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cussed for many years [1], but evidence for such mesons
has not been clearly established. The recent discov-
eries of states with charmonium-like decay modes [2–
5] that do not fit into the overall charmonium system
have introduced challenges to the conventional qq̄ meson
model. The possible interpretations beyond qq̄ such as
hybrid (qq̄g) and four-quark states (qq̄qq̄) have revital-
ized interest in exotic mesons in the charm sector [6–11].

Recently, the CDF collaboration has reported evi-
dence for a narrow structure near the J/ψ φ threshold
in B+ → J/ψ φK+ decays produced in p̄p collisions
at

√
s = 1.96 TeV [12]. Charge conjugation is implied

throughout this letter. Since the mass of this state,
termed Y (4140), is well beyond the threshold of open
charm-pair production, the expected branching fraction
into this channel for conventional charmonium is tiny.
The structure is the first observed charmonium-like ob-
ject decaying into a pair of quarkonium states (cc̄ and ss̄)
with a relative narrow width, a possible signature for an
exotic meson [7, 11, 13, 14]. The Belle collaboration has
searched for this J/ψ φ structure without a firm conclu-
sion near the J/ψ φ threshold [15].

In this Letter, we report a further study of the struc-
tures in the J/ψ φ system produced in exclusive B+ →
J/ψ φK+ decays with J/ψ → µ+µ− and φ → K+K−

reported in Ref. [12]. This analysis is based on a sam-
ple of p̄p collision data collected by the CDF II detector
with an integrated luminosity of 6.0 fb−1. This analysis
includes the data used in, and supersedes the results of
Ref. [12].

The CDF II detector has been described in detail else-
where [16]. The important components for this analysis
include the tracking, muon, and time-of-flight (TOF) sys-
tems. The tracking system is composed of a silicon-strip
vertex detector surrounded by an open-cell drift chamber
system (COT) located inside a solenoid with a 1.4 T mag-
netic field. The COT and silicon-strip vertex detector are
used for the measurement of charged-particle trajectories
and decay locations. In addition, the COT provides ion-
ization energy loss information, dE/dx, used for kaon
discrimination, while the TOF system provides comple-
mentary kaon discrimination information. The central
muon identification system is located radially outside the
electromagnetic and hadronic calorimeters and consists
of two sets of drift chambers and scintillation counters.
The central detector covers the pseudorapidity region
|η| ≤ 0.6 and detects muons with pT ≥ 1.4 GeV/c [17],
and the outer part covers the region 0.6 < |η| < 1.0 and
detects muons with pT ≥ 2.0 GeV/c.

In this analysis, J/ψ → µ+µ− events are recorded us-
ing a dedicated three-level dimuon trigger. The first trig-
ger level requires two muon candidates with two COT
tracks that extrapolate to track segments in the muon
detectors. The second level applies additional kinematic
requirements to the muon pair candidate. The third level
requires the invariant mass of the µ+µ− pair to be within

the mass range of 2.7 to 4.0 GeV/c2. The trigger require-
ments are confirmed offline.

We apply the same requirements described in the pre-
vious analysis [12] to the current data. We form B+ →
J/ψ φK+ candidates by combining a J/ψ → µ+µ− can-
didate, a φ → K+K− candidate, and an additional
charged track, which are consistent with originating from
a common point. The three hadronic tracks must be
identified as kaon candidates by using a log-likelihood
ratio estimator. This quantity reflects how well a can-
didate track can be positively identified as a kaon rel-
ative to other hadrons with its dE/dx and TOF infor-
mation and must exceed 0.2 [18]. The reconstructed
masses of the J/ψ and φ meson candidates must lie
within 50 and 7 MeV/c2 of their nominal values, respec-
tively. In the final B+ reconstruction the µ+µ− mass is
constrained to the known J/ψ mass [1], and the B+ can-
didates must have pT > 4 GeV/c. In addition, we require
Lxy(B

+) > 500 µm for the B+ → J/ψ φK+ candidate,
where Lxy(B

+) is the projection onto ~pT (B+) of the vec-
tor connecting the primary interaction point, determined
for each event using prompt tracks, to the reconstructed
B+ decay point.

The invariant mass spectrum of the selected J/ψ φK+

candidates is shown in Fig. 1(a). It is fit with a Gaussian
signal function with its root-mean-square (RMS) width
fixed to the mass resolution of 5.9 MeV/c2 obtained from
Monte Carlo (MC) simulation [19] and mean fixed to the
nominal B+ mass [1] and a linear background function.
The B+ yield is 115 ± 12(stat) events, a 53% increase
over the previous analysis. This increase in yield, for
an integrated luminosity increased by a factor of 2.2, is
reduced by a trigger rate limitation at the higher in-
stantaneous luminosities for the later data-taking pe-
riod. The yield increase in the complementary mode
B+ → J/ψ π+π−K+ is 51.8±2.4%, consistent with the
yield increase in B+ → J/ψ φK+ channel.

