform a
similar calculation for circular chambers with laminations and compare the results between the round and the flat
chambers. We then employ Synergia for simulations of the beam dynamics in the Fermilab Booster and and compare
the results with experimental data in Section IV.

II. PARALLEL-PLANE CHAMBER WITH LAMINATIONS

A. Wake functions

The wake functions describe the effect of the electromagnetic field created by a particle moving through an accel-
erator beam pipe upon the trailing particles. Consider a beam pipe enclosed between two parallel plates horizontally
aligned. If the distance between the leading and trailing particle is |z|, the momentum of the trailing particle traversing
a structure of length L will be modified by [5, 11]:

c∆pz = −qQW ||(z) (1)
c∆px = −qQ(W⊥

x (z)X −W⊥
x (z)x) (2)

c∆py = −qQ(W⊥
y (z)Y + W⊥

x (z)y) . (3)

Here Q (q) and (X, Y ) ((x, y)) represent the charge and the transverse displacement of the leading (trailing) particle
respectively. || and⊥ denote the longitudinal and the transverse directions. The higher-order terms in the displacement
are neglected. For this particular geometry, only two wake functions, W⊥

x (z) and W⊥
y (z), are needed for the transverse

directions (Eq. 2 and Eq. 3). This is a consequence of the translational symmetry along the horizontal direction and
of the Panofsky-Wenzel theorem which requires that ∂∆px

∂x = −∂∆py

∂y . The terms proportional to the displacement of
the leading particle, i.e., to X or Y , are called dipole wakes while the ones proportional to the displacement of the
trailing particle, i.e., to x or y, are called quadrupole wakes [12]. Note that in a circular pipe the quadrupole wake
fields vanish due to symmetry, while extra terms can be present in pipes with lower symmetries [11].

To calculate the electromagnetic field, often it is easier to solve the Maxwell equations in the frequency domain,
and afterward calculate the impedances. Once the impedances are known the wakes can be obtained by a Fourier
transform,

W ||(z) =
1
2π

∫
dωZ ||(ω)e−j ω

c z (4)

W⊥
(x,y)(z) =

j

2π

∫
dωZ⊥(x,y)(ω)e−j ω

c z . (5)

In order to calculate the Fourier transforms, it is necessary to have accurate knowledge of the impedance Z(ω) over
the whole frequency domain.

B. Impedance

The electromagnetic field inside a pipe with finite conductivity can be seen as a sum of two terms, one being
the solution of the beam inside a pipe with the same geometry but with infinite conductivity and the rest. The first
contribution to impedance is proportional to γ−2, thus vanishing in the ultrarelativistic limit. The second contribution,
referred to as the coupling impedance, is produced by currents in the pipe walls and is a consequence of their finite
conductivity. Thus the ultrarelativistic coupling impedance is given by the solution of the Maxwell equations for an
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ultrarelativistic beam in a pipe with finite conductivity. However the non-ultrarelativistic corrections to the coupling
impedance can be important for low energy beams [13]. The calculation of impedance for non-ultrarelativistic beams
will be presented elsewhere.

The purpose of this section is to write the coupling impedance as a function of the wall surface impedances for
chamber with flat geometry. The surface impedances are given by the ratio of the different tangential components of
the electric and the magnetic fields at the chamber’s walls and are specific to the chamber. In the next two sections
we will derive the surface impedances for the metallic and laminated chambers respectively.

Our derivation follows closely Ng’s derivation [9]. Consider a relativistic beam propagating through the pipe with
a vertical offset y = a. The distance between the parallel plates is 2b. The charge density and the electrical current
are given by

ρ(x, y, z, t) = ρδ(x)δ(y − a)ej(ωt−kz) (6)
~J(x, y, z, t) = ρ(x, y, z, t)βcẑ , (7)

with k = ω
c . We look for synchronous solutions of the Maxwell equations:

~E(x, y, z, t) = ~E(x, y)ej(ωt−kz) (8)
~H(x, y, z, t) = ~H(x, y)ej(ωt−kz) . (9)

The spectral decomposition along the horizontal direction can be written as

(Ez(x, y), Ey(x, y),Hx(x, y)) =
∫ ∞

−∞
(Ez(η, y), Ey(η, y),Hx(η, y)) cos(ηx)dη (10)

(Hz(x, y),Hy(x, y), Ex(x, y)) =
∫ ∞

−∞
(Hz(η, y), Hy(η, y), Ex(η, y)) sin(ηx)dη .

Inside the vacuum chamber, from the transverse components of the Maxwell equations, ∇ × E = −jkZ0H and
∇×H = jkE, one gets

∂yEz = ηZ0Hz (11)
∂yZ0Hz = ηEz , (12)

which results in

Ez(η, y) = Aη cosh ηy + Āη sinh ηy (13)
Z0Hz(η, y) = Aη sinh ηy + Āη cosh ηy , (14)

where Z0 ≈ 377Ω is the free space impedance. The transverse components of the fields can also be easily deduced.
For a detailed derivation see K. Y. Ng [9]. The set of constants Aη and Āη are determined by imposing boundary
conditions on the fields components at the pipe’s walls. They are also uniquely determined if the surface impedances

Rz(η) = ±Ez(η)
Hx(η)

∣∣∣∣
y=±b

(15)

Rx(η) = ∓Ex(η)
Hz(η)

∣∣∣∣
y=±b

(16)

at the pipe’s walls are known, by substituting in the expressions for the fields and solving for the coefficients,

Aη =
−ρRz(η)

2Z0ε0
sech2 ηb cosh ηa

1 + jRz(η)
Z0

(k
η − η

k ) tanh ηb + Rz(η)Rx(η)
Z2

0
tanh2 ηb

(17)

Āη =
−ρRz(η)

2Z0ε0
csch2 ηb sinh ηa

1 + jRz(η)
Z0

(k
η − η

k ) coth ηb + Rz(η)Rx(η)
Z2

0
coth2 ηb

. (18)

Now the problem of determining the constants Aη and Āη has changed into that of determining Rz and Rx from the
boundary conditions.
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The longitudinal and the transverse impedances can be written as a function of the longitudinal fields Ez and Hz.
Thus, the longitudinal impedance is

Z || = −Ez(x = 0, y = 0)|a=0

ρc
= − 1

2πρc

∫ ∞

−∞
dηAη (19)

=
1
2π

∫ ∞

0

dη
sech2 ηb Rz(η)

1 + jRz(η)
Z0

(k
η − η

k ) tanh ηb + Rz(η)Rx(η)
Z2

0
tanh2 ηb

,

provided the surface impedances are even functions of η.
The vertical force acting upon a trailing charge q at y = 0 created by a beam with displacement y = a, is

Fy(η, y = 0) = q(Ey(η) + Z0Hx(η)) = qj
η

k
Z0Hz(η) = qj

η

k
Āη . (20)

The vertical impedance is

Zy = −Fy(x = 0, y = 0)
jqρca

=
1

2πk

∫ ∞

0

dη
η2 csch2 ηb Rz(η)

1 + jRz(η)
Z0

(k
η − η

k ) coth ηb + Rz(η)Rx(η)
Z2

0
coth2 ηb

, (21)

where only the first order term in the beam displacement was retained, i.e. sinh ηa ≈ ηa.
The horizontal force acting upon a trailing charge q at y = 0, by a centered beam is

Fx(η, y = 0) = q(Ex(η)− Z0Hy(η)) = qj
η

k
Ez(η) = qj

η

k
Aη|a=0 . (22)

For small horizontal displacement of the trailing particle, Fx(x = ∆) ≈ ∆∂Fx

∂x (x = 0). Note that Fx(x) ∝ sin ηx thus,
∂Fx

∂x ∝ η cos ηx. The horizontal impedance is

Zx = −∆∂Fx

∂x (x = 0, y = 0)
jqρc∆

=
1

2πk

∫ ∞

0

dη
η2 sech2 ηb Rz(η)

1 + jRz(η)
Z0

(k
η − η

k ) tanh ηb + Rz(η)Rx(η)
Z2

0
tanh2 ηb

. (23)

The integrands in Eq. 19, 21, and 23 are proportional to sech2 ηb or csch2 ηb, thus going exponentially to zero for
η > 1

b . Therefore only the regime of small η, where η < 1
b is relevant for the impedance.

