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AbstratA highly e�ient, fully parallelized, six-dimensional traking model for simulating interations of ollidinghadron beams in high energy ring olliders and simulating shemes for mitigating their e�ets is desribed.The model uses the weak-strong approximation for alulating the head-on interations when the test beamhas lower intensity than the other beam, a look-up table for the e�ient alulation of long-range beam-beamfores, and a self-onsistent Poisson solver when both beams have omparable intensities. A performane testof the model in a parallel environment is presented. The ode is used to alulate beam emittane and beamloss in the Tevatron at Fermilab and ompared with measurements. We also present results from the studiesof two shemes proposed to ompensate the beam-beam interations: a) the ompensation of long-rangeinterations in the Relativisti Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider(LHC) at CERN with a urrent arrying wire, b) the use of a low energy eletron beam to ompensate thehead-on interations in RHIC.Keywords: aelerator physis, parallel omputing, beam dynamisPACS: 29.27.Bd, 29.27.Fh1. IntrodutionIn high energy storage-ring olliders, the beam-beam interations are known to ause the emittanegrowth and the redution of beam life time, and to limit the ollider luminosity [1, 2, 3, 4℄. It has been akey issue in a high energy ollider to simulate the beam-beam interation aurately and to mitigate theinteration e�ets. A beam-beam simulation ode BBSIM has been developed at Fermilab over the pastfew years to study the e�ets of the mahine nonlinearities and the beam-beam interations [5, 6, 7, 8℄.The ode is under ontinuous development with the emphasis being on inluding the important details ofan aelerator and the ability to reprodue observations in diagnosti devies. At present, the ode anbe used to alulate tune footprints, dynami apertures, beam transfer funtions, frequeny di�usion maps,ation di�usion oe�ients, emittane growth, and beam lifetime. Calulation of the last two quantities overthe long time sales of interest is time onsuming even with modern omputer tehnology. In order to rune�iently on a multiproessor system, the resulting model was implemented by using parallel libraries whihare MPI (inter-proessor Message Passing Interfae standard) [9℄, state-of-the-art parallel solver libraries(Portable, Extensible Toolkit for Sienti� Calulation, PETS) [10℄, and HDF5 (Hierarhial Data Format)[11℄.The organization of the paper is as follows: The physial model used in the simulation ode is desribedin Setion 2. The parallelization algorithm and performane are desribed in Setion 3. Some appliationsare presented for the Tevatron, the Relativisti Heavy Ion Collider (RHIC) and the Large Hadron Collider(LHC) in Setion 4. Setion 5 summarizes our results.
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2. Physial modelIn a ollider simulation, the two beams moving in opposite diretion are represented by maropartileswith the same harge to mass ratio as in the real beam. The number of maropartiles hosen are muh lessthan the bunh intensity of the beam beause it beomes prohibitive to follow approximately 1011 partilesfor even a few revolutions around the aelerator using modern superomputers. These maropartilesare generated and loaded with an initial distribution hosen for the spei� simulation purpose. As anexample, a six-dimensional Gaussian distribution is used for long-term beam evolution. The transverse andlongitudinal motion of partiles is alulated by a sequene of linear and nonlinear transfer maps. During thebeam transport, a partile is removed from the distribution if it reahes a prede�ned boundary of transverseor longitudinal aperture. In our simulation model, the following e�ets are inluded: head-on and long-rangebeam-beam interations, �elds of a urrent arrying wire and an eletron lens, mulitpole errors in quadrupolemagnets in interation regions, sextupoles for hromatiity orretion, a dipole, resistive wall wake, tunemodulation, noise in lattie elements, single and multiple harmoni rf avities, and rab avities. The �nitebunh length e�et of the beam-beam interations is onsidered by sliing the beam into several hunks inthe longitudinal diretion and then applying a synhro-beam map [12℄. Eah slie in a beam interats withslies in the other beam in turn at a ollision point. In the following, linear and nonlinear traking modelsare desribed in detail.2.1. Transport through an arThe six-dimensional oordinates of a test partile in the aelerator's oordinate frame are: x =
(

x, x
′

, y, y
′

, z, δ
)T , where x and y are horizontal and vertial oordinates, x′ and y′ the trajetory slopesof the oordinates, z = −c∆t the longitudinal distane from the synhronous partile, and δ = ∆pz/p0the relative momentum deviation from the synhronous energy [13℄. The transverse linear transformationbetween two elements denoted by i and j an be written as

xj =

(

M D̂
Ŝ L

)

xi. (1)Here, M is a oupled transverse map of o�-momentum motion de�ned by M = RjM̃i→jR−1
i , where M̃i→jis the unoupled linear map desribed by Twiss funtions at i and j elements, and the transverse ouplingmatrix R is de�ned as [14℄