We then select B+ signal candidates with a mass
within ±3 RMS (±17.7 MeV/c2) of the nominal B+

mass. Events with a mass within [−9,−6] RMS or
[+6,+9] RMS of the nominal B+ mass are called B side-
band events. They are normalized into the B+ signal
region assuming a linear background distribution. The
J/ψ signal, checked by removing its mass constraint,
contains almost no background. Figure 1(b) shows the
invariant mass distribution of the K+K− pairs from
J/ψK+K−K+ candidates inside the B mass window
and in the B sidebands before applying the restriction
on the K+K− mass. The clear φ signal inside the B
mass window and almost featureless K+K− mass dis-
tribution in the B sideband indicate that the B+ →
J/ψK+K−K+ final state is well described as J/ψ φK+.
In none of the candidate events do both K+K− combina-
tions from the three-kaon final state fall into the φ mass
window.

Fig. 2 shows the mass difference ∆M =
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FIG. 1: (a) The mass distribution of J/ψ φK+; the solid blue
line is a fit to the data with a Gaussian signal function and
linear background function. (b) The K+K− mass distribu-
tions inside the B mass window (black solid) and in the B
sidebands (red dotted).

m(µ+µ−K+K−) − m(µ+µ−) for events in the B+

mass window. Events from reference [12] and from new
data are shown in (a) top and bottom. In the Y (4140)
signal region (∆M < 1.07GeV/c2), the new data agree
within 1σ of the expectation (6 events compared to 7.3
expected). Over the entire examined region the two
data sets are consistent at the 7% probability level. We
have investigated the consistency of particle ID for the
two data sets using the B+ → J/ψK+ channel and
see no discrepant effects. In (b) and (c), we display
∆M distributions for the events in the B signal and
sideband in the combined data sample. We restrict our
study to events with ∆M smaller than 1.56 GeV/c2 to
avoid appreciable combinatorial backgrounds from
misidentified B0

s → ψ(2S)φ→ (J/ψ π+π−)φ decays [12].
An enhancement is observed near the J/ψ φ threshold
from the B+ signal while there are no events in the
∆M range below 1.1 GeV/c2 from the combinatorial
background estimated from B sideband events.

We model the observed threshold structure by an S-
wave relativistic Breit-Wigner (BW) function [21] con-
voluted with a Gaussian resolution function with the
RMS fixed to 1.7 MeV/c2 obtained from MC. Three–body
phase space [1] is used to describe the background shape.
There is still a small B0

s contribution (3.3±1.0 events)
in the ∆M distribution up to 1.56 GeV. The MC shape
of the B0

s contribution is normalized to this area and
added to the three-body phase space. The parameters
from an unbinned likelihood fit to the ∆M distribution,
as shown in Fig. 2(b), are given in Table I. To test the
hypothesis that the structure has zero width (weak de-
cay), we also fit the ∆M distribution to a zero-width
peak, using a single Gaussian with RMS given by the
expected mass resolution (1.7 MeV/c2), plus phase space
background. The statistical significance for a non-zero
width determined by the likelihood ratio between these
two fits is 3.7σ, favoring a strong decay (non-zero width)
rather than a weak decay for this structure.
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FIG. 2: (a) The mass difference, ∆M , between µ+µ−K+K−

and µ+µ−, in the B+ mass window. Top–data from Ref. [12],
bottom–new data. (b) A fit to the combined data assum-
ing Y (4140) only. (c) A fit to the combined data assuming
two structures. This fit, including the second peak, lowers
the 3–body phase space background under the first peak and
increases its yield and significance with negligible effect on
its resonance parameters. The shaded histogram is the data
from the B sideband. The dotted blue curve is the predicted
background contribution, the dash-dotted black curve is the
predicted B0

s contamination, and the solid red curve is the
total unbinned fit.

The combinatorial background contains primarily
misidentified φ candidates, as can be seen in Fig. 1 (b).
These two tracks with a φ-like mass will be combined
with a real J/ψ, and an additional kaon candidate, all
having a common vertex and forming a B mass. We
model this component with phase space. To check this
assumption, we performed several studies in which we re-
laxed cuts that would not influence the mass-difference
distribution of events from the B mass region: loosened
vertex requirements or loosened Lxy cuts. These studies
show that the combinatoric background from the B side-
band region is consistent with 3–body phase space. We
can now conclude that the flat background hypothesis
used in the previous paper [12] was overly conservative.

We determine the significance of the structure at the
J/ψ φ threshold based on simulation. We generated
8.4 × 107 mass spectra (119 events for each, correspond-
ing to the number of observed events) drawn from a
three–body phase-space-like distribution, and search for
the most significant fluctuation in each spectrum in the
mass range of 1.02 to 1.56 GeV/c2, with widths in the
range of resolution up to 120 MeV/c2 [12]. We evaluate
2∆lnL = −2ln(L0/Lmax) value for each generated spec-
trum, where L0 and Lmax are the likelihood values for
the null hypothesis fit and signal hypothesis fit. Both
fits use three-body phase space to describe the back-
ground. There are 19 generated spectra with a 2∆lnL
value greater than or equal to the value (34.9 obtained
in the data assuming the Y (4140) structure only [23])
obtained in the data. The resulting p-value, taken as
the fraction of the generated spectra with a 2∆lnL value
greater than or equal to the value obtained in the data,
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is 2.3×10−7, corresponding to a significance greater than
5.0σ [24].

