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Abstra
tA highly e�
ient, fully parallelized, six-dimensional tra
king model for simulating intera
tions of 
ollidinghadron beams in high energy ring 
olliders and simulating s
hemes for mitigating their e�e
ts is des
ribed.The model uses the weak-strong approximation for 
al
ulating the head-on intera
tions when the test beamhas lower intensity than the other beam, a look-up table for the e�
ient 
al
ulation of long-range beam-beamfor
es, and a self-
onsistent Poisson solver when both beams have 
omparable intensities. A performan
e testof the model in a parallel environment is presented. The 
ode is used to 
al
ulate beam emittan
e and beamloss in the Tevatron at Fermilab and 
ompared with measurements. We also present results from the studiesof two s
hemes proposed to 
ompensate the beam-beam intera
tions: a) the 
ompensation of long-rangeintera
tions in the Relativisti
 Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider(LHC) at CERN with a 
urrent 
arrying wire, b) the use of a low energy ele
tron beam to 
ompensate thehead-on intera
tions in RHIC.Keywords: a

elerator physi
s, parallel 
omputing, beam dynami
sPACS: 29.27.Bd, 29.27.Fh1. Introdu
tionIn high energy storage-ring 
olliders, the beam-beam intera
tions are known to 
ause the emittan
egrowth and the redu
tion of beam life time, and to limit the 
ollider luminosity [1, 2, 3, 4℄. It has been akey issue in a high energy 
ollider to simulate the beam-beam intera
tion a

urately and to mitigate theintera
tion e�e
ts. A beam-beam simulation 
ode BBSIM has been developed at Fermilab over the pastfew years to study the e�e
ts of the ma
hine nonlinearities and the beam-beam intera
tions [5, 6, 7, 8℄.The 
ode is under 
ontinuous development with the emphasis being on in
luding the important details ofan a

elerator and the ability to reprodu
e observations in diagnosti
 devi
es. At present, the 
ode 
anbe used to 
al
ulate tune footprints, dynami
 apertures, beam transfer fun
tions, frequen
y di�usion maps,a
tion di�usion 
oe�
ients, emittan
e growth, and beam lifetime. Cal
ulation of the last two quantities overthe long time s
ales of interest is time 
onsuming even with modern 
omputer te
hnology. In order to rune�
iently on a multipro
essor system, the resulting model was implemented by using parallel libraries whi
hare MPI (inter-pro
essor Message Passing Interfa
e standard) [9℄, state-of-the-art parallel solver libraries(Portable, Extensible Toolkit for S
ienti�
 Cal
ulation, PETS
) [10℄, and HDF5 (Hierar
hi
al Data Format)[11℄.The organization of the paper is as follows: The physi
al model used in the simulation 
ode is des
ribedin Se
tion 2. The parallelization algorithm and performan
e are des
ribed in Se
tion 3. Some appli
ationsare presented for the Tevatron, the Relativisti
 Heavy Ion Collider (RHIC) and the Large Hadron Collider(LHC) in Se
tion 4. Se
tion 5 summarizes our results.
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2. Physi
al modelIn a 
ollider simulation, the two beams moving in opposite dire
tion are represented by ma
roparti
leswith the same 
harge to mass ratio as in the real beam. The number of ma
roparti
les 
hosen are mu
h lessthan the bun
h intensity of the beam be
ause it be
omes prohibitive to follow approximately 1011 parti
lesfor even a few revolutions around the a

elerator using modern super
omputers. These ma
roparti
lesare generated and loaded with an initial distribution 
hosen for the spe
i�
 simulation purpose. As anexample, a six-dimensional Gaussian distribution is used for long-term beam evolution. The transverse andlongitudinal motion of parti
les is 
al
ulated by a sequen
e of linear and nonlinear transfer maps. During thebeam transport, a parti
le is removed from the distribution if it rea
hes a prede�ned boundary of transverseor longitudinal aperture. In our simulation model, the following e�e
ts are in
luded: head-on and long-rangebeam-beam intera
tions, �elds of a 
urrent 
arrying wire and an ele
tron lens, mulitpole errors in quadrupolemagnets in intera
tion regions, sextupoles for 
hromati
ity 
orre
tion, a
 dipole, resistive wall wake, tunemodulation, noise in latti
e elements, single and multiple harmoni
 rf 
avities, and 
rab 
avities. The �nitebun
h length e�e
t of the beam-beam intera
tions is 
onsidered by sli
ing the beam into several 
hunks inthe longitudinal dire
tion and then applying a syn
hro-beam map [12℄. Ea
h sli
e in a beam intera
ts withsli
es in the other beam in turn at a 
ollision point. In the following, linear and nonlinear tra
king modelsare des
ribed in detail.2.1. Transport through an ar
The six-dimensional 
oordinates of a test parti
le in the a

elerator's 
oordinate frame are: x =
(

x, x
′

, y, y
′

, z, δ
)T , where x and y are horizontal and verti
al 
oordinates, x′ and y′ the traje
tory slopesof the 
oordinates, z = −c∆t the longitudinal distan
e from the syn
hronous parti
le, and δ = ∆pz/p0the relative momentum deviation from the syn
hronous energy [13℄. The transverse linear transformationbetween two elements denoted by i and j 
an be written as

xj =

(

M D̂
Ŝ L

)

xi. (1)Here, M is a 
oupled transverse map of o�-momentum motion de�ned by M = RjM̃i→jR−1
i , where M̃i→jis the un
oupled linear map des
ribed by Twiss fun
tions at i and j elements, and the transverse 
ouplingmatrix R is de�ned as [14℄

R =
1

√

1 + |C|

(

I C†

−C I

)

, (2)where C† is the 2 × 2 matrix and the symple
ti
 
onjugate of the 
oupling matrix C. The 4× 2 dispersionmatrix is de�ned by D̂ = (0,D), and the dispersion ve
tor D =
(

Dx, D
′

x, Dy, D
′

y

)T is 
hara
terized bythe transverse dispersion fun
tions and the map M, i.e., D = Dj −MDi where Di,Dj are the dispersionve
tors at i, j. Sin
e the transport matrix has to be symple
ti
, the matrix Ŝ in Eq. (1) is given by
Ŝ = −D̂TJTM, where J =

(

0 I
−I 0

) and I is the 2× 2 identity matrix. The longitudinal map L is givenby L =

(

1 − (η/β)∆s
0 1

), where η is the slip fa
tor, β = v/c, and ∆s the longitudinal distan
e betweenthe two elements, i.e., ∆s = sj − si. It is noted that s is the axis along the beam dire
tion. The nonlinearityof syn
hrotron os
illations is applied by adding the longitudinal momentum 
hange at a rf 
avity:
∆δ =

eVrf

β2E
(sinkrfz − sinφs) , (3)where Vrf is the voltage of rf 
avity, φs the phase angle for a syn
hronous parti
le with respe
t to the rfwave, and krf the wave number of the rf 
avity. If there are higher harmoni
 
avities, their e�e
ts are addedto the momentum 
hange. 2



2.2. Beam-beam intera
tionsIn order to a
hieve a high luminosity in a 
ollider one 
an in
rease the number of bun
hes whi
h redu
esthe bun
h spa
ing. More bun
hes in
rease the number of parasiti
 en
ounters in the intera
tion regions.Sin
e the 
al
ulation of beam-beam for
e requires large amounts of 
omputational resour
es, it has to beexe
uted rapidly and a

urately. BBSIM has three di�erent models for this purpose: a weak-strong modelfor head-on intera
tions, a look-up table model for long-range intera
tions, and a Poisson solver model forthe head-on intera
tions when both beams have 
omparable intensities (�strong-strong� model).2.2.1. Weak-strong modelIn the weak-strong model we assume that the �weak� beam is a�e
ted by the head-on and long-rangeintera
tions while the opposing beam or �strong� beam is una�e
ted. The 
harge distribution of the strongbeam is assumed to be Gaussian:
ρ (x, y, z) =