C. Resistive-wall impedance

The resistive-wall impedance for metallic flat pipes has been calculated by various authors [9, 14]. The main reason
for presenting the derivation here is to take a critical look at the approximations involved. As we will see in Sec. IID,
many of the assumptions valid for the metallic pipes do not hold when laminations are present.

The homogeneous Maxwell equations imply

(
∂2

∂y2
− k2 − η2 + ω2εµ)

(
Ez(η, y, k, ω)
Hz(η, y, k, ω)

)
= 0 . (24)

The solution for the fields inside the metallic pipe can be obtained by replacing the electric permittivity with

ε → ε0(εr +
σ

jωε0
) (25)

where σ is the pipe conductivity and εr is the relative permittivity. One gets

∂2

∂y2

(
Ez

Hz

)
= (η2 + λ2

c + p2)
(

Ez

Hz

)
(26)

where λ2
c = jωσµ = jkZ0σµr, p2 = k2(1 − εrµr), and µr is the relative permeability. The solution for a infinitely

thick pipe is [9]

Ez = Aη cosh ηb eλ(b∓y)

Z0Hz = ±Aη sinh ηb eλ(b∓y)

Ex = Aη

Z0σµr−jk(1−εrµr) (−η cosh ηb− µrλ sinh ηb) eλ(b∓y)

Z0Hx = Aη

Z0σµr−jk(1−εrµr) (±λ cosh ηb± η sinh ηb) eλ(b∓y) ∓ jλAη

k
Z0σ

Z0σµr−jk(1−εrµr) cosh ηb eλ(b∓y)

(27)
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FIG. 1: Impedances of a parallel-plane iron pipe, σiron = 0.5× 107(Ωm)−1 with b = 0.02m. a) and b) Real (black continuous)
and imaginary (black dashed) longitudinal impedance, Eq.19. The low frequency approximation (blue) ∝ √

ω, Eq.35, is valid
up to 10GHz. c) and d) Real and imaginary part of the horizontal (black continuous and black dashed) and the vertical (red
continuous and red dashed) impedances, Eq. 23 and Eq. 21. Eq. 36 (green) and Eq. 37 (blue) are valid approximations in the
interval range 1MHz − 2GHz.

where λ =
√

η2 + λ2
c + p2. For surface impedance one gets

Z0

Rz(η)
=

1
Z0σµr − jk(1− εrµr)

(λ + η tanh ηb)− jλ

k

Z0σ

Z0σµr − jk(1− εrµr)
(28)

Rx(η)
Z0

=
1

Z0σµr − jk(1− εrµr)
(η coth ηb + µrλ) (29)

The coupling impedances follow immediately by putting Eq. 28 and Eq. 29 into equations 19, 21 and 23.
Due to the large value of the conductivity in metallic pipes, Z0σ ≈ 108−109m−1, several simplifying approximations

are commonly used. Z0σµr À jk(1− εrµr) up to very high frequencies, ω <≈ 106GHz. Thus the term jk(1− εrµr)
can be neglected. As pointed at the end of Sec. II B, only values of η < 1

b ≈ 102m−1 are relevant, provided the pipe
radius is of the order of centimeters. Thus

λ ≈ λc =
1 + j

δ
, (30)

where δ =
√

2
ωσµ is the skin penetration depth. The first two terms in Eq. 28 are O( 1

Z0σ ) relative to the third one,

and thus can be neglected. In addition, the first term in Eq. 29 is O( 1√
Z0σ

) relative to the second one. Therefore

Rz(η),Rx(η) ≈ λc

σ
=

1 + j

δσ
. (31)

The surface impedances are small, O( 1√
σ
). For this reason the higher-order terms in the surface impedances in the

denominator of Eq. 19, Eq. 21 and Eq. 23 are not very important in the relevant frequency region for the beam
dynamics. The term proportional to Rz(η)Rx(η) is negligible. The term proportional to Rz

Z0

k
η determines the high

frequency behavior (k >≈ Z0
bRz

) and the one proportional to Rz

Z0

η
k the low frequency behavior (k <≈ Rz

bZ0
). These
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terms proportional to Rz are also small and are often neglected. Thus

Z || =
1
2π

∫ ∞

0

dη sech2 ηb Rz(η) , (32)

Zx =
1

2πk

∫ ∞

0

dηη2 sech2 ηb Rz(η) , (33)

Zy =
1

2πk

∫ ∞

0

dηη2 csch2 ηb Rz(η) . (34)

Since Rz is weakly dependent on η, the common approximations used in the literature for studying impedance effects
in metallic pipes are

Z || =
Rz

2πb
, (35)

Zx =
Rz

2πk

π2

12b3
, (36)

Zy =
Rz

2πk

π2

6b3
, (37)

with Rz(η) ≈ Rz(η = 0). In this approximation Z || ∝ √
ω, while the Zx,y ∝ 1√

ω
and diverges when ω → 0. If the low

frequency behavior is important one can employ

Zx =
Rz

2πk

∫ ∞

0

dη
η2 sech2 ηb

1− jRzη
Z0k tanh ηb

, (38)

Zy =
Rz

2πk

∫ ∞

0

dη
η2 csch2 ηb

1− jRzη
Z0k coth ηb

, (39)

which removes the low frequency divergence and makes the real part of the transverse impedance to go to zero and
the imaginary part to approach a constant when ω → 0.

The impedance of an iron pipe with b = 2cm and the commonly employed approximations for a metallic pipe
discussed previously are illustrated in Fig. 1. Subfigures 1a and 1b show the longitudinal impedance and the ap-
proximations employed by Eq. 35 which holds up to 10GHz. The horizontal and the vertical impedances and the
approximations given by Eq. 36 and Eq. 37 are shown in subfigs. 1c and 1d. The approximations are valid in the
frequency interval 1MHz− 2GHz which corresponds to 8mm− 16m in the reciprocal space. One concludes that the
commonly used approximations for resistive-wall impedance are valid to investigate the wake effects in metallic pipes
at distances of the order of centimeters and meters.

However, when the surface impedance is large the resistive-wall metallic pipe approximations, i.e. Eq. 35, Eq. 36 and
Eq. 37, are not valid anymore. Since in general the laminations increase the surface impedance by more than two orders
of magnitude, this is an important aspect which should be accounted for when calculating the impedance in laminated
structures. In Fig. 2 the impedance is plotted for a pipe with a much smaller conductivity than iron, σ = σiron×10−4.
According to Eq. 31 this corresponds to a 100 times larger surface impedance. The approximation Z || ∝ √

ω (Eq. 35)
commonly used for the longitudinal impedance, does not hold. A better low frequency approximation,

Z || =
1
2π

∫ ∞

0

dη
sech2 ηb Rz(η)

1− jRz(η)
Z0

η
k tanh ηb

, (40)

can be used, but only up to ' 500MHz. Eq. 36 and Eq. 37 do not work for the transverse impedance either. One
can see in Fig. 2c that the real and the imaginary part of the transverse impedances are different. Eq. 38 and Eq. 39
hold only below 200MHz. The only term which can be safely neglected in the denominator of Eqs. 19, 23 and 21 is
the one proportional to RzRx.
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FIG. 2: Impedances of a parallel-plane pipe with σ = σiron × 10−4 with b = 0.02m. a) and b) Real (black continuous) and
imaginary (black dashed) longitudinal impedance, Eq.19. The low frequency approximation (blue) ∝ √

ω, Eq.35 (blue) is not
valid, while Eq.40 (green) approximation hold up to 500MHz. c) and d) Real and imaginary part of the horizontal (black
continuous and black dashed) and the vertical (red continuous and red dashed) impedances, Eq. 23 and Eq. 21. Eq. 36 and
Eq. 37 are not valid approximations, while Eq. 38 (green) and Eq. 39 (blue) are good only up to 200MHz.