R =
1

√

1 + |C|

(

I C†

−C I

)

, (2)where C† is the 2 × 2 matrix and the sympleti onjugate of the oupling matrix C. The 4× 2 dispersionmatrix is de�ned by D̂ = (0,D), and the dispersion vetor D =
(

Dx, D
′

x, Dy, D
′

y

)T is haraterized bythe transverse dispersion funtions and the map M, i.e., D = Dj −MDi where Di,Dj are the dispersionvetors at i, j. Sine the transport matrix has to be sympleti, the matrix Ŝ in Eq. (1) is given by
Ŝ = −D̂TJTM, where J =

(

0 I
−I 0

) and I is the 2× 2 identity matrix. The longitudinal map L is givenby L =

(

1 − (η/β)∆s
0 1

), where η is the slip fator, β = v/c, and ∆s the longitudinal distane betweenthe two elements, i.e., ∆s = sj − si. It is noted that s is the axis along the beam diretion. The nonlinearityof synhrotron osillations is applied by adding the longitudinal momentum hange at a rf avity:
∆δ =

eVrf

β2E
(sinkrfz − sinφs) , (3)where Vrf is the voltage of rf avity, φs the phase angle for a synhronous partile with respet to the rfwave, and krf the wave number of the rf avity. If there are higher harmoni avities, their e�ets are addedto the momentum hange. 2



2.2. Beam-beam interationsIn order to ahieve a high luminosity in a ollider one an inrease the number of bunhes whih reduesthe bunh spaing. More bunhes inrease the number of parasiti enounters in the interation regions.Sine the alulation of beam-beam fore requires large amounts of omputational resoures, it has to beexeuted rapidly and aurately. BBSIM has three di�erent models for this purpose: a weak-strong modelfor head-on interations, a look-up table model for long-range interations, and a Poisson solver model forthe head-on interations when both beams have omparable intensities (�strong-strong� model).2.2.1. Weak-strong modelIn the weak-strong model we assume that the �weak� beam is a�eted by the head-on and long-rangeinterations while the opposing beam or �strong� beam is una�eted. The harge distribution of the strongbeam is assumed to be Gaussian:
ρ (x, y, z) =

Nq

(2π)3/2 σxσyσz

exp

(

− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)

, (4)Here, N is the number of partiles per bunh and q is the harge per partile. Note that the oordinates
(x, y, z) are measured in the rest frame of the strong beam. The beam-beam fore between two beams withtransverse Gaussian distribution ρ (x, y) =

´

dzρ (x, y, z) is well-known [15℄, and the expression for the slopehange is given by, for elliptial beam with σx > σy:
(

∆x′

∆y′

)

=
2Nr0
γ

√
π

√

2
(

σ2
x − σ2

y

)

( Im [F (x, y)]Re [F (x, y)]

)

, (5)where
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 . (6)Here, w (z) is the omplex error funtion de�ned by w (z) = e−z2

(

1 + 2i√
π

´ z

0
dt et

2

), and γ the Lorentzfator. The onstant r0 is de�ned as r0 ≡ qq∗/4πǫ0m0c
2, where q∗ is the eletri harge of the weak beam,and m0 the rest mass of the partile.2.2.2. Look-up table modelThe harge distribution of the strong beam in the weak-strong model is not varied during the simulations.It is redundant to re-alulate the beam-beam fore at every parasiti loation and every turn. A look-uptable is one way to avoid it. The look-up table is used to replae a run time omputation with an arrayindexing operation. The beam-beam fore of a Gaussian beam distribution is desribed by the omplexerror funtion, as shown in Eq. (6). The alulation of the omplex error funtion an substantially slow thebeam-beam simulation. However, the look-up table is pre-alulated and stored in a memory, usually in anarray. When the value of the error funtion is required, it an be retrieved from the table by an interpolationsheme, instead of using Eq. (6). The look-up table method an signi�antly redue a omputational ost.The property of the omplex error funtions yields the symmetry relations of funtion F (z) as

F (−z) = −F (z) , F (z̄) = −F (z), F (−z̄) = F (z), (7)where z = x + iy is a omplex variable. The symmetry onditions of funtion F (z) an redue memoryspae to store the funtion values. It is su�ient to build the table for the values of funtion F (z) in the�rst quadrant of the omplex plane, i.e., |x| ≥ 0 and |y| ≥ 0.3



Interpolation tehniques are required to predit a value of a funtion at a point inside its domain basedupon the known tabulated values. For a given set of data points (zi, fi), i = 0, . . . , N , where no two zi's arethe same, the interpolated value g (z) at a value z 6= zi is found from
g (z) =