Nq

(2π)3/2 σxσyσz

exp

(

− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)

, (4)Here, N is the number of parti
les per bun
h and q is the 
harge per parti
le. Note that the 
oordinates
(x, y, z) are measured in the rest frame of the strong beam. The beam-beam for
e between two beams withtransverse Gaussian distribution ρ (x, y) =

´

dzρ (x, y, z) is well-known [15℄, and the expression for the slope
hange is given by, for ellipti
al beam with σx > σy:
(

∆x′

∆y′

)

=
2Nr0
γ

√
π

√

2
(

σ2
x − σ2

y

)

( Im [F (x, y)]Re [F (x, y)]

)

, (5)where
F (x, y) = w





x+ iy
√

2
(

σ2
x − σ2

y

)



− e
− x

2

2σ2
x

− y
2

2σ2
y w





xσy

σx

+ i yσx

σy

√

2
(

σ2
x − σ2

y

)



 . (6)Here, w (z) is the 
omplex error fun
tion de�ned by w (z) = e−z2

(

1 + 2i√
π

´ z

0
dt et

2

), and γ the Lorentzfa
tor. The 
onstant r0 is de�ned as r0 ≡ qq∗/4πǫ0m0c
2, where q∗ is the ele
tri
 
harge of the weak beam,and m0 the rest mass of the parti
le.2.2.2. Look-up table modelThe 
harge distribution of the strong beam in the weak-strong model is not varied during the simulations.It is redundant to re-
al
ulate the beam-beam for
e at every parasiti
 lo
ation and every turn. A look-uptable is one way to avoid it. The look-up table is used to repla
e a run time 
omputation with an arrayindexing operation. The beam-beam for
e of a Gaussian beam distribution is des
ribed by the 
omplexerror fun
tion, as shown in Eq. (6). The 
al
ulation of the 
omplex error fun
tion 
an substantially slow thebeam-beam simulation. However, the look-up table is pre-
al
ulated and stored in a memory, usually in anarray. When the value of the error fun
tion is required, it 
an be retrieved from the table by an interpolations
heme, instead of using Eq. (6). The look-up table method 
an signi�
antly redu
e a 
omputational 
ost.The property of the 
omplex error fun
tions yields the symmetry relations of fun
tion F (z) as

F (−z) = −F (z) , F (z̄) = −F (z), F (−z̄) = F (z), (7)where z = x + iy is a 
omplex variable. The symmetry 
onditions of fun
tion F (z) 
an redu
e memoryspa
e to store the fun
tion values. It is su�
ient to build the table for the values of fun
tion F (z) in the�rst quadrant of the 
omplex plane, i.e., |x| ≥ 0 and |y| ≥ 0.3



Interpolation te
hniques are required to predi
t a value of a fun
tion at a point inside its domain basedupon the known tabulated values. For a given set of data points (zi, fi), i = 0, . . . , N , where no two zi's arethe same, the interpolated value g (z) at a value z 6= zi is found from
g (z) =

N
∑

i=0

fiLi (z) , (8)where Li is Lagrange's N -th order polynomials
Li (z) =

N
∏

j=0,j 6=i

z − zj
zi − zj

. (9)In order to save the interpolation time further, one 
an divide z-spa
e and apply a di�erent degree of theLagrange polynomial. For an example, we apply a sixth order polynomial for small amplitudes |z| ≤ 4σwhile a third order polynomial is applied for |z| > 4σ, be
ause the fun
tion F (z) varies more rapidly atsmall |z| and slowly at large |z| .2.2.3. Poisson solver modelThe weak-strong model is a good approximation when one beam has mu
h smaller intensity than theother, but it is not valid when the intensities of the two beams are 
omparable be
ause ea
h beam's param-eters are 
hanged by the other beam. One has to solve for the �eld of ea
h beam self-
onsistently. The �eldsare the solutions of Poisson equation given by
∇2φ (~r) = −4πρ (~r) , (10)where φ is the ele
trostati
 potential and ρ the density fun
tion of the beam. The solution 
an be obtainedby

φ (~r) =

ˆ

G (~r, ~r1) ρ (~r1) d~r1, (11)where G is the Green's fun
tion of Poisson's equation and in two spa
e dimension, is given by
G (x, y : x1, y1) = − 1

4π
ln
[

(x− x1)
2
+ (y − y1)

2
]

. (12)Equation (11) 
an be e�
iently 
al
ulated using a 
onvolution theorem and inverse Fourier transform:
φ (~r) = F−1

(

Ĝ (~ω) ρ̂ (~ω)
)

, (13)where Ĝ (~ω) =
(

1√
2π

)2
´

R2 G (~r) e−i~ω·~rd~r and ρ̂ (~ω) =
(

1√
2π

)2
´

R2 ρ (~r) e
−i~ω·~rd~r. It is assumed in Eq. (13)that the density fun
tion ρ (~r) is periodi
 in both x and y dire
tions. However, sin
e the beam has a �nite
harge distribution surrounded by a 
ondu
ting wall in an a

elerator system, the transverse beam densitydoes not meet the periodi
ity requirement of FFT te
hniques. In order to apply the above formalism, thedensity fun
tion should be rewritten by, in the doubled 
omputational domain [16℄:

ρnew (x, y) =

{

ρ (x, y) , 0 < x ≤ Lx, 0 < y ≤ Ly,

0 , Lx < x ≤ 2Lx, or Ly < y ≤ 2Ly

(14)Green's fun
tion is de�ned in the doubled domain, as follows:
Gnew (x, y) =



















G (x, y) , 0 < x ≤ Lx, 0 < y ≤ Ly,

G (2Lx − x, y) , Lx < x ≤ 2Lx, 0 < y ≤ Ly,

G (x, 2Ly − y) , 0 < x ≤ Lx, Ly < y ≤ 2Ly,

G (2Lx − x, 2Ly − y) , Lx < x ≤ 2Lx, Ly < y ≤ 2Ly.

