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FIG. 1: Leading order annihilation (qq̄ → γ∗/Z G) and
Compton (qG→ γ∗/Z q) diagrams for the production of γ∗/Z
bosons with transverse momentum.

Yan events (66 < Me+e− < 116 GeV/c2) to probe Z-
boson production mechanisms. In general the γ∗/Z is
produced with sizeable transverse momentum[1] (pT =
pT (γ∗/Z) = pT (e+e−)). In quantum chromodynamics
(QCD) at leading order (LO) this occurs either through
the annihilation process with a gluon (G) in the final
state (qq̄ → γ∗/Z G), or via the Compton process with a
quark in the final state (qG→ γ∗/Z q), as shown in Fig.
1.

The general expression for the angular distribution [2]
is described by the polar (θ) and azimuthal (φ) angles
of the decay-electron in the Collins-Soper (CS) frame [3].
When integrated over cos θ or φ, respectively, the decay-
electron angular distribution is described by:

dσ

d cos θ
∝ (1 + cos2 θ) +

1
2
A0(1− 3 cos2 θ) +A4 cos θ; (1)

dσ

dφ
∝ 1 + β3 cosφ+ β2 cos 2φ+ β7 sinφ+ β5 sin 2φ(2)

(β3 =
3πA3

16
, β2 =

A2

4
, β7 =

3πA7

16
, β5 =

A5

4
).

A0 and A4 can be extracted from Eq. 2, and A2 and
A3 can be extracted from Eq. 2, while A5 and A7 are
expected to be zero [2].

Perturbative QCD (pQCD) makes definite predictions
for the angular coefficients A0,2,3,4 (A0 and A2 are the
same for γ∗ or Z exchange, and A3 and A4 originate
from the γ∗/Z interference). For the q q̄ → γ∗/Z G
annihilation process pQCD at LO predicts that the an-
gular coefficients A0 and A2 are equal [4–7] and can be
analytically described by Aqq̄

0 = Aqq̄
2 = p2

T

M2
e+e−

+p2
T

(Eq.

3). At higher order, there are small deviations from the
above expression (Eq. 3) which depend on PDFs and

dilepton rapidity [1] (y).
For the qG → γ∗/Z q Compton process, A0 and A2

depend on parton distribution functions (PDFs) and y.
However, in pQCD at LO, when averaged over y, A0 and
A2 are approximately described [8, 9] by AqG

0 = AqG
2 ≈

5p2
T

M2
e+e−

+5p2
T

(Eq. 4).

At LO, the Lam-Tung relation (A2 = A0) [10] is valid
for both qq̄ and qG processes [5]. Fixed-order pQCD cal-
culations at next-to-leading order (NLO) [2], as well as
QCD resummation calculations to all orders [6], indicate
that violations of the Lam-Tung relation are small. The
Lam-Tung relation is only valid for vector (spin-1) glu-
ons. It is badly broken for scalar (spin-0) gluons [11].
Therefore, confirmation of the Lam-Tung relation is a
fundamental test of the vector gluon nature of QCD and
is equivalent to a measurement of the spin of the gluon.
A previous determination of the gluon spin was made
from a study of 3-jet events (e+e− → qq̄ G) in e+e−

annihilation[12].
To date, the Lam-Tung relation has been tested only at

fixed-target experiments using samples of low mass Drell-
Yan dilepton pairs at relatively low transverse momen-
tum. In this region, non-perturbative higher-twist effects
can be significant [13, 14]. Some experiments report large
violations [8, 14–16], and one experiment [17] is consis-
tent with the Lam-Tung relation. Here we report on the
first test of the Lam-Tung relation at large dilepton mass
and high transverse momentum, where non-perturbative
higher-twist effects are expected to be negligible.

Fixed order pQCD calculations [2] and Monte Carlo
(MC) simulations at next-to-leading order (NLO) (e.g.
dyrad [18] and madgraph [19], and pythia in Z+1jet
mode [20]) indicate that there is a significant contribu-
tion of the Compton process to the production of γ∗/Z
bosons with large transverse momentum at the Tevatron.
Therefore, as shown in Fig. 3, these calculations yield
values of A0 and A2 which are larger than the pure an-
nihilation process prediction (Eq. 3). Similar results are
predicted by powheg [21], a NLO MC with additional
parton showering, and fewz [22] which is a next-to-next-
to-leading order (NNLO) QCD calculation.