N
∑

i=0

fiLi (z) , (8)where Li is Lagrange's N -th order polynomials
Li (z) =

N
∏

j=0,j 6=i

z − zj
zi − zj

. (9)In order to save the interpolation time further, one an divide z-spae and apply a di�erent degree of theLagrange polynomial. For an example, we apply a sixth order polynomial for small amplitudes |z| ≤ 4σwhile a third order polynomial is applied for |z| > 4σ, beause the funtion F (z) varies more rapidly atsmall |z| and slowly at large |z| .2.2.3. Poisson solver modelThe weak-strong model is a good approximation when one beam has muh smaller intensity than theother, but it is not valid when the intensities of the two beams are omparable beause eah beam's param-eters are hanged by the other beam. One has to solve for the �eld of eah beam self-onsistently. The �eldsare the solutions of Poisson equation given by
∇2φ (~r) = −4πρ (~r) , (10)where φ is the eletrostati potential and ρ the density funtion of the beam. The solution an be obtainedby

φ (~r) =

ˆ

G (~r, ~r1) ρ (~r1) d~r1, (11)where G is the Green's funtion of Poisson's equation and in two spae dimension, is given by
G (x, y : x1, y1) = − 1

4π
ln
[

(x− x1)
2
+ (y − y1)

2
]

. (12)Equation (11) an be e�iently alulated using a onvolution theorem and inverse Fourier transform:
φ (~r) = F−1

(

Ĝ (~ω) ρ̂ (~ω)
)

, (13)where Ĝ (~ω) =
(

1√
2π

)2
´

R2 G (~r) e−i~ω·~rd~r and ρ̂ (~ω) =
(

1√
2π

)2
´

R2 ρ (~r) e
−i~ω·~rd~r. It is assumed in Eq. (13)that the density funtion ρ (~r) is periodi in both x and y diretions. However, sine the beam has a �niteharge distribution surrounded by a onduting wall in an aelerator system, the transverse beam densitydoes not meet the periodiity requirement of FFT tehniques. In order to apply the above formalism, thedensity funtion should be rewritten by, in the doubled omputational domain [16℄:

ρnew (x, y) =

{

ρ (x, y) , 0 < x ≤ Lx, 0 < y ≤ Ly,

0 , Lx < x ≤ 2Lx, or Ly < y ≤ 2Ly

(14)Green's funtion is de�ned in the doubled domain, as follows:
Gnew (x, y) =



















G (x, y) , 0 < x ≤ Lx, 0 < y ≤ Ly,

G (2Lx − x, y) , Lx < x ≤ 2Lx, 0 < y ≤ Ly,

G (x, 2Ly − y) , 0 < x ≤ Lx, Ly < y ≤ 2Ly,

G (2Lx − x, 2Ly − y) , Lx < x ≤ 2Lx, Ly < y ≤ 2Ly.

(15)4



Figure 1: De�nition of rossing angles α and φ: α is the rossing plane angle in the x − y plane and φ isthe half rossing angle in the x̃− s plane. s is the axis along the beam diretion when there is no rossingangle. The x̃ − s plane is the rossing plane de�ned by the angle α. The beam trajetories, shown by redlines with arrows, lie in the rossing plane.Both ρnew and Gnew are doubly periodi funtions with periods 2Lx and 2Ly. It is noted that only thepotential within a domain (0, Lx] × (0, Ly] is valid. The potential outside the domain is inorret, but itdoesn't matter beause the physial domain of interest is (0, Lx]× (0, Ly]. When one beam is separated farfrom the other, one an apply a shifted Green's funtion approah [17℄.2.2.4. Crossing angleWhen there exists a �nite rossing angle between two olliding beams at an interation point, the beam-beam fore experiened by a test partile will have transverse and longitudinal omponents beause theeletri �eld generated by the opposing beam is not perpendiular to the partile veloity anymore. Theexistene of a longitudinal fore makes it di�ult to apply the result of previous setions. A transformationan be used to remedy the di�ulty. It transforms a rossing angle ollision in the laboratory frame to a head-on ollision in the rotated and boosted frame whih is alled the head-on frame [18, 19℄. The transformationan be desribed by a transformation from the aelerator oordinates to Cartesian oordinates, a Lorentzboost, and again a bakward transformation to the aelerator oordinates:
x∗ = z cosα tanφ+ x [1 + h∗

x cosα sinφ] + yh∗
x sinα sinφ,

y∗ = z sinα tanφ+ y
[

1 + h∗
y sinα sinφ

]