(15)4



Figure 1: De�nition of 
rossing angles α and φ: α is the 
rossing plane angle in the x − y plane and φ isthe half 
rossing angle in the x̃− s plane. s is the axis along the beam dire
tion when there is no 
rossingangle. The x̃ − s plane is the 
rossing plane de�ned by the angle α. The beam traje
tories, shown by redlines with arrows, lie in the 
rossing plane.Both ρnew and Gnew are doubly periodi
 fun
tions with periods 2Lx and 2Ly. It is noted that only thepotential within a domain (0, Lx] × (0, Ly] is valid. The potential outside the domain is in
orre
t, but itdoesn't matter be
ause the physi
al domain of interest is (0, Lx]× (0, Ly]. When one beam is separated farfrom the other, one 
an apply a shifted Green's fun
tion approa
h [17℄.2.2.4. Crossing angleWhen there exists a �nite 
rossing angle between two 
olliding beams at an intera
tion point, the beam-beam for
e experien
ed by a test parti
le will have transverse and longitudinal 
omponents be
ause theele
tri
 �eld generated by the opposing beam is not perpendi
ular to the parti
le velo
ity anymore. Theexisten
e of a longitudinal for
e makes it di�
ult to apply the result of previous se
tions. A transformation
an be used to remedy the di�
ulty. It transforms a 
rossing angle 
ollision in the laboratory frame to a head-on 
ollision in the rotated and boosted frame whi
h is 
alled the head-on frame [18, 19℄. The transformation
an be des
ribed by a transformation from the a

elerator 
oordinates to Cartesian 
oordinates, a Lorentzboost, and again a ba
kward transformation to the a

elerator 
oordinates:
x∗ = z cosα tanφ+ x [1 + h∗

x cosα sinφ] + yh∗
x sinα sinφ,

y∗ = z sinα tanφ+ y
[

1 + h∗
y sinα sinφ

]

+ xh∗
y cosα sinφ,

z∗ =
z

cosφ
+ h∗

z [x cosα sinφ+ y sinα sinφ] ,

p∗x =
px

cosφ
− h cosα

tanφ

cosφ
,

p∗y =
py

cosφ
− h sinα

tan φ

cosφ
,

p∗z = pz − px cosα tanφ− py sinα tanφ+ h tan2 φ,

(16)
where a star (*) stands for a dynami
al variable in the head-on frame, the Hamiltonian h (px, py, pz) =

pz + 1 −
√

(pz + 1)
2 − p2x − p2y, h∗

x = ∂h∗/∂p∗x, h∗ (p∗x, p
∗
y, p

∗
z

)

= h
(

p∗x, p
∗
y, p

∗
z

), α the 
rossing plane angle inthe x− y plane, and φ the half 
rossing angle in the x̃− s plane as shown in Fig. 1.2.3. Finite bun
h lengthThe e�e
ts due to the �nite (as opposed to in�nitesimal) bun
h length need to be 
onsidered when thetransverse beta fun
tions at the intera
tion point are small and 
omparable to σz . The �nite longitudinallength is 
onsidered by dividing the beam into longitudinal sli
es and by a so 
alled syn
hro-beam map [12℄.5



We make sli
es of both beams moving in opposite dire
tions. Ea
h sli
e of the strong bun
h is integratedover its length, and has only a transverse 
harge distribution at its 
enter. We take into a

ount the 
ollisionbetween a pair of sli
es: the ith sli
e of a bun
h and the jth sli
e of a bun
h in the other beam. The 
ollisiontakes pla
e at 
ollision point S (zi, zj∗) = 1
2

(

zi − zj∗

) whi
h is usually di�erent from the intera
tion point.For example, the ith sli
e of a bun
h has su

essive 
ollisions with sli
es of a bun
h in the other beam. Inaddition, the ele
tri
 �eld varies along the bun
h due to the inhomogeneity of the 
harge density in thelongitudinal dire
tion, and 
ouples transverse and longitudinal motions. The 
oupling 
an be modeled bythe syn
hro-beam map whi
h in
ludes beam-beam intera
tions due to the longitudinal 
omponent of theele
tri
 �eld as well as the transverse 
omponents. The transformation is given by [12℄
xnew = x+ S (z, z∗)

∂U

∂x

∣

∣

∣

∣

S

, pnewx = px − ∂U

∂x

∣

∣

∣

∣

S

, ynew = y + S (z, z∗)
∂U

∂y

∣

∣

∣

∣

S

, pnewy = py −
∂U

∂y

∣

∣

∣

∣

S

,

znew = z, δnew = δ − 1

2

∂U

∂x

∣

∣

∣

∣

S

[

px − 1

2

∂U

∂x

∣

∣

∣

∣

S

]

− 1

2

∂U

∂y

∣

∣

∣

∣

S

[

py −
1

2

∂U

∂y

∣

∣

∣

∣

S

]

− 1

2

∂U

∂z

∣

∣

∣

∣

S

.

(17)Here, |S represents the evaluation at the 
ollision point S (z, z∗). U is the normalized potential energy
U = qΦ/E0 and is given by

U (x, y;σx (s) , σy (s)) =
N∗r0
γ

ˆ ∞

0

dζ
−1 + exp

(

− x2

2σ2
x
+ζ − y2

2σ2
y
+ζ

)

√

(2σ2
x + ζ)

(

2σ2
y + ζ

)

. (18)The dependen
e on the bun
h length is 
ontained in σx(s), σy(s). The transverse derivatives of the potentialenergy are
∂U

∂x

∣

∣

∣

∣

S

= −∆x′ (X,Y ;S (z, z∗)) ,
∂U

∂y

∣

∣

∣

∣

S

= −∆y′ (X,Y ;S (z, z∗)) , (19)where (X,Y ) are the transverse 
oordinates at S (z, z∗), and∆x′ and ∆y′ are given by Eq. (5). Thelongitudinal derivative of the potential energy whi
h is related to the longitudinal beam-beam ki
ks isexpressed by
∂U

∂z

∣

∣

∣

∣

S

=
1

2

dσ2
x

ds

∂U

∂σ2
x

∣

∣

∣

∣

s=S(z,z∗)

+
1

2

dσ2
y

ds

∂U

∂σ2
y

∣

∣

∣

∣

∣

s=S(z,z∗)

, (20)
∂U

∂σ2
x

=
1

2
(

σ2
x − σ2

y

)

[

x∆x′ + y∆y′ +
2N∗r0

γ

(

σy

σx
e
− x

2

2σ2
x

− y
2

2σ2
y − 1

)]

, (20a)
∂U

∂σ2
y

=
−1

2
(

σ2
x − σ2

y

)

[

x∆x′ + y∆y′ +
2N∗r0

γ

(

σx

σy
e
− x

2

2σ2
x

− y
2

2σ2
y − 1

)]

. (20b)Note that dσ2

x

ds and dσ2

y

ds have zero amplitude and 
hange their sign at the intera
tion point if αx = αy = 0.Test parti
les experien
e longitudinal a

eleration and de
eleration passing through the bun
h moving inthe opposite dire
tion.2.4. Compensation s
hemesIn storage-ring 
olliders, a beam experien
es periodi
 perturbations when it meets the 
ounter-rotatingbeam in a 
ommon beam pipe. The head-on beam-beam intera
tions o

ur when the beams 
ollide in thedete
tors while the long-range intera
tions o

ur when the beams are simultaneously present at the samelo
ation but are separated transversely. The nonlinear for
es due to these beam-beam intera
tions resultin a tune spread and 
an 
ause emittan
e growth, a redu
tion of beam life time, and therefore redu
e the6




ollider luminosity. The 
ombination of beam-beam and ma
hine nonlinearities ex
ite betatron resonan
eswhi
h 
an 
ause parti
les to di�use into the tails of the beam distribution and even to the physi
al aperture.Di�erent 
ompensation methods have been proposed: a 
urrent 
arrying wire for the e�e
ts of the long-rangeintera
tions [20℄ and an ele
tron lens for the head-on intera
tions in proton ma
hines [21, 22, 23, 24℄. Beam
ollisions with a 
rossing angle at the intera
tion point are often ne
essary in 
olliders to redu
e the e�e
tsof the long-range intera
tions. The 
rossing angle redu
es the geometri
al overlap of the beams and hen
ethe luminosity. A de�e
ting mode 
avity, also known as a 
rab 
avity, o�ers a promising way to 
ompensatethe 
rossing angle and to realize e�e
tive head-on 
ollisions [25, 26℄. We now des
ribe the modelling of these
ompensation s
hemes in the program.2.4.1. Current 
arrying wireWhen the separations at long-range intera
tions are large 
ompared to the rms beam size the strengthof these intera
tions is inversely proportional to the distan
e. Its e�e
t on a beam 
an be 
ompensated by a
urrent 
arrying wire whi
h 
reates a magneti
 �eld with the same 1
r dependen
e. This approa
h is simpleand it is possible to deal with all multipole orders at on
e. For a �nite length lw embedded in the middle ofa drift length L, the transfer map of a wire 
an be obtained by