FIG. 3: Parallel-plane beam chamber with laminations. Subscript “1” denotes the crack and subscript “2” the lamination. The
laminations are shorted by an ideal conductor “3”. The beam flows in the z-direction; the x-direction is perpendicular to the
plane of the page.
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D. Laminated structures

A chamber with parallel faces and a laminated structure is sketched in Fig. 3. The subscript “1” denotes the
dielectric crack of width h, and “2” denotes the metallic lamination of width τ . The conductivity is large in the
laminations σ2 (≈ 107(Ωm)−1); it is assumed that the dimension τ + h is small (≈ 10−3 − 10−4m) compared to the
propagation wavelength.

With the above assumptions, the formalism presented in Sec. II B is valid and the coupling impedance can be
written as a function of the chamber surface impedance. To show this, we start with the following definition of the
longitudinal impedance [15]

Z ||(ω) = − 1
ρc

∫
dzEz(z, ω)

∣∣∣∣
x,y=0

e−j ω
c z . (41)

Since the longitudinal dimension of laminations and cracks is small compared to the propagation wavelength, i.e.
ω
c (τ + h) ¿ 1, the following approximation is valid

Z ||(ω) ≈ − 1
ρc

∞∑
n=−∞

(τ + h)Ēz(zn, ω)|x,y=0 e−j ω
c zn (42)

where zn = n(τ + h) is chosen to be in the middle of the crack “n”, and

Ēz(zn, ω) =
1

τ + h
(
∫ zn+h/2

zn−h/2

Ez1(z, ω)dz +
∫ zn−h/2

zn−h/2−τ

Ez2(z, ω)dz) =
Ēz1(zn, ω)h + Ēz2(zn, ω)τ

τ + h
, (43)

represents the average field integrated over one lamination width and one crack width. Thus the surface impedances
should be defined as

R̄z(ω, η) =
∑

n Ēz(zn, ω, η)e−j ω
c zn

∑
n H̄x(zn, ω, η)e−j ω

c zn

∣∣∣∣
y=b

=
Ēz(z = 0, ω, η)
H̄x(z = 0, ω, η)

∣∣∣∣
y=b

, (44)

provided Ēz(zn,ω,η)
H̄x(zn,ω,η)

∣∣∣
y=b

does not depend on zn.

Before calculating the surface impedance for the laminated structures some simplifications are in order. Using
Eq. 43 one can write

R̄z(ω, η) =
Ēz1h + Ēz2τ

H̄x1h + H̄x2τ

∣∣∣∣
y=b

. (45)

As will be discussed at the end of Sec. IID 1, at the pipe wall

H̄x1|y=b ≈ H̄x2|y=b . (46)

Therefore

R̄z =
R1zh +R2zτ

h + τ
(47)

where R1z = Ēz1
H̄x1

∣∣∣
y=b

and R2z = Ēz2
H̄x2

∣∣∣
y=b

represent the longitudinal surface impedance in the crack and in the

lamination respectively.
Similarly, the horizontal surface impedance is

R̄x(ω) = − Ēx1h + Ēx2τ

H̄z1h + H̄z2τ

∣∣∣∣
y=b

. (48)

Since H̄z1, Ēx1 ≈ 0, as will be discussed at the end of Sec. IID 1,

R̄x(ω) ≈ − Ēx2

H̄z2

∣∣∣∣
y=b

≈ R2x . (49)
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1. Surface impedance

In order to calculate the surface impedance, focus on the regions 1 and 2 shown in Fig. 3, i.e. y > b, and choose
the middle of the crack as the origin (z = 0), also shown in the figure. Assume that the field-dependence along the
z-direction can be described by

∂2Ez

∂z2
= g2

1,2Ez (50)

∂2Hz

∂z2
= g2

1,2Hz (51)

where the subscripts 1 and 2 correspond to the crack and lamination respectively. The field equation is

(
∂2

∂y2
− η2 + g2

1,2 + ω2µε)
(

Ez

Hz

)
= 0 . (52)

Region 1. Denoting q2 = ω2µ1ε1 + g2
1 − η2, the solution of Eq. 52 inside the crack is

Ez = A1 cosh(g1z)(sin qy + α cos qy) cos ηx (53)
Z0Hz = B1 sinh(g1z)(α sin qy − cos qy) sin ηx . (54)

The transverse fields can be determined from the longitudinal fields[16], thus

(ω2µ1ε1 + g2
1)Ex = (−A1ηg1 −B1jωq

µ1r

c
) sinh(g1z)(sin qy + α cos qy) sin ηx (55)

(ω2µ1ε1 + g2
1)Z0Hx = (−A1jωq

ε1r

c
+ B1ηg1) cosh(g1z)(α sin qy − cos qy) cos ηx (56)

(ω2µ1ε1 + g2
1)Ey = (−A1qg1 + B1jωη

µ1r

c
) sinh(g1z)(α sin qy − cos qy) cos ηx (57)

(ω2µ1ε1 + g2
1)Z0Hy = (A1jωη

ε1r

c
+ B1qg1) cosh(g1z)(sin qy + α cos qy) sin ηx (58)

For the sake of simplicity, we assume that the crack terminates at y = d in an ideal conductor. The condition
Ez|y=d = 0 implies

α = − tan(qd) (59)

The same constant α appears in the expression of all field components as written in Eq. 54-58. This is a consequence
of the condition Hy|y=d = 0. Ey ∝ sinh(g1z), since the current Jy in the laminations along the crack goes in the
opposite direction on the two sides of the crack. The dependence of the other field components on the sign of z follows
from the Maxwell equations.

Region 2. Analogously, inside the lamination and close to the crack-lamination boundary

Ez = A2e
−g2|z|(sin qy + α cos qy) cos ηx (60)

Hz = B2e
−g2|z|sgn(z)(α sin qy − cos qy) sin ηx (61)

(ω2µ2ε2 + g2
2)Ex = (A2ηg2 −B2jωq

µ2r

c
)e−g2|z|sgn(z)(sin qy + α cos qy) sin ηx (62)

(ω2µ2ε2 + g2
2)Z0Hx = (−A2jωq

ε2r

c
−B2ηg2)e−g2|z|(α sin qy − cos qy) cos ηx (63)

(ω2µ2ε2 + g2
2)Ey = (A2qg2 + B2jωη

µ2r

c
)e−g2|z|sgn(z)(α sin qy − cos qy) cos ηx (64)

(ω2µ2ε2 + g2
2)Z0Hy = (A2jωη

ε2r

c
−B2qg2)e−g2|z|(sin qy + α cos qy) sin ηx . (65)

Only the exponentially decaying terms proportional to e−g2|z| describe the fields in the laminations since it is assumed
that the skin penetration depth is much less than the lamination thickness δ2 ¿ τ . The continuity of the fields at
z = ±h/2 implies

q2 = ω2µ2ε2 + g2
2 − η2 = ω2µ1ε1 + g2

1 − η2. (66)

Finding g1 turns out to be enough for the calculation of the surface impedance. Since an exact solution requires
substantial numerical effort, requiring field matching at the crack-lamination and pipe-wall boundaries, we take
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advantage of the high conductivity σ2 in the laminations to provide an approximate solution. Note that if the
laminations were ideal conductors then Ey, Ex,Hz|z=±h/2 = 0. This implies either

g1(σ2 →∞) → 0 , (67)

or

A1(σ2 →∞) → 0 (68)

and

B1(σ2 →∞) → 0 . (69)

The latter case yields a solution with a small electric field Ez for large σ2, thus giving a small contribution to the
surface impedance. So, that case will be neglected to look for solutions which fulfill Eq. 67.