+ xh∗
y cosα sinφ,

z∗ =
z

cosφ
+ h∗

z [x cosα sinφ+ y sinα sinφ] ,

p∗x =
px

cosφ
− h cosα

tanφ

cosφ
,

p∗y =
py

cosφ
− h sinα

tan φ

cosφ
,

p∗z = pz − px cosα tanφ− py sinα tanφ+ h tan2 φ,

(16)
where a star (*) stands for a dynamial variable in the head-on frame, the Hamiltonian h (px, py, pz) =

pz + 1 −
√

(pz + 1)
2 − p2x − p2y, h∗

x = ∂h∗/∂p∗x, h∗ (p∗x, p
∗
y, p

∗
z

)

= h
(

p∗x, p
∗
y, p

∗
z

), α the rossing plane angle inthe x− y plane, and φ the half rossing angle in the x̃− s plane as shown in Fig. 1.2.3. Finite bunh lengthThe e�ets due to the �nite (as opposed to in�nitesimal) bunh length need to be onsidered when thetransverse beta funtions at the interation point are small and omparable to σz . The �nite longitudinallength is onsidered by dividing the beam into longitudinal slies and by a so alled synhro-beam map [12℄.5



We make slies of both beams moving in opposite diretions. Eah slie of the strong bunh is integratedover its length, and has only a transverse harge distribution at its enter. We take into aount the ollisionbetween a pair of slies: the ith slie of a bunh and the jth slie of a bunh in the other beam. The ollisiontakes plae at ollision point S (zi, zj∗) = 1
2

(

zi − zj∗

) whih is usually di�erent from the interation point.For example, the ith slie of a bunh has suessive ollisions with slies of a bunh in the other beam. Inaddition, the eletri �eld varies along the bunh due to the inhomogeneity of the harge density in thelongitudinal diretion, and ouples transverse and longitudinal motions. The oupling an be modeled bythe synhro-beam map whih inludes beam-beam interations due to the longitudinal omponent of theeletri �eld as well as the transverse omponents. The transformation is given by [12℄
xnew = x+ S (z, z∗)

∂U

∂x

∣

∣

∣

∣

S

, pnewx = px − ∂U

∂x

∣

∣

∣

∣

S

, ynew = y + S (z, z∗)
∂U

∂y

∣

∣

∣

∣

S

, pnewy = py −
∂U

∂y

∣

∣

∣

∣

S

,

znew = z, δnew = δ − 1
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∂x
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∣
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px − 1
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∂x

∣

∣

∣

∣

S
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∂U

∂y

∣

∣

∣

∣

S
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py −
1

2

∂U

∂y

∣

∣

∣

∣

S

]

− 1

2

∂U

∂z

∣

∣

∣

∣

S

.

(17)Here, |S represents the evaluation at the ollision point S (z, z∗). U is the normalized potential energy
U = qΦ/E0 and is given by

U (x, y;σx (s) , σy (s)) =
N∗r0
γ

ˆ ∞

0

dζ
−1 + exp

(

− x2

2σ2
x
+ζ − y2

2σ2
y
+ζ

)

√

(2σ2
x + ζ)

(

2σ2
y + ζ

)

. (18)The dependene on the bunh length is ontained in σx(s), σy(s). The transverse derivatives of the potentialenergy are
∂U

∂x

∣

∣

∣

∣

S

= −∆x′ (X,Y ;S (z, z∗)) ,
∂U

∂y

∣

∣

∣

∣

S

= −∆y′ (X,Y ;S (z, z∗)) , (19)where (X,Y ) are the transverse oordinates at S (z, z∗), and∆x′ and ∆y′ are given by Eq. (5). Thelongitudinal derivative of the potential energy whih is related to the longitudinal beam-beam kiks isexpressed by
∂U

∂z

∣

∣

∣

∣

S

=
1

2

dσ2
x

ds

∂U

∂σ2
x

∣

∣

∣

∣

s=S(z,z∗)

+
1

2

dσ2
y

ds

∂U

∂σ2
y

∣

∣

∣

∣

∣

s=S(z,z∗)

, (20)
∂U

∂σ2
x

=
1

2
(

σ2
x − σ2

y

)

[

x∆x′ + y∆y′ +
2N∗r0

γ

(

σy

σx
e
− x

2

2σ2
x

− y
2

2σ2
y − 1

)]

, (20a)
∂U

∂σ2
y

=
−1

2
(

σ2
x − σ2

y

)

[

x∆x′ + y∆y′ +
2N∗r0

γ

(

σx

σy
e
− x

2

2σ2
x

− y
2

2σ2
y − 1

)]