M(L)
w = DL/2 ◦M(L)

k ◦DL/2, (21)where DL/2 is the drift map with a length L
2 , and M(L)

k is the wire ki
k integrated over a drift length. Thiski
k map M(L)
k is reprodu
ed by the following 
hanges in slope [27℄

(

∆x′

∆y′

)

=
µ0

4π

Iwlw
(Bρ)

u− v

x2 + y2

(

x
y

)

, (22)where Iw is the 
urrent of the wire , u =

√

(

L
2 + lw

)2
+ x2 + y2 and v =

√

(

L
2 − lw

)2
+ x2 + y2. We alsotake into a

ount the wire misalignment in
luding pit
h and yaw angles (θx, θy) respe
tively as well as lateralshifts (∆x,∆y). The transfer map of a wire 
an be written as

Mw = S∆x,∆y ◦ T−1
θx,θy

◦DL/2 ◦M(L)
k ◦DL/2 ◦ Tθx,θy , (23)where Tθx,θy represents the tilt of the 
oordinate system by horizontal and verti
al angles θx, θy to orientthe 
oordinate system parallel to the wire, and S∆x,∆y represents a shift of the 
oordinate axes to makethe 
oordinate systems after and before the wire agree. When the wire is parallel to the beam, Eq. (23)be
omes Eq. (21). For 
an
eling the long-range beam-beam intera
tions of the round beam with the wire,one 
an get the desired wire 
urrent and length by equating Eq. (22) and Eq. (5); the integrated strengthof the wire 
ompensator is related to the integrated 
urrent of the beam bun
h as Iwlw = cqN .2.4.2. Ele
tron lensFor the head-on proton-proton beam 
ollisions, parti
les of one proton bun
h are fo
used by a spa
e
harge of the 
ounter-rotating proton bun
h. The beam-beam e�e
t on the parti
les of the proton bun
h
an be 
ompensated by a 
ounter-rotating beam of negatively 
harged parti
les, for example, a low-energyele
tron beam. In order to 
an
el out the transverse ki
k by the 
ounter-rotating proton bun
h, the ele
tronbeam should have the same transverse 
harge pro�le and 
urrent as the proton bun
h. The proton bun
htypi
ally exhibits an approximately Gaussian transverse pro�le. If we 
hoose a Gaussian distribution of theele
tron beam, the transverse ki
k on parti
les of the proton bun
h from the ele
tron beam is given by

(

∆x′

∆y′

)

= −2Ner0
γr2

ζ (x, y : σe)

(

x
y

)

, (24)where Ne is the number of ele
trons of the ele
tron beam adjusted by the ele
tron beam speed, r0 the 
lassi
proton radius, γ the Lorentz fa
tor, r2 = x2 + y2, and σe the transverse beam size of the ele
tron beam.The fun
tion ζ is given by 7



ζ (x, y : σe) =

[

1− exp

(

−x2 + y2

2σe

)]

. (25)For a non-Gaussian ele
tron 
harge distribution we implement a �at top pro�le with smooth edges that gen-erates a linear beam-beam for
e near the beam 
enter. This �at top beam pro�le ρe (r) = ρ0/
(

1 + (r/σe)
8
)delivers the transverse ki
ks given by Eq. (24), but the fun
tion ζ is as follows:

ζ =

√
2ρ̃0
8

[

1

2
log

(

θ2+ + 1

θ2− + 1

)

+ tan−1 θ+ + tan−1 θ−

]

, (26)where ρ̃ is a 
onstant, and θ± =
√
2
(

r
σe

)2

± 1.2.4.3. Crab 
avityWhen a parti
le passes through a 
rab 
avity stru
ture, it experien
es a transverse de�e
tion and a small
hange in its longitudinal energy. Crab 
avities 
an 
ompensate for the horizontal or verti
al 
rossing angleat the intera
tion point by delivering oppositely dire
ted transverse ki
ks to the head and the tail of thebun
hes. In the 
ase of a horizontal 
rossing, the ki
ks from the 
rab 
avity are given by
∆x′ = −qV

E0
sin
(

φs +
ωz

c

)

, ∆δ = −qV

E0
cos
(

φs +
ωz

c

)

· ω
c
x, (27)where q denotes the parti
le 
harge, V the voltage of 
rab 
avity, E0 the parti
le energy, φs the phase ofthe syn
hronous parti
le with respe
t to the 
rab-
avity rf wave, ω the angular frequen
y of the 
rab 
avity,

c the speed of light, z the longitudinal 
oordinate of the parti
le with respe
t to the bun
h 
enter, and xthe horizontal 
oordinate. In general this is a nonlinear map whi
h introdu
es syn
hro-betatron 
ouplingbut for small z, this redu
es to a linear map in the horizontal-longitudinal plane. The 
rab 
avity 
auses a
losed orbit distortion dependent on the longitudinal position of parti
les, and the beam envelope is tiltedall around the ring. For a bun
h shorter than the rf wavelength of the 
rab 
avity de�e
ting mode, the tiltangle of the beam envelope at a lo
ation with a beam position monitor (BPM) is given by
tan θcrab =

qV ω
√
ββcrab

c2p0

∣

∣

∣

∣

cos (∆ϕ− πQ)

2 sinπQ

∣

∣

∣

∣

, (28)where β is the beta fun
tion at the BPM position, βcrab the beta fun
tion at the 
rab 
avity, ∆ϕ the phaseadvan
e between the 
rab 
avity lo
ation and the BPM, and Q the betatron tune. The simulations of a
rab 
avity in the SPS a

elerator at CERN using BBSIM will be des
ribed in another paper.2.5. Parti
le distributionAt the beginning of a simulation, the simulation parti
les are distributed over the phase spa
e x =
(x, x′, y, y′, z, δ)

T , 
alled the initial loading. In any simulation the number of parti
les N is limited by the
omputational power. In order to make the best use of a small number of simulation parti
les 
ompared tothe real number of parti
les in the a

elerator, the loading should be optimized. Indeed the initial loadingis very important be
ause this 
hoi
e 
an redu
e the statisti
al noise in the physi
al quantities.Gaussian distribution: For long-term parti
le tra
king where we 
al
ulate emittan
e growth, we 
onsideran exponential distribution in a
tion (Gaussian distribution in 
oordinates) of the form:
ρ (x) = ρ0 exp

(

− Jx
2σJx

− Jy
2σJy

− Jz
2σJz

)

, (29)8



where Jx, Jy, and Jz are the transverse and longitudinal a
tion variables de�ned by
Jx =

1

2βx

[

x2 +
(

βxx
′

+ αxx
)2
]