By imposing the continuity of Ex, Ey, Hx and Hy at z = h/2 one gets

A1

A2
= − (ηg2−B2

A2
jωq

µ2r
c )e−g2h/2

(ηg1+
B1
A1

jωq
µ1r

c ) sinh(g1h/2)
(70)

= − (qg2+
B2
A2

jωη
µ2r

c )e−g2h/2

(qg1−B1
A1

jωη
µ1r

c ) sinh(g1h/2)
(71)

=
(jωq

ε2r
c +

B2
A2

ηg2)e
−g2h/2

(jωq
ε1r

c −B1
A1

ηg1) cosh(g1h/2)
(72)

=
(jωη

ε2r
c −B2

A2
qg2)e

−g2h/2

(jωη
ε1r

c +
B1
A1

qg1) cosh(g1h/2)
. (73)

Eq. 70 and Eq. 73 yield

B2

A2
= −B1

A1

µ1g2

µ2g1
(74)

B2

A2
= −B1

A1

ε2g1

ε1g2
. (75)

If B1 6= 0 and B2 6= 0, Eq. 74 and Eq. 75 together with Eq. 66 imply

g2
1 = −ω2ε1µ1 = −ω2

c2
ε1r , (76)

g2
2 = −ω2ε2µ2 . (77)

One can immediately see that this solution is not in agreement with the requirement of Eq. 67. If B1 = 0 and B2 = 0
then it follows from Eq. 71 and Eq. 72 that

g2e
−g2h/2

g1 sinh(g1h/2)
= − ε2e

−g2h/2

ε1 cosh(g1h/2)
(78)

or

g1 tanh (g1h/2) = −ε1
ε2

g2 . (79)

g2 is large and represents the field decaying parameter inside the laminations. In the relevant frequency domain g2

has the following form[9, 16]

g2 ≈ 1 + j

δ2
=

(1 + j)
√

ωσ2µ2√
2

. (80)

Since ε2 ≈ σ2
jω and g1h ¿ 1

g2
1 = −2jg2ε1ω

hσ2
= (1− j)ω2ε1µ1

µ2

µ1

δ

h
. (81)
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This solution for g1 obeys Eq. 67 and is the same as the one given by Ng in [9] where only the η = 0 case was
considered. However note that while g1 here and in Ref [9] are the same, the surface impedance is significantly
different.

The longitudinal surface impedance of the crack follows from Eq. 53 and Eq. 56

R1z(η, ω)
Z0

= j
q2 + η2

q ω
c ε1r

tan q(d− b) (82)

where

q2 = ω2ε1µ1

[
(1 + (1− j)

µ2

µ1

δ

h

]
− η2 . (83)

The difference between this solution and that in Ref. [9] is the presence of the η2 term in Eq. 83.
The lamination longitudinal and horizontal surface impedances are

R2z ≈ 1 + j

δ2σ2
, (84)

and

R2x ≈ 1 + j

δ2σ2
, (85)

which are equal to the usual metal-vacuum boundary surface impedance. The surface impedances Rz and Rx can be
simply obtained now by employing Eq. 47 and Eq. 49. Note that, unlike the resistive-wall case, the surface impedance
is η dependent. This turns out to have a significant effect on the impedance.

We now justify the approximations made in Eq. 46 and Eq. 49:

• Justification of Eq. 46. Since τ À δ2, away from the crack and at the lamination-chamber boundary (i.e.
y = +0 + b), the electromagnetic field decays along the vertical direction as

∂2Hx2

∂y2
≈ g2

2Hx2 (86)

which implies

(
∂2

∂z2
− η2 + g2

2 + ω2ε2µ2)Hx2 = 0 . (87)

Thus Hx2 ∝ cos(qz) away from the crack-lamination boundary. Since q ∼ η ∼ 1
b implies qτ ¿ 1, to a good

approximation Hx2 is constant along the z-direction in this region. The next region we focus on is the lamination
close to both chamber and crack boundary. Inside the chamber (i.e. y = −0 + b), the electric field component

becomes very small Ey(z → ±h/2) → O(σ−
1
2

2 ) since it goes from being perpendicular to to parallel to a metallic
surface. This implies that the variation of Hx2 with z decreases in this region, because ∂zHx2 = jωε0Ey +∂xHz2.
So far it has been argued that Hx2 is nearly constant at the lamination-chamber boundary. In the crack, since
g1h ¿ 1, Hx1 is also approximately constant along z-direction. The continuity of Hx at z = ±h/2 and y = b
implies H̄x1|y=b ≈ H̄x2|y=b.

• Justification of Eq. 49. Since Hz1, Ex1 ∝ sinh(g1z), their averaged value over the crack width is zero.

2. Coupling Impedance

Using the surface impedance calculated in the previous section, the impedance of a laminated chamber is obtained
by employing Eq. 19, Eq. 21 and Eq. 23. Here we illustrate an example specific to the Fermilab Booster F-magnets,
which have iron laminations. The chamber parameters are given in the caption of Fig. 4.

The longitudinal impedance is shown in Figs. 4a and 4b. It has a very different behavior than a resistive-wall
impedance. At low frequencies, up to 30 MHz ∼ 40 MHz, it increases with increasing frequency, then in the interval
50 MHz ∼ 200 MHz it displays two broad and weakly developed peaks. A ω−

1
4 behavior[8, 9] follows up to 6GHz.
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FIG. 4: Coupling impedances of a parallel-plane laminated chamber. We take b = 2.1cm, d = 15.24cm, h = 9.52 × 10−4cm,
τ = 6.35 × 10−2cm, ε1r = 4.75, µ2r = 100, and σ2 = 0.5 × 107(Ωm)−1 (iron), parameters specific to the Fermilab Booster
F-magnets. The real (imaginary) part is plotted with full (dashed) lines. The black lines show the full impedance calculation
done by employing Eq. 19, Eq. 21 and Eq. 23. Different approximations are also shown. The green lines are calculated by
neglecting the η-dependence of the surface impedance, i.e. by making the approximation Rz(η) ≈ Rz(η = 0) and employing
Eq. 35, Eq. 38 and Eq. 39. a) Low frequency and b) high frequency longitudinal impedance. The red lines are calculated by
considering the full η-dependence of the surface impedance and by neglecting the terms proportional to the surface impedance
in the denominator of Eq. 19, i.e. by employing Eq. 32. c) Horizontal transverse impedance. d) Vertical transverse impedance.
The impedance is about two orders of magnitude larger than one corresponding to a resistive wall pipe made from the same
material as the laminations. Note that neglecting the η dependence in the surface impedance yields values that are too large
for the coupling impedance.

A third broad peak can be observed in the interval 20GHz ∼ 80GHz and then the expected ω−1 behavior sets in at
frequencies higher than 200GHz.

The two commonly used approximations for the resistive-wall impedance, namely neglecting the Rz-dependence on
the horizontal wave-vector η and neglecting the terms proportional to Rz in the denominator of Eq. 19 do not hold
for laminated structures. The former was assumed by Ng[9] while the latter was implicitly assumed in Refs. [7, 8]
where the simple relation given by Eq. 35 between the surface impedance and the longitudinal coupling impedance
was considered. The approximation Eq. 35 with Rz(η) ≈ Rz(η = 0), valid for metallic pipes, is also plotted in Fig. 4a.
As one can see, Eq. 35 yields a much larger impedance for frequencies below 500MHz.

In order to understand the importance of the η-dependence of Rz we will neglect for now the terms proportional
to Rz in the denominator of Eq. 19 and will compare Eq. 32 versus Eq. 35 with Rz(η) ≈ Rz(η = 0). In the latter
case, one gets at low frequencies q2 ≈ (1− j)ω2ε1µ2

δ
h , Rz ≈ R1zh

h+τ = j q2

ε1
(d− b) and

Z || =
1

2πb

1 + j

σ2δ2

2(d− b)
h + τ

. (88)

When the η-dependence is considered, at low frequency q2 = −η2, the impedance is

Z || =
2

2π(h + τ)
1 + j

σ2δ2

∫ ∞

0

dη sech2 ηb
tanh η(d− b)

η
. (89)

In the case d−b
b ¿ 1, the integral in Eq. 89 is d−b

b and the impedance has the same form as in Eq. 88. However, when
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d−b
b À 1, as in our example, the integral is

∫ ∞

0

dη sech2 ηb
tanh η(d− b)

η
≈

∫ b

0

dη
tanh η(d− b)

η
(90)

≈
∫ 1

d−b

0

dη
η(d− b)

η
+

∫ b

1
d−b

dη
1
η

= 1 + ln
d− b

b
≈ ln

d− b

b
,

and

Z || =
1

2πb

1 + j

σ2δ2

2
h + τ

b ln
(d− b)

b
. (91)

Thus, at low frequencies and to first order in Rz, the impedance increases logarithmically with d− b when d is large,
similarly to the case of circular geometry (see Section III and [9]) and not linearly as one would wrongly infer if the
η-dependence were neglected.