. (20b)Note that dσ2

x

ds and dσ2

y

ds have zero amplitude and hange their sign at the interation point if αx = αy = 0.Test partiles experiene longitudinal aeleration and deeleration passing through the bunh moving inthe opposite diretion.2.4. Compensation shemesIn storage-ring olliders, a beam experienes periodi perturbations when it meets the ounter-rotatingbeam in a ommon beam pipe. The head-on beam-beam interations our when the beams ollide in thedetetors while the long-range interations our when the beams are simultaneously present at the sameloation but are separated transversely. The nonlinear fores due to these beam-beam interations resultin a tune spread and an ause emittane growth, a redution of beam life time, and therefore redue the6



ollider luminosity. The ombination of beam-beam and mahine nonlinearities exite betatron resonaneswhih an ause partiles to di�use into the tails of the beam distribution and even to the physial aperture.Di�erent ompensation methods have been proposed: a urrent arrying wire for the e�ets of the long-rangeinterations [20℄ and an eletron lens for the head-on interations in proton mahines [21, 22, 23, 24℄. Beamollisions with a rossing angle at the interation point are often neessary in olliders to redue the e�etsof the long-range interations. The rossing angle redues the geometrial overlap of the beams and henethe luminosity. A de�eting mode avity, also known as a rab avity, o�ers a promising way to ompensatethe rossing angle and to realize e�etive head-on ollisions [25, 26℄. We now desribe the modelling of theseompensation shemes in the program.2.4.1. Current arrying wireWhen the separations at long-range interations are large ompared to the rms beam size the strengthof these interations is inversely proportional to the distane. Its e�et on a beam an be ompensated by aurrent arrying wire whih reates a magneti �eld with the same 1
r dependene. This approah is simpleand it is possible to deal with all multipole orders at one. For a �nite length lw embedded in the middle ofa drift length L, the transfer map of a wire an be obtained by

M(L)
w = DL/2 ◦M(L)

k ◦DL/2, (21)where DL/2 is the drift map with a length L
2 , and M(L)

k is the wire kik integrated over a drift length. Thiskik map M(L)
k is reprodued by the following hanges in slope [27℄

(

∆x′

∆y′

)

=
µ0

4π

Iwlw
(Bρ)

u− v

x2 + y2

(

x
y

)

, (22)where Iw is the urrent of the wire , u =

√

(

L
2 + lw

)2
+ x2 + y2 and v =

√

(

L
2 − lw

)2
+ x2 + y2. We alsotake into aount the wire misalignment inluding pith and yaw angles (θx, θy) respetively as well as lateralshifts (∆x,∆y). The transfer map of a wire an be written as

Mw = S∆x,∆y ◦ T−1
θx,θy

◦DL/2 ◦M(L)
k ◦DL/2 ◦ Tθx,θy , (23)where Tθx,θy represents the tilt of the oordinate system by horizontal and vertial angles θx, θy to orientthe oordinate system parallel to the wire, and S∆x,∆y represents a shift of the oordinate axes to makethe oordinate systems after and before the wire agree. When the wire is parallel to the beam, Eq. (23)beomes Eq. (21). For aneling the long-range beam-beam interations of the round beam with the wire,one an get the desired wire urrent and length by equating Eq. (22) and Eq. (5); the integrated strengthof the wire ompensator is related to the integrated urrent of the beam bunh as Iwlw = cqN .2.4.2. Eletron lensFor the head-on proton-proton beam ollisions, partiles of one proton bunh are foused by a spaeharge of the ounter-rotating proton bunh. The beam-beam e�et on the partiles of the proton bunhan be ompensated by a ounter-rotating beam of negatively harged partiles, for example, a low-energyeletron beam. In order to anel out the transverse kik by the ounter-rotating proton bunh, the eletronbeam should have the same transverse harge pro�le and urrent as the proton bunh. The proton bunhtypially exhibits an approximately Gaussian transverse pro�le. If we hoose a Gaussian distribution of theeletron beam, the transverse kik on partiles of the proton bunh from the eletron beam is given by

(

∆x′

∆y′

)

= −2Ner0
γr2

ζ (x, y : σe)

(

x
y

)

, (24)where Ne is the number of eletrons of the eletron beam adjusted by the eletron beam speed, r0 the lassiproton radius, γ the Lorentz fator, r2 = x2 + y2, and σe the transverse beam size of the eletron beam.The funtion ζ is given by 7



ζ (x, y : σe) =

[

1− exp

(

−x2 + y2

2σe

)]

. (25)For a non-Gaussian eletron harge distribution we implement a �at top pro�le with smooth edges that gen-erates a linear beam-beam fore near the beam enter. This �at top beam pro�le ρe (r) = ρ0/
(

1 + (r/σe)
8
)delivers the transverse kiks given by Eq. (24), but the funtion ζ is as follows:

ζ =

√
2ρ̃0
8

[

1

2
log

(

θ2+ + 1

θ2− + 1

)

+ tan−1 θ+ + tan−1 θ−

]

, (26)where ρ̃ is a onstant, and θ± =
√
2
(

r
σe

)2

± 1.2.4.3. Crab avityWhen a partile passes through a rab avity struture, it experienes a transverse de�etion and a smallhange in its longitudinal energy. Crab avities an ompensate for the horizontal or vertial rossing angleat the interation point by delivering oppositely direted transverse kiks to the head and the tail of thebunhes. In the ase of a horizontal rossing, the kiks from the rab avity are given by
∆x′ = −qV

E0
sin
(

φs +
ωz

c

)

, ∆δ = −qV

E0
cos
(

φs +
ωz

c

)

· ω
c
x, (27)where q denotes the partile harge, V the voltage of rab avity, E0 the partile energy, φs the phase ofthe synhronous partile with respet to the rab-avity rf wave, ω the angular frequeny of the rab avity,

c the speed of light, z the longitudinal oordinate of the partile with respet to the bunh enter, and xthe horizontal oordinate. In general this is a nonlinear map whih introdues synhro-betatron ouplingbut for small z, this redues to a linear map in the horizontal-longitudinal plane. The rab avity auses alosed orbit distortion dependent on the longitudinal position of partiles, and the beam envelope is tiltedall around the ring. For a bunh shorter than the rf wavelength of the rab avity de�eting mode, the tiltangle of the beam envelope at a loation with a beam position monitor (BPM) is given by
tan θcrab =

qV ω
√
ββcrab

c2p0

∣

∣

∣

∣

cos (∆ϕ− πQ)

2 sinπQ

∣

∣

∣

∣

, (28)where β is the beta funtion at the BPM position, βcrab the beta funtion at the rab avity, ∆ϕ the phaseadvane between the rab avity loation and the BPM, and Q the betatron tune. The simulations of arab avity in the SPS aelerator at CERN using BBSIM will be desribed in another paper.2.5. Partile distributionAt the beginning of a simulation, the simulation partiles are distributed over the phase spae x =
(x, x′, y, y′, z, δ)

T , alled the initial loading. In any simulation the number of partiles N is limited by theomputational power. In order to make the best use of a small number of simulation partiles ompared tothe real number of partiles in the aelerator, the loading should be optimized. Indeed the initial loadingis very important beause this hoie an redue the statistial noise in the physial quantities.Gaussian distribution: For long-term partile traking where we alulate emittane growth, we onsideran exponential distribution in ation (Gaussian distribution in oordinates) of the form:
ρ (x) = ρ0 exp

(

− Jx
2σJx

− Jy
2σJy

− Jz
2σJz

)

, (29)8



where Jx, Jy, and Jz are the transverse and longitudinal ation variables de�ned by
Jx =

1

2βx

[

x2 +
(

βxx
′

+ αxx
)2
]

, Jy =
1

2βy

[

y2 +
(

βyy
′

+ αyy
)2
]

,

Jz =
8

π

Rνs
h2 |η|

[

E (k)−
(

1− k2
)

K (k)
]

,

(30)where R is the radius of the aelerator, h the harmoni number, νs the longitudinal tune, E and K theomplete elliptial integrals, and
k2 =

1

4

h2η2

ν2s

(

∆p

p

)2

+ sin2
φ

2
. (31)

σJx
, σJy

, and σJz
are the rms sizes of ation variables. The simulation partiles are generated by twosteps:1. The ation variables (Jx, Jy, Jz) of partiles an be diretly generated from the distribution funtionby the inverse transform method and the bit-reversed sequene [28℄.2. For example, x and x′ are orrelated and their distribution is ρ̂ (x, x′) = ρ̂0 exp

(

−x2+(βxx
′+αxx)

2

2σ2
x

).Sine the horizontal ation Jx is determined at the �rst step, the horizontal oordinates (x, x′) an beobtained from the random variates:
x =