, Jy =
1

2βy

[

y2 +
(

βyy
′

+ αyy
)2
]

,

Jz =
8

π

Rνs
h2 |η|

[

E (k)−
(

1− k2
)

K (k)
]

,

(30)where R is the radius of the a

elerator, h the harmoni
 number, νs the longitudinal tune, E and K the
omplete ellipti
al integrals, and
k2 =

1

4

h2η2

ν2s

(

∆p

p

)2

+ sin2
φ

2
. (31)

σJx
, σJy

, and σJz
are the rms sizes of a
tion variables. The simulation parti
les are generated by twosteps:1. The a
tion variables (Jx, Jy, Jz) of parti
les 
an be dire
tly generated from the distribution fun
tionby the inverse transform method and the bit-reversed sequen
e [28℄.2. For example, x and x′ are 
orrelated and their distribution is ρ̂ (x, x′) = ρ̂0 exp

(

−x2+(βxx
′+αxx)

2

2σ2
x

).Sin
e the horizontal a
tion Jx is determined at the �rst step, the horizontal 
oordinates (x, x′) 
an beobtained from the random variates:
x =

√

Jx cos θx, x′ =
√

Jx (sin θx − αx cos θx) /βx,where the value of θx is randomly distributed within the interval 0 ≤ θx ≤ 2π.Hollow Gaussian distribution: In most 
ases of parti
le tra
king, lost parti
les are observed only abovea 
ertain large transverse a
tion while the beam 
ore is stable. An example is shown in Se
tion 4.1. Ahollow beam is a beam with zero 
entral intensity along the longitudinal beam axis. For the generation of ahollow beam, a bun
hed beam distribution in longitudinal phase spa
e is a Gaussian, but a distribution intransverse phase spa
e is a hollow Gaussian. The pro
edure of generating the hollow distribution is the sameas that for the Gaussian distribution ex
ept that the amplitude of transverse a
tion of a parti
le should belarger than a minimum value, i.e., Jx + Jy ≥ σJ . Sin
e most of the stable parti
les are not in
luded in thetra
king simulation, the hollow beam model simulates a large transverse amplitude Gaussian distributionusing a small number of ma
ro-parti
les. This distribution is useful when 
al
ulating beam lifetimes.2.6. Parti
le di�usionDi�usion 
oe�
ients 
an 
hara
terize the e�e
ts of the nonlinearities present in an a

elerator, and 
anbe used to �nd numeri
al solutions of a di�usion equation for the density [29, 30℄. The solutions yield thetime evolution of the beam density distribution fun
tion for a given set of ma
hine and beam parameters.This te
hnique enables us to follow the beam intensity and emittan
e growth for the duration of a luminositystore, something that is not feasible with dire
t parti
le tra
king. The transverse di�usion 
oe�
ients 
anbe 
al
ulated numeri
ally from
Dij (ai, aj) =

1

N
〈(Ji(ai, N)− Ji(ai, 0)) (Jj(aj , N)− Jj(aj , 0))〉 , (32)where Ji (ai, 0) is the initial a
tion at an amplitude ai, Ji (ai, N) the a
tion with initial amplitude ai after Nturns, 〈〉 the average over simulation parti
les, and (i, j) are the horizontal x or the verti
al y 
oordinates.Equation (29) is averaged over a 
ertain number of turns to eliminate the �u
tuation in a
tion due to thephase spa
e stru
ture, e.g. resonan
e islands. These di�usion 
oe�
ients 
an be dire
tly used to 
ompareamplitude growth under di�erent 
ir
umstan
es, e.g with di�erent tunes. Emittan
e growth and beamlifetimes 
an be 
al
ulated when these 
oe�
ients are used in a di�usion equation, as mentioned above.9



2.7. Diagnosti
sNumeri
al simulation enables the generation of very large amounts of data. The BBSIM 
ode monitorsphysi
al quantities, for example, parti
le amplitudes and saves them into an external �le during the sim-ulation. A

ording to a problem of interest, the quantities to be saved 
an be 
hosen in order to extra
tvaluable information from post-pro
essing. In addition, some diagnosti
 fun
tions are 
al
ulated in the 
odeas follows:Betatron tune distribution: The betatron tune in an a

elerator is one of the most important beamparameters. The tune of ea
h parti
le in the beam distribution is 
al
ulated with a Hanning �lter appliedto an fast-Fourier transform of parti
le 
oordinates found from tra
king [31℄.Beam transfer fun
tion: The beam transfer fun
tion (BTF) is de�ned as the beam response to a smallexternal longitudinal or transverse ex
itation at a given frequen
y. BTF diagnosti
s are widely employed ina

elerators due to its non-destru
tive nature. A stripline ki
ker or rf 
avity ex
ites betatron or syn
hrotronos
illations respe
tively over the appropriate tune spe
trum. The beam response is observed in a downstreampi
kup. The fundamental appli
ations of BTF are to measure the transverse tune and tune distributionby ex
iting betatron os
illation, to analyze the beam stability limits, and to determine the impedan
e
hara
teristi
s of the 
hamber wall, and feedba
k system [32℄. In the 
ode, we apply a sinusoidal drivingfor
e to a beam in a transverse plane and tra
k the ex
ited parti
les over 1024 turns at ea
h ex
itationfrequen
y of the ki
ker. The driving frequen
y is swept in equidistant steps over the 
ontinuous frequen
yrange in
luding betatron tunes.Frequen
y di�usion: We have 
al
ulated frequen
y di�usion maps as another way to investigate thee�e
ts of nonlinear for
es. The map represents the variation of the betatron tunes over two su

essive setsof the tunes [33℄: The variation 
an be quanti�ed by d = log
√

∆ν2x +∆ν2y , where (∆νx = ν
(2)
x − ν

(1)
x ,∆νy =

ν
(2)
y − ν

(1)
y ) are the tune variations between the �rst set and next set of 1024 turns. If the tunes (ν(1)x , ν

(1)
y

)are di�erent from (

ν
(2)
x , ν

(2)
y

), the parti
le is moving to di�erent amplitudes. A large tune variation isgenerally an indi
ator of fast di�usion and redu
ed stability.Dynami
 aperture: The dynami
 aperture of an a

elerator is de�ned as the smallest radial amplitude ofparti
les that survive up to a 
ertain time interval, for example, 106 turns. As the number of turns in
reases,the dynami
 aperture approa
hes an asymptoti
 value. Initial parti
les are distributed uniformly over thetransverse phase spa
e with amplitudes typi
ally varying between 0-20 σ, where σ is the rms transversebeam size. The longitudinal amplitude is 
hosen as largest value within a bun
h.Emittan
e: The emittan
e is de�ned as the area (or volume) of phase spa
e en
losed by the ellipse
ontaining all the parti
les in its interior. Statisti
ally, the rms beam emittan
e 
an be 
al
ulated by adeterminant of Σ-matrix of a beam distribution:
ǫ = [det (Σ)]

1/d
, (33)where d is the dimension of phase spa
e, the element of Σ-matrix is Σij = 〈(ζi − 〈ζi〉) (ζj − 〈ζj〉)〉, and