Besides considering the η-dependence of Rz, taking into account terms proportional to Rz in the denominator of
Eq. 19 is also important. The reason, as discussed in Sec. II C, is that Rz is large when the laminations are present,
being enhanced roughly by a factor of 2b

h+τ ln d−b
b (which in our example is ≈ 115) compared to the resistive-wall case.

The approximation given by Eq. 32, shown in red in Fig. 4a, although taking into account the η-dependence of Rz,
neglects the Rz terms in the denominator of Eq. 19. The low frequency behavior is given by Eq. 89 and has a

√
ω

behavior. However this approximation differs from the full calculation (black) which yields a smaller impedance.
The horizontal and the vertical impedances are shown in Figs. 4c and 4d, respectively. Compared to the resistive-

wall impedances for an iron chamber with the same dimensions (Fig. 1) they are about two orders of magnitude
larger. For frequencies larger than 15MHz, the vertical impedance is about two times larger than the horizontal one,
a behavior characteristic of parallel-plane geometry [14]. The large frequency asymptotic behavior is ω−5/4. Note
that the η-dependence of Rz is also important for the transverse impedances. Neglecting it would yield a much larger
value for the impedance, as shown by the green lines where Eqs. 38 and 39, respectively, are employed.

3. Wake functions

The wake functions calculated from the impedances shown in Fig. 4 and calculated via Eqs. 4 and 5 are displayed
in Fig. 5. For comparison different approximations and the resistive-wall impedance of an iron chamber with the same
dimensions are also illustrated.

The longitudinal wake, shown in black in Fig. 5a, is repulsive at distances shorter than 0.2 m, while it becomes
attractive at somewhat larger distances, with a maximum around |z| ≈ 0.4 m. It decreases rapidly to zero at large
distances. In the attractive region, at distances on the order of meters (which is usually of the same order as the bunch
length in typical machines) it is much larger than the resistive wall impedance (blue). Note that the approximation
based on Eq. 35, which neglects the η-dependence of Rz (green), yields a larger wake, repulsive for |z| < 2 m.
Neglecting the Rz terms in the denominators of Eq. 19 (red) yields a smaller impedance at distances of the order of
one meter.

The horizontal and vertical wakes are shown in Figs. 5b and 5c, respectively. The vertical wake is about two times
larger than the horizontal one for distances of order of meters. In the same region the wakes are much larger than
the corresponding resistive wall wakes (blue), but decay faster at large |z|. The neglect of the η-dependence of Rz

(green) has a noticeable effect, yielding larger transverse wakes. The wiggling behavior of the vertical wake, seen
in the inset of Fig. 5c is caused by the term proportional to Rz

k
η in the denominator of Eq. 21. This shows again

that the higher order terms in the surface impedance cannot be neglected in the coupling impedance calculation for
laminated structures.

III. CIRCULAR CHAMBER WITH LAMINATIONS

A. Wake functions

The momentum kick due to wake fields in circular chambers can be written as [17]

c∆pz = −qQW
||
0 (z) (92)
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FIG. 5: Wake functions for a laminated chamber with parallel-plane geometry (black). The parameters are the same as in
Fig. 4. a) Longitudinal wake function versus distance |z|. The wake is repulsive up to |z| ≈ 0.2m, then becomes attractive with
a maximum around |z| ≈ 0.4m. The longitudinal wake is much larger than the resistive-wall case for an iron chamber (blue).
The approximations which neglect the η-dependence of Rz (green) and the term proportional to Rz in the denominator of
Eq. 19 (red) yield significantly different results. b and c) The horizontal (b) and vertical (c) wake functions. Compared to the
resistive wall wake (blue) they are much larger at distance of order of meters. However they decays faster with increasing |z|.
The horizontal wake becomes smaller than the resistive-wall wake at |z| > 200m, while the vertical one becomes smaller at
|z| > 30m; see the inset. The neglect of the η-dependence of Rz (green) yields larger transverse wakes.

c∆px = −qQW⊥
1 (z)X (93)

c∆py = −qQW⊥
1 (z)Y (94)

(95)

with (X, Y ) representing the transverse displacement of the leading particle. The longitudinal wake, W
||
0 , corresponds

to the angular number m = 0 while the transverse wake, W⊥
1 , corresponds to m = 1. The wakes corresponding to

higher values of m couple with higher-order terms in the beam displacement and are not considered here. Note that
unlike the flat chamber, the term proportional to the trailing particle’s displacement is not present in the transverse
wake. The kicks along the x and y directions are described by the same function W⊥

1 (z).
The wakes are Fourier transforms of the impedance functions, such that

W
||
0 (z) =

1
2π

∫
dωZ

||
0 (ω)e−j ω

c z (96)

W⊥
1 (z) =

j

2π

∫
dωZ⊥1 (ω)e−j ω

c z . (97)

B. Impedance

As for the parallel-plane geometry, it is desirable to first derive equations which describe the coupling impedance
as function of the surface impedance.
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The Maxwell equations are solved in cylindrical coordinates. The charge and current decomposition are

ρ(r, θ, z, t) =
∞∑

m=0

ρmδ(r − b)ej(ωt−kz) (98)

~J(r, θ, z, t) = ρ(r, θ, z, t)βcẑ , (99)

where

ρm =
Im

πbm+1(1 + δm0)
, (100)

Im = ρbm . (101)

The field decomposition reads

(Er(r, θ), Ez(r, θ),Hθ(r, θ)) =
∞∑

m=0

(Erm, Ezm,Hθm) cos(mθ) (102)

(Eθ(r, θ),Hr(r, θ),Hz(r, θ)) =
∞∑

m=0

(Eθm,Hrm,Hzm) sin(mθ) (103)

(104)

Note that for m = 0 the field components Eθ(r, θ),Hr(r, θ),Hz(r, θ) are zero.
The solution of the electromagnetic field inside a round chamber has been calculated by numerous authors, see,

e.g., Refs. [9, 17]. Inside the chamber, i.e. for r < b,

Ez0 = A0 , (105)

for m = 0 and

Ezm = Amrm (106)
Z0Hzm = −Amrm , (107)

for m ≥ 1.
The constants A0 and Am are determined from the boundary conditions at the pipe walls. They can also be

expressed as functions of surface impedances

Rzm = −Ezm

Hθm

∣∣∣∣
r=b

(108)

Rθm =
Eθ

Hzm

∣∣∣∣
r=b

. (109)

with

A0 =
− ρ1Rz0

Z02πε0b

1 + jRz0
Z0

kb
2

, m = 0 (110)

Am =
− ImRzm

Z0πε0b2m+1

1 + jRzm

Z0
( kb

m+1 − m
bk ) + RzmRθm

Z2
0

, m ≥ 1. (111)

The longitudinal coupling impedance as function of surface impedance reads

Z
||
0 = −Ez

cρ1
=

Rz0
2πb

1 + jRz0
Z0

kb
2

, m = 0 (112)

Z ||m = − Ez

cImrm
=

Rzm

πb2m+1

1 + jRzm

Z0
( kb

m+1 − m
bk ) + RzmRθm

Z2
0

, m ≥ 1, (113)

while from Panofsy-Wenzel theorem the transverse impedance is

Z⊥m =
c

ω
Z ||m =

cRzm

ωπb2m+1

1 + jRzm

Z0
( kb

m+1 − m
bk ) + RzmRθm

Z2
0

, m ≥ 1. (114)
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C. Resistive wall impedance

The equation for longitudinal field inside a cylindrical metallic pipe is

1
r

∂

∂r
(r

∂

∂r
)
(

Ez

Hz

)
= (

m2

r
+ λ2

c + p2)
(

Ez

Hz

)
(115)

where λ2
c = jωσµ = jkZ0σµr and p2 = k2(1− εrµr).