In contrast, the default, LO version of pythia [23], and
vbp [24] (an MC generator based on QCD resummation)
predict values of A0 and A2 which are close to Eq. 3
(this is only correct if the qq̄ process is dominant). The
resbos [25] MC generator, which is also based on QCD
resummation, predicts values of A0 and A2 close to Eq.
3 at low pT , and larger values (close to the predictions
of fixed order pQCD) at high pT , as shown in Fig. 3.
Therefore, measurements of A0 and A2 as a function of
pT elucidate the relative contributions between the anni-
hilation and Compton processes.

In this Letter, we report on the first measurement of
the angular coefficients A0, A2, A3 and A4, for pp̄ →
γ∗/Z → e+e− + X events in the Z boson mass region
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(66 < Mee < 116 GeV/c2) produced at
√
s = 1.96 TeV.

We also report on the first test of the Lam-Tung relation
at high transverse momentum.

The sample used corresponds to an integrated lumi-
nosity of 2.1 fb−1 collected by the CDF II Detector at
Fermilab [26] during 2004-2007. Charged particle direc-
tions and momenta are measured by an open-cell drift
chamber (COT), a silicon vertex detector (SVX), and
an intermediate silicon layer in a 1.4 T magnetic field.
Projective-tower-geometry calorimeters and outer muon
detectors enclose the magnetic tracking volume. The cov-
erage of COT tracking in pseudorapidity is |η| < 1.2 [1].
Reconstructed tracks are used to determine the pp̄ colli-
sion point along the beam line (zvertex), which is required
to be within z = ±60 cm of the center of the detector.
The energies and directions [1] of electrons, photons, and
jets are measured by two separate calorimeters: central
(|η| < 1.1) and plug (1.1 < |η| < 3.6). Each calorime-
ter has an electromagnetic compartment with a shower
maximum detector followed by a hadronic compartment.
Three topologies of e+e− pairs are considered: two cen-
tral electrons (CC), one central and one plug electron
(CP), and two plug electrons (PP). Events with at least
one electron with high ET are selected online. Off-line re-
fined selection requires the electron to have ET > 25 GeV
for CC and PP events, and ET > 20 GeV for CP events.
in the central (|ηe| < 1.1) and plug (1.2 < |ηe| < 2.8)
fiducial regions of the calorimeters. To minimize back-
ground, the second electron candidate is required to have
ET > 15 GeV for CC, ET > 25 GeV for PP, and ET > 20
GeV for CP events. The selection criteria listed above are
the same as in a related previous publication [27] of the Z
rapidity distribution, but are augmented in this analysis
with the additional requirement that both electrons have
an associated track in the SVX. The data sample consists
of about 140 000 events. The fractional contribution of
the total QCD background (2-jet events misidentified as
a Drell-Yan pairs) to the number of selected events is
0.3%. This is determined by studying the distribution
of transverse energy in a cone surrounding the center of
the electromagnetic cluster in the calorimeter. The to-
tal background from electroweak (WW , WZ, W+jets,
and Z → τ+τ−) and tt̄ processes is estimated from sim-
ulation to be 0.2%. Figure 2 shows the di-electron PT

spectrum for data, the default pythiaprediction, and
the backgrounds. There is good agreement he default
pythiaprediction.

The effect of the acceptance on the angular distribu-
tions is modeled using the default pythiaMC generator
[23] combined with a geant [28] simulation of the CDF
detector. The default pythiagenerator includes a LO
QCD interaction (qq̄ → γ∗/Z), initial state QCD radi-
ation, parton shower fragmentation, the γ∗/Z → e+e−

decay, and photon radiation from the final state. The ver-
sion of default pythiaused at CDF has additional ad-hoc
tuning [23] in order to accurately represent the γ∗/Z bo-
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FIG. 2: Di-electron PT spectrum of data, default
pythiaprediction, and backgrounds (QCD and electroweak
process). The mass range corresponds to 66 < Mee < 116
GeV/c2.

son transverse momentum distribution measured in data.
Further tuning was introduced in order to ensure that the
MC simulation correctly described the rapidity, as well as
the correlations between rapidity and transverse momen-
tum that are observed in the data. To reconstruct the
simulated events in the same way as data, the calorimeter
energy scale, resolutions, and selection efficiencies used in
the detector simulation are tuned using data. Details are
given in reference [27].