ζ = {x, x′, y, y′, z, δ}. For example, horizontal emittan
e is obtained by ǫx =

[

det

(

Σxx Σxx′

Σx′x Σx′x′

)]1/2. Inaddition to the emittan
e of ea
h degree of freedom, four- and six-dimensional emittan
es are 
al
ulated tosee the 
orrelation and 
oupling between the phase spa
e 
oordinates.Beam loss : The beam loss is one of the fundamental observables and it 
an be dire
tly 
ompared withsimulation. During a beam simulation, ea
h parti
le is monitored if it rea
hes a prede�ned boundary oftransverse or longitudinal aperture. The parti
le passing over the aperture is 
onsidered as a lost parti
le.Unlike a real ma
hine, several virtual apertures are pla
ed inside a beam pipe. The multiple apertures areused to �nd beam losses at di�erent apertures.3. ParallelizationRealisti
 simulations of beam dynami
s demand large 
omputational resour
es. Cal
ulations on theselarge number of parti
les 
an be distributed over several pro
essors of a parallel 
omputer to improve10



Figure 2: Master/slave 
ommuni
ation diagram.performan
e. Two basi
 approa
hes exist to allo
ate the 
al
ulations to the pro
essors, parti
le based anddomain (spa
e) based partitions. In the former approa
h, the parti
les are uniformly allo
ated to thepro
essors. They are not limited to a 
ertain spatial domain. The 
ompletion time of a parallel solutiondepends on the pro
essor with the maximum 
omputational workload. The parti
le de
omposition 
andistribute the 
omputational load evenly among all pro
essors while the intera
tion between parti
les, forexample, intra-beam s
attering needs a very large number of 
ommuni
ations between pro
essors sin
ethe intera
ting parti
les 
an be lo
ated in a distant pro
essor. Conversely, in the domain de
ompositionapproa
h, the spatial domain is partitioned into elementary regions, and ea
h pro
essor is responsible forone of these regions. The parti
les in the a

elerator simulation are transported by the latti
e map. Themap 
auses signi�
ant parti
le movement whi
h may 
ause the load to be
ome qui
kly unbalan
ed. Thesimulation of 
olliding beams has two aspe
ts, i.e., pure parti
le transportation and ele
tromagneti
 �eldevaluation. The domain deposition approa
h is an e�
ient way of parallelizing the �eld solver. To a
hievethe workload balan
ed, our approa
h is to use both de
omposition s
hemes.We have implemented a parallel 
al
ulation in the BBSIM 
ode to perform a tra
king simulation of largenumbers of parti
les. When the weak-strong beam-beam model is used, only the parti
le de
ompositions
heme 
an be applied for parallel 
omputation. Its implementation 
an be made trivially be
ause the ma
ro-parti
les are never moved from one pro
essor to another. No inter-pro
essor 
ommuni
ation is ne
essarywhile the parti
le traje
tories are being developed. Most 
al
ulations on ea
h node are exe
uted sequentially.In this model the 
ommuni
ation between the parallel pro
esses is only required for reading input data,generating an initial beam distribution, 
al
ulating diagnosti
s su
h as beam emittan
e, and writing out thediagnosti
 information. For the Poisson solver model, however, we have used a parti
le-in-
ell (PIC) modelto update the ele
tromagneti
 �eld. The PIC model represents the beam as a large number of 
omputationalparti
les moving a

ording to 
lassi
al me
hani
s. The PIC algorithm 
an be 
hara
terized as follows: (a)integrate over parti
les to obtain a 
harge distribution on the grid point, (b) solve a Poisson equation for thepotential, and (
) interpolate the potential or �eld onto parti
les for a small interval of time to advan
e theposition and velo
ity of parti
les. Part (a) requires O (Nd
g

) numeri
 operations for a FFT Poisson solver,where Ng is the number of grid points per dimension and d is the number of degrees of freedom. Part (a)and (
) obviously require O (Np) operations, where Np is the number of 
omputation parti
les. In general,
Np is mu
h larger than Ng in that the number of parti
les should in
rease a

ording to the degree of freedomto maintain the statisti
al noise to be 
onstant in a higher spatial dimension. The parti
le 
al
ulations thusdominate the overall 
omputational pro
ess, whi
h suggests a prior parallelization of parti
le 
al
ulation.Master/slave 
on�guration of 
omputational nodes shown in Fig. 2 is 
onsidered due to the di�eren
e ofnumeri
 operations between parti
les and �eld updates.Ea
h pro
essor on the master and slave nodes possesses the same number of parti
les. All pro
essorsare responsible for advan
ing their parti
les. On the 
ontrary, the master node may be a single or manypro
essor(s), depending on the number of grid points required. The 
harge density of a beam is depositedon the 
omputational grids of ea
h pro
essor using standard area weighting (or higher order) methods [34℄.The master node gathers the 
harge density from all pro
essors, and solves the Poisson equations in parallel.The master node broad
asts the solution of the ele
tri
 �eld to all pro
essors su
h that ea
h pro
essor exertsthe ele
tromagneti
 for
e on the parti
les owned by the pro
essor.11
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(b)Figure 3: Plots of (b) parallel speedup versus the number of nodes, and (b) CPU time versus the number ofsimulation parti
les. 
erf and table represent the weak-strong model, and look-up table model respe
tively.The performan
e of the master/slave parallelization approa
h has been investigated using a real latti
eof the Tevatron whi
h has two head-on beam-beam 
ollisions and 70 long-range beam-beam intera
tions.Speedup test has been performed on the Cray XT5 of the National Energy Resear
h S
ienti�
 ComputingCenter at Lawren
e Berkeley National Laboratory. The system is built up of 664 nodes with 2 quad-
oreAMD 2.4 GHz pro
essors per node. The speedup of a parallel program is a measure of the utilization ofparallel resour
es and is simply de�ned as the ratio between sequential exe
ution time and parallel exe
utiontime [35℄:
Sp =

T1

Tp
, (34)where p is the number of pro
essors, T1 is the exe
ution time of the sequential algorithm, and Tp is theexe
ution time of the parallel algorithm with p pro
essors. For a �xed number of pro
essors p, typi
allythe speedup is 0 < Sp ≤ p. Ideally all parallel programs should exhibit a linear speedup, i.e., Sp = p, butit is not 
ommon be
ause 
ommuni
ation between pro
essors is 
onsiderably slower than 
omputation inea
h pro
essor. Figure 3 (a) illustrates the resulting speedup as a fun
tion of the number of pro
essors.The parallelization speedup based on the total simulation time is 
ompared for simulations with the weak-strong model and the look-up table model. The speedup 
urves are very 
lose to the ideal one below a
ertain number of pro
essors, while they are less than optimal when the number of pro
essors in
reasesabove a 
riti
al value, for example, 26 pro
essors. On large numbers of pro
essors a relative fra
tion of the
ommuni
ation time in the total 
omputing time be
omes large. A parallel e�
ien
y, de�ned as the speedupfa
tor divided by the number of pro
essors, 
an be obtained as high as 87% up to the 
riti
al number ofpro
essors. Though the e�
ien
y falls well below 38% when the number of pro
essors is beyond 210, it runs367 times faster than on a single pro
essor. In order to see the s
alability of our parallel 
ode for largerproblem sizes, Fig. 3 (b) shows the exe
ution time as a fun
tion of the number of ma
ro-parti
les. Here thenumber of pro
essors is �xed at 26 for all 
ases. It is seen that with in
reasing the number of simulationparti
les, the exe
ution time also in
reases linearly.4. Appli
ationsIn high energy storage-ring 
olliders, the beam-beam intera
tions 
ause emittan
e growth, may redu
ebeam lifetime, and hen
e limit the 
ollider luminosity. We have used BBSIM to study beam-beam intera
tionsand their 
ompensations in the Tevatron, in RHIC and in the LHC.12
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e between proton and anti-proton beams for anti-proton bun
hes #1, #6 and#12. The separation is normalized by proton beam's rms size.4.1. TevatronThe luminosity of a 
ollider is found from
L =