The transverse fields are derived from the longitudinal ones, see, e.g., Jackson[16].
We treat the m = 0 case first. The solution is

Ez = A0
K0(λr)
K0(λb)

Er = A0j
k
λ

K′
0(λr)

K0(λb)

Z0Hθ = A0
jk+Z0σ

λ
K′

0(λr)
K0(λb)

(116)

where λ2 = λ2
c + p2 and K0 is the modified Bessel function of the second kind and order zero. It follows that

Z0

Rz0
= −jk + Z0σ

λ

K ′
0(λb)

K0(λb)
. (117)

For m ≥ 1

Ez = −Z0Hz = Ambm Km(λr)
Km(λb)

Er = Eθ = Ambm jk
λ (K′

m(λr)
Km(λb) − m

λr
Km(λr)
Km(λb) )

Z0Hθ = Ambm( jk+Z0σ
λ

K′
m(λr)

Km(λb) − jkm
λ2r

Km(λr)
Km(λb) )

Z0Hr = −Ambm( jk
λ

K′
m(λr)

Km(λb) − m
λr

jk+Z0σ
λ

Km(λr)
Km(λb) )

(118)

where Km is the modified Bessel function of second kind and of order m. One gets

Z0

Rzm
= −jk + Z0σ

λ

K ′
m(λb)

Km(λb)
+

jkm

λ2b
, (119)

Rθm

Z0
= −jk

λ

(
K ′

m(λb)
Km(λb)

− m

λb

)
. (120)

Note that for the metallic round chamber, up to O(σ−1/2),

Rz0 ≈ Rzm ≈ Rθm ≈ λc

σ
(121)

as is the case for the flat metallic chamber (see Eq. 31). In this approximation the surface impedance is independent of
m. However, as we will see in Section III D, the m-dependence of the surface impedance is important in the calculation
of the transverse impedance for a laminated circular chamber.

Since the surface impedance is small for metallic chambers, the terms proportional to it in the denominator of
Eq.112, Eq.113 and Eq.114 can be neglected. The commonly used approximation for impedance in circular metallic
pipes is

Z
||
0 =

Rz

2πb
, (122)

Z⊥1 =
Rz

πkb3
, (123)

with Rz given by Eq. 121. Note that compared to the horizontal and the vertical impedances for the flat metallic
chamber, Eq.36 and Eq.37, the circular transverse impedance is larger by factors of 24

π2 and 12
π2 , respectively.

Another commonly encountered relation is given by

Z⊥1 =
2c

ωb2
Z
||
0 . (124)
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D. Laminated structures

Using the same justifications as for the flat chamber in Section IID, we have

R̄z =
R1zh +R2zτ

h + τ
(125)

and

R̄θ(ω) ≈ R2θ . (126)

where “1” denotes the crack region and “2” the region of the lamination.

1. Surface impedance

For large conductivity σ2, the lamination surface impedances are given by

R2zm ≈ 1 + j

δ2σ2
, (127)

and

R2θm ≈ 1 + j

δ2σ2
, m ≥ 1. (128)

The next step is to calculate the crack surface impedance R1zm. As for the flat chamber, we assume that the
field-dependence along the longitudinal direction is given by Eq. 50 and Eq. 51. Thus we have

(
1
r

∂

∂r
(r

∂

∂r
)− m2

r
+ q2)

(
Ez

Hz

)
= 0 (129)

with q2 = ω2ε1,2µ1,2 + g2
1,2.

Focusing on the m = 0 case first, the fields inside the crack are given by

Ez = A1 cosh(g1z)(H(2)
0 (qr) + αH

(1)
0 (qr)) (130)

Er = −A1
g1

q
sinh(g1z)(H(2)

1 (qr) + αH
(1)
1 (qr)) (131)

Z0Hθ = A1
jωε1r

qc
cosh(g1z)(H(2)

1 (qr) + αH
(1)
1 (qr)) (132)

(133)

where H
(1),(2)
n = Jn ± jYn are Bessel functions of the third kind and order n. Inside the laminations

Ez = A2e
−g2|z|(H(2)

0 (qr) + αH
(1)
0 (qr)) (134)

Er = A2e
−g2|z|sgn(z)

g2

q
(H(2)

1 (qr) + αH
(1)
1 (qr)) (135)

Z0Hθ = A2
jωε2r

qc
e−g2|z|(H(2)

1 (qr) + αH
(1)
1 (qr)) . (136)

(137)

The condition Ez|r=d = 0 implies

α = −H
(2)
0 (qd)

H
(1)
0 (qd)

(138)

The continuity of the transverse fields at z = ±h
2 requires ω2ε1µ1 + g2

1 = ω2ε2µ2 + g2
2 = q2 and

g1 tanh (g1h/2) = −ε1
ε2

g2 . (139)
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This gives

g2
1 = −2jg2ε1ω

hσ2
= (1− j)ω2ε1µ1

µ2

µ1

δ

h
, (140)

where we assume g2 ≈ 1+j
δ2

= (1+j)
√

ωσ2µ2√
2

, as for the flat chamber.
The crack surface impedance is

R1z0

Z0
= j

qc

ωεr1

H
(2)
0 (qb)H(1)

0 (qd)−H
(1)
0 (qb)H(2)

0 (qd)

H
(2)
1 (qb)H(1)

0 (qd)−H
(1)
1 (qb)H(2)

0 (qd)
(141)

= j
qc

ωεr1

J0(qb)Y0(qd)− Y0(qb)J0(qd)
J1(qb)Y0(qd)− Y1(qb)J0(qd)

. (142)

This is the same result as in Ref [8, 9]. For m ≥ 1 the fields in the crack are

Ez = A1 cosh(g1z)(H(2)
m (qr) + αH(1)

m (qr)) cos(mθ) (143)

Z0Hz = B1 sinh(g1z)(H(2)
m (qr) + βH(1)

m (qr)) sin(mθ) (144)

Eθ =
[
−A1

g1m

q2r
(H(2)

m (qr) + αH(1)
m (qr)) + B1

jkµr1

q
(H ′(2)

m (qr) + βH ′(1)
m (qr)

]
sinh(g1z) sin(mθ) (145)

Z0Hθ =
[
−A1

jkεr1

q
(H ′(2)

m (qr) + αH ′(1)
m (qr)) + B1

g1m

q2r
(H(2)

m (qr) + βH(1)
m (qr))

]
cosh(g1z) sin(mθ) (146)

Er =
[
A1

g1

q
(H ′(2)

m (qr) + αH ′(1)
m (qr))−B1

jkmµr1

q2r
(H(2)

m (qr) + βH(1)
m (qr))

]
sinh(g1z) cos(mθ) (147)

Z0Hr =
[
−A1

jkmεr1

q2r
(H(2)

m (qr) + αH(1)
m (qr)) + B1

g1

q
(H ′(2)

m (qr) + βH ′(1)
m (qr))

]
cosh(g1z) sin(mθ) . (148)

In the lamination we have

Ez = A2e
−g2|z|(H(2)

m (qr) + αH(1)
m (qr)) cos(mθ) (149)

Z0Hz = B2e
−g2|z|sgn(z)(H(2)

m (qr) + βH(1)
m (qr)) sin(mθ) (150)

Eθ =
[
A2

g2m

q2r
(H(2)

m (qr) + αH(1)
m (qr)) + B2

jkµr2

q
(H ′(2)

m (qr) + βH ′(1)
m (qr))

]
e−g2|z|sgn(z) sin(mθ) (151)

Z0Hθ =
[
−A2

jkεr2

q
(H ′(2)

m (qr) + αH ′(1)
m (qr))−B2

g2m

q2r
(H(2)

m (qr) + βH(1)
m (qr))

]
e−g2|z| sin(mθ) (152)

Er =
[
−A2

g2

q
(H ′(2)

m (qr) + αH ′(1)
m (qr))−B2

jkmµr2

q2r
(H(2)

m (qr) + βH(1)
m (qr))

]
e−g2|z|sgn(z) cos(mθ) (153)

Z0Hr =
[
−A2

jkmεr2

q2r
(H(2)

m (qr) + αH(1)
m (qr))−B2

g2

q
(H ′(2)

m (qr) + βH ′(1)
m (qr))

]
e−g2|z| sin(mθ) . (154)

As for the flat chamber, the condition for an acceptable solution is B1 = B2 = 0. Ez = 0|r=d implies α = −H(2)
m (qd)

H
(1)
m (qd)

.