√

Jx cos θx, x′ =
√

Jx (sin θx − αx cos θx) /βx,where the value of θx is randomly distributed within the interval 0 ≤ θx ≤ 2π.Hollow Gaussian distribution: In most ases of partile traking, lost partiles are observed only abovea ertain large transverse ation while the beam ore is stable. An example is shown in Setion 4.1. Ahollow beam is a beam with zero entral intensity along the longitudinal beam axis. For the generation of ahollow beam, a bunhed beam distribution in longitudinal phase spae is a Gaussian, but a distribution intransverse phase spae is a hollow Gaussian. The proedure of generating the hollow distribution is the sameas that for the Gaussian distribution exept that the amplitude of transverse ation of a partile should belarger than a minimum value, i.e., Jx + Jy ≥ σJ . Sine most of the stable partiles are not inluded in thetraking simulation, the hollow beam model simulates a large transverse amplitude Gaussian distributionusing a small number of maro-partiles. This distribution is useful when alulating beam lifetimes.2.6. Partile di�usionDi�usion oe�ients an haraterize the e�ets of the nonlinearities present in an aelerator, and anbe used to �nd numerial solutions of a di�usion equation for the density [29, 30℄. The solutions yield thetime evolution of the beam density distribution funtion for a given set of mahine and beam parameters.This tehnique enables us to follow the beam intensity and emittane growth for the duration of a luminositystore, something that is not feasible with diret partile traking. The transverse di�usion oe�ients anbe alulated numerially from
Dij (ai, aj) =

1

N
〈(Ji(ai, N)− Ji(ai, 0)) (Jj(aj , N)− Jj(aj , 0))〉 , (32)where Ji (ai, 0) is the initial ation at an amplitude ai, Ji (ai, N) the ation with initial amplitude ai after Nturns, 〈〉 the average over simulation partiles, and (i, j) are the horizontal x or the vertial y oordinates.Equation (29) is averaged over a ertain number of turns to eliminate the �utuation in ation due to thephase spae struture, e.g. resonane islands. These di�usion oe�ients an be diretly used to ompareamplitude growth under di�erent irumstanes, e.g with di�erent tunes. Emittane growth and beamlifetimes an be alulated when these oe�ients are used in a di�usion equation, as mentioned above.9



2.7. DiagnostisNumerial simulation enables the generation of very large amounts of data. The BBSIM ode monitorsphysial quantities, for example, partile amplitudes and saves them into an external �le during the sim-ulation. Aording to a problem of interest, the quantities to be saved an be hosen in order to extratvaluable information from post-proessing. In addition, some diagnosti funtions are alulated in the odeas follows:Betatron tune distribution: The betatron tune in an aelerator is one of the most important beamparameters. The tune of eah partile in the beam distribution is alulated with a Hanning �lter appliedto an fast-Fourier transform of partile oordinates found from traking [31℄.Beam transfer funtion: The beam transfer funtion (BTF) is de�ned as the beam response to a smallexternal longitudinal or transverse exitation at a given frequeny. BTF diagnostis are widely employed inaelerators due to its non-destrutive nature. A stripline kiker or rf avity exites betatron or synhrotronosillations respetively over the appropriate tune spetrum. The beam response is observed in a downstreampikup. The fundamental appliations of BTF are to measure the transverse tune and tune distributionby exiting betatron osillation, to analyze the beam stability limits, and to determine the impedaneharateristis of the hamber wall, and feedbak system [32℄. In the ode, we apply a sinusoidal drivingfore to a beam in a transverse plane and trak the exited partiles over 1024 turns at eah exitationfrequeny of the kiker. The driving frequeny is swept in equidistant steps over the ontinuous frequenyrange inluding betatron tunes.Frequeny di�usion: We have alulated frequeny di�usion maps as another way to investigate thee�ets of nonlinear fores. The map represents the variation of the betatron tunes over two suessive setsof the tunes [33℄: The variation an be quanti�ed by d = log
√

∆ν2x +∆ν2y , where (∆νx = ν
(2)
x − ν

(1)
x ,∆νy =

ν
(2)
y − ν

(1)
y ) are the tune variations between the �rst set and next set of 1024 turns. If the tunes (ν(1)x , ν

(1)
y

)are di�erent from (

ν
(2)
x , ν

(2)
y

), the partile is moving to di�erent amplitudes. A large tune variation isgenerally an indiator of fast di�usion and redued stability.Dynami aperture: The dynami aperture of an aelerator is de�ned as the smallest radial amplitude ofpartiles that survive up to a ertain time interval, for example, 106 turns. As the number of turns inreases,the dynami aperture approahes an asymptoti value. Initial partiles are distributed uniformly over thetransverse phase spae with amplitudes typially varying between 0-20 σ, where σ is the rms transversebeam size. The longitudinal amplitude is hosen as largest value within a bunh.Emittane: The emittane is de�ned as the area (or volume) of phase spae enlosed by the ellipseontaining all the partiles in its interior. Statistially, the rms beam emittane an be alulated by adeterminant of Σ-matrix of a beam distribution:
ǫ = [det (Σ)]

1/d
, (33)where d is the dimension of phase spae, the element of Σ-matrix is Σij = 〈(ζi − 〈ζi〉) (ζj − 〈ζj〉)〉, and