N1N2fNB

4πσxσy
, (35)where N1 and N2 are the bun
h populations of the 
olliding beams, f the revolution frequen
y, NB thenumber of bun
hes in one beam, and σx and σy the horizontal and verti
al rms beam sizes at the 
ollisionpoints respe
tively. The beam-beam tune shift of beam 1 is proportional to the fa
tor N2/σxσy and expe-rien
e from 
olliders worldwide has shown that the a
hievable tune shift (and hen
e luminosity) is limitedby the dynami
s of the beam-beam intera
tion. In the Tevatron, proton and anti-proton bun
hes 
ollideat two dete
tors 
alled CDF and D0. They share the same beam pipe. Sin
e the two beams 
ir
ulateon heli
al orbits, the opti
s and dynami
s of the beam-beam intera
tions are 
omplex. The beam-beamintera
tions o

ur all around the ring and at varying betatron phases. In Run II, ea
h beam has threetrains of 12 bun
hes [36℄. Ea
h bun
h experien
es 72 intera
tions: 2 intera
tions are the head-on 
ollisionsin the dete
tors. However the other 70 intera
tions are long-range, and are pla
ed at di�erent lo
ationsfor ea
h bun
h. Consequently the beam separation distan
es between proton and anti-proton beams atthe long-range lo
ations are di�erent from bun
h to bun
h. Figure 4 shows the radial beam separation ofthree anti-proton bun
hes from the proton bun
hes in units of the rms beam size of the proton beam at thelo
ations of the beam-beam intera
tions. The long-range intera
tions of spe
ial importan
e are those oneither side of the head-on intera
tion points. These o

ur at small separations and the beta fun
tions thereare large. It was observed that the emittan
e growth at the end bun
hes of ea
h train is smaller than thosein the middle of the train. Here we 
hoose two end bun
hes (#1 and #12) and one middle bun
h (#6) ofthe �rst train.Beam emittan
e growth and loss rate are routinely measured during the Tevatron operation. They 
anbe dire
tly 
ompared with numeri
al simulations but only for relatively short times. Figure 5 (a) showsthe time evolution of the 4-dimensional emittan
e of bun
hes #1, #6, and #12 for 15 hours of high energyphysi
s (HEP) run of store # 7650. The emittan
e is 
al
ulated and plotted by ǫ4d =

√
ǫxǫy. It is observedthat during the HEP run, the emittan
e growth is nearly linear. The growth rate is 6.7%/hr. Figure 5 (b)shows the measured beam loss rates of anti-proton bun
hes during the �rst 1 hour of store #7601-#7650 at
ollision energy 960 GeV. In order to see the e�e
ts of beam-beam intera
tions on the beam loss, the lossrate is obtained by subtra
ting the parti
le losses due to luminosity at the main intera
tion points from thetotal beam loss rate. Averaged loss rates of bun
h #1 and #12 are 1.4 %/hr and 1.2 %/hr respe
tively,13
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(d)Figure 5: (a) Variation of anti-proton emittan
e of three bun
hes, #1, #6, and #12, of store #7650, (b)non-luminous loss rates of anti-proton during the �rst 1 hour of stores #7601-#7650, (
) simulation ofanti-proton emittan
e growth, and (d) simulation of anti-proton beam loss. Here the emittan
e is plottedas ǫ4d =
√
ǫxǫy. In the simulation, initial anti-proton emittan
e (ǫx, ǫy) is (9.0,7.8) m-mrad, bun
h length1.5 nse
, and bun
h intensity 0.86 × 1011. Proton's initial emittan
e is (18,23) m-mrad, bun
h length 1.7nse
, bun
h intensity 2.64× 1011. Nominal tune is (20.571, 20.569). Revolution frequen
y is 47.7 kHz.
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(b)Figure 6: (a) S
atter plot of lost parti
les in a
tion spa
e (√Jx,
√

Jy
) and (b) plot of lost parti
les versus

√

Jx + Jy for di�erent longitudinal a
tion. The axis variables are normalized by rms size of transversea
tion.while the loss rate of bun
h #6 is 2.3 %/hr. We performed the simulations of emittan
e growth and parti
leloss of anti-proton beam, as shown in Fig. 5 (
)-(d). The parti
le tra
king is 
arried out over 107 turns
orresponding to approximately 3.5 minutes storage time of the Tevatron. In the simulation, nominal tuneis (20.571, 20.569). Initial transverse emittan
e of anti-proton (ǫx, ǫy) is set to be (9.0,7.8) m-mrad fromaveraging the measured emittan
es while proton's initial emittan
e is (18,23) m-mrad. Bun
h intensities ofanti-proton and proton are 0.86×1011 and 2.64×1011 respe
tively. Figure 5 (
) shows the emittan
e growthof three bun
hes during the simulation. The growth rate is approximately 9 %/hr, whi
h is 
lose to themeasured growth rate 7 %/hr in Fig. 5 (a). The emittan
e does not vary from bun
h to bun
h. However,the beam losses vary 
onsiderably from bun
h to bun
h. As shown in Fig. 5 (d), bun
h #6 loses moreparti
les than bun
hes #1 and #12, whi
h agrees well with the observation. For the simulation of beamloss, we used the hollow Gaussian distribution in transverse a
tion 
oordinates. Most of the lost parti
leshave large transverse a
tions as shown in Fig. 6 (a), while the lost parti
les are distributed over the entirerange of longitudinal a
tion, as shown in Fig. 6 (b). The 
ompensation of long-range e�e
ts in the Tevatronwith a 
urrent 
arrying wire was investigated using an earlier version of the 
ode [5℄. It was found that asingle wire was unable to 
ompensate for all the 70 intera
tions, sin
e they were all at di�erent betatronphases from the wire.4.2. Relativisti
 Heavy Ion ColliderWe have studied the e�e
ts of a 
urrent-
arrying wire on the beam dynami
s in RHIC [30℄. Two 
urrent
arrying wires, one for ea
h beam, have been installed between the magnets Q3 and Q4 of IP6 in the RHICtunnel. Their impa
t on a beam was measured during the physi
s run 7 and 8 with deuteron and gold beams.No attempt was made to 
ompensate the beam-beam intera
tion sin
e parasiti
 beam-beam 
ollisions donot o

ur in the intera
tion region with the present bun
h spa
ing. However, the experimental results helpto understand the beam-beam e�e
ts be
ause the wire for
e is similar to the long-range beam-beam for
eat large separations. As an example, Fig. 7 plots the beam loss rate due to the wire as a fun
tion ofbeam-wire separation distan
e. The onset of beam losses is observed at 8 σ and 9 σ for gold and deuteronbeams respe
tively. The threshold separation for the onset of sharp losses observed in the measurementsand simulations agree to better than 1 σ. It is also signi�
ant that the simulated loss rates at 7 and 8 σseparation for the gold beam and 8 and 9 σ for the deuteron beam are very 
lose to the measured loss rates.At �xed separation, the wire 
auses a mu
h higher beam loss with the deuteron beam than with the gold15
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(b)Figure 7: Comparison of the simulated beam loss rates with the measured as a fun
tion of separations. (a)gold beam at 
ollision energy, (b) deuteron beam at 
ollision energy.Pro�le Intensity (4× 1011
) Parti
le loss†(%)