The continuity of the transverse fields at z = ±h
2 implies the same Eq.140 for g1.

Consequently the crack surface impedance reads

R1zm

Z0
= −j

qc

ωεr1

H
(2)
m (qb)H(1)

m (qd)−H
(1)
m (qb)H(2)

m (qd)

H ′(2)
m (qb)H(1)

m (qd)−H ′(1)
m (qb)H(2)

m (qd)
(155)

= −j
qc

ωεr1

Jm(qb)Ym(qd)− Ym(qb)Jm(qd)
J ′m(qb)Ym(qd)− Y ′

m(qb)Jm(qd)
(156)

where

q2 = ω2ε1µ1[(1 + (1− j)
µ2

µ1

δ

h
] . (157)
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FIG. 6: The parameters for the round chamber with laminations are the same as for our flat chamber example, b = 2.1cm,
d = 15.24cm, h = 9.52 × 10−4cm, τ = 6.35 × 10−2cm, ε1r = 4.75, µ2r = 100, and σ2 = 0.5 × 107(Ωm)−1 a) Crack surface
impedance for m = 0 (black) and m = 1 (red). At low frequency both cases display resistive-wall behavior proportional to

√
ω.

However while the m = 0 surface impedance is proportional to a factor of ln d
b

the m = 1 one is proportional to a smaller factor

of d2−b2

d2+b2
. b) Longitudinal impedance (m = 0) for round chamber (black) and for flat chamber (blue). c) Transverse impedance

for round chamber (black) and horizontal (vertical) impedance multiplied by 24
π2 (green) ( 12

π2 (blue)) for flat chamber. Note the
significant differences for frequencies smaller than 400MHz.

2. Coupling impedance for round chamber and comparison with flat chamber

In Fig. 6a we show the crack surface impedance for angular numbers m = 0 and m = 1. Note that they are
significantly different, thus producing different longitudinal wakes, unlike the resistive wall case. The low frequency
behavior can be deduced by considering small-x approximations of the Bessel functions, J0(x) ≈ 1, Y0(x) ≈ 2

π ln x
2 ,

J1(x) ≈ 1
2x and Y1(x) ≈ − 2

π
1
x . One gets

R1z0 ≈ j
q2

ωε1
b ln

d

b
≈ 2

h

1 + j

δ2σ2
b ln

d

b
, m = 0 (158)

and

R1z1 ≈ j
q2

ωε1
b
d2 − b2

d2 + b2
≈ 2

h

1 + j

δ2σ2
b
d2 − b2

d2 + b2
, m = 1 . (159)

Both m = 0 and m = 1 cases display resistive-wall like behavior at small frequencies, i.e. the surface impedance is
proportional to

√
ω. However the m = 1 surface impedance has a much smaller proportionality factor, d2−b2

d2+b2 compared
to ln d

b . In our example the resistive-wall behavior of the surface impedance can be observed up to 10 ∼ 15MHz.
Since the m = 0 and the m = 1 surface impedances are different, there is no simple relation such as Eq. 124 between

the longitudinal Z
||
0 and the transverse Z⊥1 impedances.

In Figs. 6b and 6c a comparison between the circular chamber impedances and those corresponding to a flat
chamber with the same parameters is shown. In the circular chamber case the longitudinal impedance has more
strongly developed peaks around 40 ∼ 50MHz. For the comparison of the transverse impedances the flat chamber
horizontal and vertical impedances are multiplied by the factors 24

π2 and 12
π2 respectively (see the discussion at the end

of Section III C). Other significant differences in the transverse impedances of flat and round chambers can be noticed
below 400MHz.
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3. Wake functions for round chamber and comparison with flat chamber

The wake functions for a round laminated chamber, obtained via Fourier transforms (Eq. 96 and Eq. 97) from the
impedances shown in Fig. 6 are plotted in Fig. 7. For comparison the wake functions corresponding to a flat laminated
chamber with the same parameters are also shown.

Fig. 7a displays the longitudinal wakes. Both circular (black) and flat (blue) longitudinal wakes are repulsive below
0.2m and attractive in the range 0.2m− 5m. The flat chamber wake is larger around 0.4m while the round chamber
one is more strongly peaked around 2.6m. At ≈ 6m the round chamber longitudinal wake has a repulsive peak,
becoming attractive again at ≈ 7m, while the flat wake is smaller and attractive in this distance range. There is no
significant difference between the longitudinal wakes at distances larger than 11m. However, they are already small
in this region.

The transverse wakes are shown in Fig. 7b. At distances of the order of a few meters, aside from the geometrically
specific factors 24

π2 and 12
π2 , the circular transverse wake is close to the horizontal and vertical parallel-plane wake.

However, the asymptotic behavior at large distances is different, the circular wake going more rapidly to zero than
the horizontal wake of the flat chamber. Since the horizontal wake plays a large role in the coherent tune shift in
flat chambers [5], as we will discuss in Section IV, an approximation which uses the circular wake weighted by the
geometric factor π2

24 to describe the tune behavior in flat chambers would yield erroneous results.

IV. APPLICATION TO THE FERMILAB BOOSTER

About 60% of the Fermilab Booster synchrotron ring is made up of laminated iron magnets. There is no pipe in
this region, the beam being directly exposed to the laminations. There are two types of combined function gradient
magnets, focusing (F) and defocusing (D), with a geometry which in the first approximation can be considered parallel-
plane[10]. The parameters of the F-magnets are given in the caption of Fig. 4 while the D-magnets have a slightly
larger aperture b = 2.9 cm. All the other parameters for the D-magnets are the same as those of the F-magnets.

The longitudinal impedance of Booster laminated magnets was measured by Crisp and Fellenz [3] using a stretched
wire between the magnets ends. We find a good qualitative agreement between our calculation and their impedance,
especially given the approximations used both in our calculations (such as the parallel-plane geometry for the gradient
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magnets, non-frequency-dependent magnetic permeability in the laminations) and in their experiments (the wires
disturb the electromagnetic fields inside the chamber). Compared to previous calculations using a simpler model [9],
we notice a significant improvement, especially at frequencies below 200MHz. For example, for the F-magnets (the
impedance in Fig. 4a should be multiplied by Z0L = 1184mΩ), the real part of the longitudinal impedance shows a
broad feature in the interval 100MHz−200MHz with a maximum at ∼ 280Ω similar to the measurements (see Fig.3
in Ref[3]). The imaginary part is inductive (positive) up to 200MHz, as in the measurements; however, the calculation
is about two times smaller than the measured result. At large frequencies there are still qualitative disagreements
between the calculations and measurements, especially in the imaginary part of the longitudinal impedance. In our
case it is capacitive (negative) while in the measurements it shows inductive behavior. However, both the positive
measured value and our negative calculated value for the imaginary part of the longitudinal coupling impedance at
large frequencies are small.

A measurable effect caused by the large impedance in Booster is the coherent tune shift which increases with the
beam intensity. To calculate it we use the wake functions derived in Section III D 3 in a complex beam dynamics
simulation which employs the Synergia code.

A. Synergia code and beam simulation

Synergia is an extensible beam dynamics framework utilizing state-of-the-art numerical libraries, solvers, and physics
models. Synergia features 3D space charge solvers, impedance modules and arbitrary-order Lie maps for magnetic
optics. A detailed description of Synergia can be found elsewhere [1, 2]. In order to model the Booster we developed
new 3D space charge solvers suitable for parallel-plane and rectangular vacuum chambers for Synergia. We also
developed new modules to simulate wake field effects based on the results presented in this paper.