The mass of this enhancement is 4143.4+2.9
−3.0 MeV/c2

after adding the J/ψ mass [1] to the ∆M calculation. To
study the systematic uncertainties of the mass, width,
and yield, we repeat the fit to the ∆M distribution us-
ing a non–relativistic BW and P -wave relativistic BW
for signal. Other systematic uncertainties were also con-
sidered, including assuming the existence of the second
structure, varying the mass resolution andB0

s component
amplitude, as well as the systematic uncertainty due to
the particle identification. The resulting systematic un-
certainties for the measured quantities are shown in Ta-
ble I.

TABLE I: The fit results for J/ψ φ resonance near thresh-
old. The first uncertainty is statistical, and the second one is
systematic.

∆M [MeV/c2] Width [MeV/c2] Yield

1046.7+2.9
−3.0 ± 0.6 15.3+10.4

−6.1 ± 2.5 19 ± 6 ± 3

The relative trigger and reconstruction efficiency
ǫ(B+ → Y (4140)K+) × ǫ(Y (4140) → J/ψ φ)/ǫ(B+ →
J/ψ φK+) is determined to be 1.1, using an S-wave
BW with mean and width values determined from data
to represent the Y (4140) structure and a three–body
phase space kinematics for the B+ → J/ψ φK+ de-
cay. Thus the relative branching fraction Brel =
B(B+ → Y (4140)K+) × B(Y (4140) → J/ψ φ)/B(B+ →
J/ψ φK+) including systematic uncertainties is 0.149 ±
0.039(stat) ± 0.024(syst).

An excess above the three-body phase space back-
ground shape appears at approximately 1.18 GeV/c2 in
Fig. 2 (b). Since the significance of Y (4140) is greater
than 5σ, we assume the existence of the Y (4140) with
the parameters given in Table I and background given
by three–body phase space, and we test for the exis-
tence of a possible structure around 1.18 GeV/c2 as shown
in Fig. 2 (c). The signal PDF for the second struc-
ture is an S-wave relativistic BW function [21] convo-
luted with a Gaussian resolution function with the RMS
fixed to 3.0 MeV/c2 obtained from MC. For the second
structure −2ln(L0/Lmax) is 16.8, where L0 and Lmax

are the likelihood values for the null hypothesis fit as-
suming the Y (4140)-only and signal hypothesis fit as-
suming the Y (4140) and a second structure near ∆M
≃ 1.18 GeV/c2. The p-value determined by a simula-
tion similar to the Y (4140) investigation is 1.1 × 10−3,
which corresponds to a significance of 3.1σ. The fit
returns a yield of 22 ± 8 events, a ∆M of 1177.7+8.4

−6.7

MeV/c2, and a width of 32.3+21.9
−15.3 MeV/c2 for the struc-

ture near ∆M ≃ 1.18 GeV/c2. Refitting the ∆M distribu-
tion with a second structure produces negligible changes
in the mass and width of the Y (4140). The yield of

the Y (4140) increases by one event. We evaluated the
systematic uncertainties for the second structure in the
same way as for the Y (4140) structure and found sys-
tematic uncertainties of 1.9 MeV/c2 for the mass and
7.6 MeV/c2 for the width. The mass of the second struc-
ture is 4274.4+8.4

−6.7(stat)±1.9(syst) MeV/c2 after including
the world-average J/ψ mass.

In summary, the increased B+ → J/ψ φK+ sample at
CDF enables us to observe the Y (4140) structure with
a significance greater than 5σ. Assuming an S-wave rel-
ativistic BW, the mass and width of this structure are
measured to be 4143.4+2.9

−3.0(stat) ± 0.6(syst) MeV/c2 and

15.3+10.4
−6.1 (stat) ± 2.5(syst) MeV/c2, respectively. They

are consistent with the previous report (m = 4143.0 ±
2.9(stat) ± 1.2(syst) MeV/c2, Γ = 11.7+8.3

−5.0(stat) ±
3.7(syst) MeV/c2 [12]. The relative branching fraction is
determined to be Brel = 0.149±0.039(stat)±0.024(syst).
Light meson vector-vector threshold enhancements have
been seen [22]. We do not know of any non-exotic mecha-
nism for producing a threshold enhancement involving a
pair of heavy quarkonium states, but we cannot exclude
the possibility. We also find evidence for a second struc-
ture with a mass of 4274.4+8.4

−6.7(stat) ± 1.9(syst) MeV/c2,

a width of 32.3+21.9
−15.3(stat)± 7.6(syst) MeV/c2 and a yield

of 22± 8 events. The significance of the second structure
is estimated to be approximately 3.1σ.
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