1σ Gaussian 1 6351/2 1151/4 631/8 30
2σ Gaussian 4 932 101 81/2 6SEFT 8 3304 212 221 61/2 6
†relative to that without beam-beam 
ompensationTable 1: Comparison of parti
le loss for di�erent ele
tron beam pro�les and intensities.beam. The loss-rate for the gold beam at a 8 σ separation is about 10 %/hr while for the deuteron beamthe loss rate is about an order of magnitude higher both in measurements and simulation. Simulations ofthe beam loss rate when the wire is present are in good agreement with the experimental observations.In the proton-proton runs of RHIC, the maximum beam-beam parameter rea
hed so far is about ξ =

0.008. This tune shift is large enough that the 
ombination of beam-beam and ma
hine nonlinearities ex
itebetatron resonan
es whi
h 
ause emittan
e growth and di�use parti
les into the tail of beam distributionand beyond. Consequently RHIC is a
tively investigating the use of an ele
tron lens for 
ompensating thehead-on intera
tions. In order to seek the ele
tron lens parameters at whi
h the beam life time is improved,we 
hose three di�erent ele
tron beam distribution fun
tions: (a) 1σ Gaussian distribution with the samerms beam size as that of the proton beam σ, (b) 2σ Gaussian distribution with rms size twi
e that of theproton beam, and (
) Smooth-edge-�at-top (SEFT) distribution with an edge around at 4 σ. When theele
tron beam pro�le mat
hes the proton beam, the full 
ompression of the tune spread requires the ele
tronbeam intensity Ne = 4× 1011 whi
h is de�ned as the ele
tron beam intensity required for full 
ompensation.Table 1 shows the results of parti
le loss for di�erent intensities with the three ele
tron beam pro�les.At an intensity Ne = 4×1011, the parti
le loss is nearly six times the loss without beam-beam 
ompensa-16
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(b)Figure 8: Plot of (a) beam-beam separation at IP 1 and 5 and (b) parti
le loss a

ording to wire separationdistan
e with wire strength 82.8 Am.tion. The beam lifetime at Ne = 2× 1011 however is 
omparable with that of no beam-beam 
ompensation.As the ele
tron beam intensity is de
reased, the parti
le loss de
reases signi�
antly, and is redu
ed to 30% ofthat without beam-beam 
ompensation at Ne = 0.5× 1011. For the 2σ Gaussian and SEFT ele
tron beampro�les, we 
al
ulated parti
le loss for di�erent ele
tron beam intensities. The upper limits of the ele
tronbeam intensity for these two distributions are 
hosen so that peak of the ele
tron pro�le mat
hes that ofthe full 
ompensation at 1σ Gaussian. For the intensities 2 × 1011 and 4 × 1011 of 2σ Gaussian pro�le,there is a signi�
ant redu
tion in beam loss, for example, below 10% of the parti
le loss without beam-beam
ompensation when the ele
tron beam intensity is 2×1011. A signi�
ant improvement of beam lifetime withthe SEFT pro�le is also observed below 8× 1011. There is a threshold ele
tron beam intensity below whi
hbeam life time is in
reased: 2× 1011 for the 1σ Gaussian, 8× 1011 for the 2σ Gaussian, and 16× 1011for theSEFT pro�le. Parti
le loss is relatively insensitive to ele
tron lens 
urrent variations below the threshold
urrent with the 2σ Gaussian and SEFT pro�les. This looser toleran
e on the allowed variations in ele
tronintensity will allow greater intensity �u
tuations and is likely to be bene�
ial during experiments.4.3. Large Hadron ColliderAs mentioned above, long-range beam-beam intera
tions 
ause emittan
e growth or beam loss in theTevatron and are expe
ted to deteriorate beam quality in the LHC. In
reasing the 
rossing angle to redu
etheir e�e
ts has several undesirable e�e
ts, the most important of whi
h is a lower luminosity due to thesmaller geometri
 overlap. For the LHC, a wire 
ompensation s
heme has been proposed to 
ompensate thelong-range intera
tions [20℄. However, several issues need to be resolved for e�
ient 
ompensation. Withthe design bun
h spa
ing, there are about 30 long-range intera
tions on both sides of an intera
tion point(IP). The beam-beam separation distan
e varies from 6.3 σ to 12.6 σ. The resulting beam-beam for
e isnot identi
al to that generated by a single or multiple wire(s) but 
an be 
losely approximated by the wires.Unlike the Tevatron, the long-range for
es in the LHC are all at nearly the same betatron phase and thismakes the 
ompensation s
heme feasible. The wire-beam separation distan
e is one of the parameters whi
hdetermine the performan
e of a wire 
ompensator. Figure 8 (a) shows the beam-beam separation distan
enormalized by the transverse rms bun
h size. Two 
ounter-rotating beams 
ollide at a verti
al 
rossing anglenear IP1 while they 
ollide at a horizontal 
rossing angle near IP5. The separations are asymmetri
 withrespe
t to the intera
tion points. The referen
e wire-beam separation (9 σ) is 
hosen as the average of beam-beam separations. Figure 8 (b) shows the results of parti
le loss for di�erent wire-beam separations. Theparti
le loss saturates at large separation while there is a sharp in
rease of parti
le loss at small separation.We dire
tly see the minimum parti
le loss between 0.9 and 1.0 of the referen
e separation. It reveals that the17



average of beam-beam separations is 
lose to an optimal separation between the wire and the high energybun
h.5. SummaryIn this paper, an e�
ient parallel beam simulation model for 
ir
ular 
olliders is presented in order tostudy the e�e
ts of beam-beam intera
tions and ma
hine nonlinearities, and the e�e
tiveness of beam-beam
ompensation s
hemes. We have in
luded the major nonlinearities present in a

elerators in our program aswell as models for several methods to 
ompensate the e�e
ts of beam-beam intera
tions. A parti
le-domainde
omposition s
heme is implemented with the master/slave 
on�guration to a
hieve a balan
ed workloadin a parallel environment. A performan
e test of beam-beam intera
tions indi
ates that the parallelizations
heme s
ales linearly in both the number of pro
essors and the number of parti
les in the beam. Wehave used the program to study the emittan
e growth and beam loss of di�erent bun
hes due to the beam-beam intera
tions in the Tevatron, the 
ompensation of head-on beam-beam intera
tions with a low energyele
tron beam in RHIC, and the long-range beam-beam 
ompensation using a 
urrent 
arrying wire in theTevatron, RHIC and the LHC. The pattern of beam losses observed in the Tevatron is reprodu
ed in thesimulations. In RHIC, simulations of the beam loss rate when the wire is present are in good agreementwith the experimental observations. We have several predi
tions from the results of head-on 
ompensationin RHIC. For example we �nd that proton beam life time is in
reased if the ele
tron beam intensity is keptbelow a threshold intensity. A ele
tron beam wider than the proton beam at the ele
tron lens lo
ation isfound to in
rease beam life time. The results of LHC simulation with the 
urrent 
arrying wire show that theparti
le loss is minimized when the beam-wire separation is 
lose to the average of beam-beam separations.6. A
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