The analysis is performed in five bins of transverse
momentum as shown in Table I. For each transverse mo-
mentum range, data and MC simulated events are binned
in cos θ. The MC events are re-weighted to generate the
expected angular distributions for a range of values of
A0 and A4. A maximum likelihood comparison of the
data and MC distributions in cos θ is used to extract the
best values of the angular coefficients A0 and A4 that de-
scribe the data. Similarly, for each transverse momentum
range, data and MC simulated events are also binned in
φ. A maximum likelihood comparison of the data and
MC distributions in φ is used to extract the best values
of the angular coefficients A2 and A3 that describe the
data. The results are shown in Table I and Fig. 3, where
statistical and systematic uncertainties have been added
in quadrature. (The correlation between extracted val-
ues of A0 A2, A3 and A4 is negligible). A study of all
of the systematic uncertainties discussed in reference [27]
(originating from backgrounds, electron identification ef-
ficiency, SVX tracking efficiency, boson PT and rapidity
modeling, and modeling of detector material) shows that
the uncertainties on the extracted angular coefficients are
dominated by the statistical uncertainties.

The data are in good agreement with the Lam-Tung
relation A0 − A2 = 0, which is expected in QCD with
vector gluons. The values of A0 − A2 for the five pT

bins are 0.00± 0.03, 0.04± 0.05, 0.03± 0.07, 0.02± 0.11,
and 0.01 ± 0.14 (statistical and systematic uncertain-
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FIG. 3: Comparison of the measured values of A0, A2, A3

and A4 (for 66 < Mee < 116 GeV/c2), shown with statistical
and systematic uncertainties combined, to theory predictions.
The data points are plotted at the mean pT of the events for
each bin. The horizontal uncertainty is the standard devia-
tion of the transverse momenta of events in each bin. Agree-
ment [29] is found with the predictions of fewz, and also with
dyrad, madgraph, powheg, and pythia Z +1-jet MC (not
shown). The data do not favor [29] the predictions of default
pythia, and vbp. Also shown are the pure qq̄ → γ∗/Z G an-
nihilation diagram prediction (Eq. 3), and the qG→ γ∗/Z q
Compton process prediction as approximated by Eq. 4.

ties combined), which average to 〈A0−A2〉=0.02± 0.02.
At low pT the measured values of A0 and A2 are well
described by the qq̄ → γ∗/Z G annihilation function
(Eq. 3). At high pT the larger values show that both
the annihilation and Compton processes contribute to
the cross section [29]. Our results are in agreement[29]
with fixed-order perturbation theory calculations includ-
ing dyrad [18], madgraph [19], pythia Z+1 jet [20],
powheg [21], and fewz [22] (all of these give similar
predictions). We find that the values of A3 and A4 are
in agreement with the predictions of all models (A4 is
calculated with sin2 θW = 0.232).

In summary, we present the first measurement of the
angular coefficients in the production of γ∗/Z bosons
at large transverse momenta, and the first test of the
Lam-Tung relation at high transverse momentum. We
find good agreement with the predictions of QCD fixed-
order perturbation theory, and with the Lam-Tung re-
lation A0 = A2. The measurements presented here are
statistically limited. An analysis with larger samples in
both muon and electron channels is currently under way.
A comparison of these results with future measurements
at the LHC would provide additional tests of production
mechanisms since the contribution of the Compton pro-
cess (qG→ γ∗/Z q) at the LHC is expected to be larger.

TABLE I: The measured angular coefficients (statistical and
systematic uncertainties are added in quadrature). For A0

and A2, the systematic uncertainty is ∼ 56% of the statistical
uncertainty at low PT (PT < 35 GeV) and ∼ 17% at high PT .
The systematic uncertainties in A3 and A4 are less than 10%
of the statistical uncertainty for all PT bins. The mean pT of
the events in the five bins are 4.8, 14.1, 26.0, 42.9 and 73.7
GeV/c, respectively.

PT bin A0 A2 A3 A4

(GeV/c) (×10−1) (×10−1) (×10−1) (×10−1)
0–10 0.17± 0.16 0.16± 0.27 −0.04± 0.12 1.10± 0.10
10–20 0.42± 0.26 −0.01± 0.38 0.18± 0.16 1.01± 0.17
20–35 0.86± 0.40 0.52± 0.59 0.14± 0.24 1.56± 0.26
35–55 3.11± 0.60 2.88± 0.86 −0.19± 0.41 0.52± 0.42
> 55 4.97± 0.62 4.83± 1.24 −0.47± 0.56 0.85± 0.51
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