In Synergia the beam is modeled as a large (≈ 105−108) set of macroparticles. When collective effects are turned off
each particle propagates independently in the field created by the machine elements. The single-particle propagation
is treated exactly using arbitrary-order maps. Collective effects are incorporated using the split operator method[18].
This implies a large number of momentum kicks during propagation. In brief, the simulation with collective effects
is an interleaving sequence of single particle propagation followed by a momentum kick, followed by single particle
propagation, followed by a momentum kick, etc... The error is O(∆s3) where ∆s is the distance between kicks. The
number of kicks is taken to be large enough to reach convergence.

The wake kicks are implemented as follows. Each macroparticle “i” suffers a kick of its momentum proportional to

∆pzi = −q2

c

∑
j>i W ||(zji) (160)

∆pxi = −q2

c

∑
j>i(W

⊥
x (zji)Xj −W⊥

x (zji)xi) (161)

∆pyi = −q2

c

∑
j>i(W

⊥
y (zji)Yj + W⊥

x (zji)yi) , (162)

where the summation is over all the other particles “j” in front of the particle “i”. The summation is not restricted
only to the bunch “i” belongs to. The wake field created by all the other bunches as well as the effect of the previous
turns are included in this summation.

The space charge solvers used in the simulations treat the vacuum chambers as ideal conductors. Thus image
charges and image currents are always included in the space charge effects in our simulations. These effects are
important since we present simulations at the Booster injection energy of 400 MeV (γ = 1.42), quite far from the
relativistic limit. The space charge kicks are proportional to the electric field created by the other particles in the
bunch. The field is calculated using particle in cell (PIC) Poisson solvers.

The Booster has 24 cells, each including F-magnets and D-magnets and circular pipe drift sections [4, 10]. We use
different wake functions and space charge solvers for the F- and D-magnets. Circular space charge solvers are used
for the drift sections.

The simulation is initialized with a six-dimensional Gaussian beam matched for propagation without collective
effects. We run 84-bunch (full machine) simulations. The input parameters are xrms = 0.0086 m, yrms = 0.0032 m
and zrms = 0.88 m. Different beam intensities of up to 6 × 1010 particles per bunch are considered. These values
are similar to those in the Booster during the experimental runs [10]. Since the experimental data was taken at the
injection energy, in the simulations the phasing of the rf cavities is set up so that there is no net acceleration of the
beam. To determine the coherent tunes, we measure the position of the beam center at different locations over 1000
turns. The tunes are extracted from the Fourier transform of the beam center displacement as a function of position.
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B. Coherent tune shift and comparison with experiment

A simple inspection of the terms proportional to the trailing particle displacement in Eq. 2 and Eq. 3 (called
quadrupole[5] or detuning [14] terms in the literature) reveal that they have different signs for the vertical and the
horizontal directions. Keeping in mind that the wake function W⊥

x (z) is predominantly negative (see Fig. 5) it can be
immediately deduced [5] that the effect of these terms will be to suppress the coherent vertical tune and increase the
horizontal one. If the only collective effect acting on the beam were produced by these terms then one would expect
the negative vertical tune shift to be equal to the positive horizontal tune shift. However, the terms proportional to
the leading particle displacement as well as the space charge impedance effects act on suppressing both the vertical
and the horizontal tunes. Thus they enhance the vertical tune suppression and compete with the horizontal tune
enhancement produced by the quadrupole terms. This reasoning is corroborated by recent measurements [4] of the
Booster coherent tunes which show a large decrease of the vertical tune and a small positive increase of the horizontal
tune with increasing the beam intensity.

The data from the intensity-dependent tune scan shown in Fig. 8 were taken after the transverse Booster tunes
had been separated to values of νx = 6.7 (horizontal tune), and νy = 6.9 (vertical tune). This was done by system-
atically changing the current settings of the quadrupole correction magnets using a method developed and described
elsewhere [19]. The tunes were separated to better isolate tune shifts due to collective effects from the influence of
machine-dependent mode mixing. Once the tunes were cleanly separated, the beam intensity was varied via injection,
while all other machine parameters remained fixed. The tunes were obtained from turn-by-turn Fourier transforms
of the 100 horizontal and vertical beam position monitors (BPMs) in the Booster, using an application developed
to obtain beam frequency signatures with good signal to noise ratios [20]. In addition, a fast kicker was set to a
periodic trigger to insure the betatron oscillations were large enough to allow a clear tune signature. The horizontal
and vertical tunes were examined at 2 ms, 3 ms, and 5.5 ms, during the injection portion of the 33 ms Booster cycle.
The injected beam intensity was varied from 0.9× 1012 to 6.8× 1012 protons.

A prior study was done where the tunes were not specifically decoupled, rather, they were highly coupled. It was
uncertain how the machine coupling may have affected the evolution of the tunes, so the second study was done
with the tunes separated. It was found that coupling effects in the first study were not significant, as the intensity-
dependent tune shifts measured in both studies were quite similar [4]. The base machine tunes may be analogously
controlled in the beam simulations. Simulations with different base tunes were performed and the results were in
agreement with experimental measurements, the horizontal-vertical coupling did not play a significant role in the tune
shift analysis.

In Figs. 8a and 8b, simulation of the coherent betatron tune shifts in the horizontal and vertical planes are compared
with the experimental data [4]. Notice that the scale for the vertical tune shift is about 20 times larger than the scale
for the horizontal tune shift. In order to better understand the contribution of the space charge and the coupling
impedance several cases were studied. The red circles are the results of the simulations which include both space
charge and coupling wake fields. The agreement with the experimental data is good. Estimating the measurement
standard deviation σmeas, we find our calculation to be within 3 σmeas range. The vertical tunes are decreasing with
intensity. As in the experiment, we find that the horizontal tunes do not change significantly with beam intensity,
the slope being very small and positive. The green squares show the results when only the space charge interaction
is taken into account. For the vertical case, both the wake and the space charge force decrease the tune, the coupling
wake having a larger effect. For the horizontal case, the space charge force suppresses the tune, while the wake
increases it. However, both effects are small.

V. CONCLUSIONS

We calculate the impedance and the wake functions for laminated structures with parallel-plane and circular ge-
ometries. First, the coupling impedance is derived as a function of the chamber surface impedance. Next, the surface
impedance is calculated by solving the Maxwell equations inside the lamination and the crack regions. The impedance
is evaluated on a large frequency range, the knowledge of both the small the large frequency behavior being necessary
for the calculation of the wake functions.

We present a critical analysis of the resistive-wall impedance for metallic chambers and the approximations involved
in its derivations. We show that the commonly used approximations, valid due to the small surface impedance
associated with metallic pipes, do not hold for chambers with large surface impedance such as laminated structures.
The truncation of the higher-order terms in the surface impedance cannot be done when calculating the impedance.
While for the metallic chambers the dependence of the surface impedance on the horizontal wave number (in case of
parallel-plane geometry) or on the angular number (in case of circular geometry) is not important, it is essential for
the laminated chambers.
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FIG. 8: Coherent horizontal (a) and vertical (b) tune shift versus beam intensity. The estimated tune uncertainty in calculations
is less than 0.001. The vertical tune is suppressed while the horizontal tune changes very little. Space charge (SC) suppresses
both the vertical and horizontal tunes, while the wake coupling suppresses the vertical tune and increases the horizontal tune.
The calculation are in good agreement with the experiment, the deviation being within 3σmeas.

As an application, we calculate the coupling impedance and the wake functions for the Fermilab Booster magnets.
The comparison of the longitudinal coupling impedance with the one measured by Crisp and Fellenz [3] gives better
agreement than previous calculations.

We used the wake functions in realistic beam simulation using the Synergia code. New modules and subroutines
were added to Synergia to take into account the wake interaction. We measured the beam coherent tune shift at
injection energy and compare it with experiment [4]. We find that that the coherent vertical tune decreases with
increasing beam intensity while the horizontal tune is almost constant, in good agreement with the measurements.
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