ζ = {x, x′, y, y′, z, δ}. For example, horizontal emittane is obtained by ǫx =

[

det

(

Σxx Σxx′

Σx′x Σx′x′

)]1/2. Inaddition to the emittane of eah degree of freedom, four- and six-dimensional emittanes are alulated tosee the orrelation and oupling between the phase spae oordinates.Beam loss : The beam loss is one of the fundamental observables and it an be diretly ompared withsimulation. During a beam simulation, eah partile is monitored if it reahes a prede�ned boundary oftransverse or longitudinal aperture. The partile passing over the aperture is onsidered as a lost partile.Unlike a real mahine, several virtual apertures are plaed inside a beam pipe. The multiple apertures areused to �nd beam losses at di�erent apertures.3. ParallelizationRealisti simulations of beam dynamis demand large omputational resoures. Calulations on theselarge number of partiles an be distributed over several proessors of a parallel omputer to improve10



Figure 2: Master/slave ommuniation diagram.performane. Two basi approahes exist to alloate the alulations to the proessors, partile based anddomain (spae) based partitions. In the former approah, the partiles are uniformly alloated to theproessors. They are not limited to a ertain spatial domain. The ompletion time of a parallel solutiondepends on the proessor with the maximum omputational workload. The partile deomposition andistribute the omputational load evenly among all proessors while the interation between partiles, forexample, intra-beam sattering needs a very large number of ommuniations between proessors sinethe interating partiles an be loated in a distant proessor. Conversely, in the domain deompositionapproah, the spatial domain is partitioned into elementary regions, and eah proessor is responsible forone of these regions. The partiles in the aelerator simulation are transported by the lattie map. Themap auses signi�ant partile movement whih may ause the load to beome quikly unbalaned. Thesimulation of olliding beams has two aspets, i.e., pure partile transportation and eletromagneti �eldevaluation. The domain deposition approah is an e�ient way of parallelizing the �eld solver. To ahievethe workload balaned, our approah is to use both deomposition shemes.We have implemented a parallel alulation in the BBSIM ode to perform a traking simulation of largenumbers of partiles. When the weak-strong beam-beam model is used, only the partile deompositionsheme an be applied for parallel omputation. Its implementation an be made trivially beause the maro-partiles are never moved from one proessor to another. No inter-proessor ommuniation is neessarywhile the partile trajetories are being developed. Most alulations on eah node are exeuted sequentially.In this model the ommuniation between the parallel proesses is only required for reading input data,generating an initial beam distribution, alulating diagnostis suh as beam emittane, and writing out thediagnosti information. For the Poisson solver model, however, we have used a partile-in-ell (PIC) modelto update the eletromagneti �eld. The PIC model represents the beam as a large number of omputationalpartiles moving aording to lassial mehanis. The PIC algorithm an be haraterized as follows: (a)integrate over partiles to obtain a harge distribution on the grid point, (b) solve a Poisson equation for thepotential, and () interpolate the potential or �eld onto partiles for a small interval of time to advane theposition and veloity of partiles. Part (a) requires O (Nd
g

) numeri operations for a FFT Poisson solver,where Ng is the number of grid points per dimension and d is the number of degrees of freedom. Part (a)and () obviously require O (Np) operations, where Np is the number of omputation partiles. In general,
Np is muh larger than Ng in that the number of partiles should inrease aording to the degree of freedomto maintain the statistial noise to be onstant in a higher spatial dimension. The partile alulations thusdominate the overall omputational proess, whih suggests a prior parallelization of partile alulation.Master/slave on�guration of omputational nodes shown in Fig. 2 is onsidered due to the di�erene ofnumeri operations between partiles and �eld updates.Eah proessor on the master and slave nodes possesses the same number of partiles. All proessorsare responsible for advaning their partiles. On the ontrary, the master node may be a single or manyproessor(s), depending on the number of grid points required. The harge density of a beam is depositedon the omputational grids of eah proessor using standard area weighting (or higher order) methods [34℄.The master node gathers the harge density from all proessors, and solves the Poisson equations in parallel.The master node broadasts the solution of the eletri �eld to all proessors suh that eah proessor exertsthe eletromagneti fore on the partiles owned by the proessor.11



2
−1

2
1

2
3

2
5

2
7

2
9

2
11

# of processors

10
−1

10
0

10
1

10
2

10
3

10
4

sp
ee

du
p

cerf
table
ideal

(a) 2
8

2
10

2
12

2
14

2
16

2
18

2
20

2
22

# of particles

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
P

U
tim

e
(a

.u
.) cerf

table

(b)Figure 3: Plots of (b) parallel speedup versus the number of nodes, and (b) CPU time versus the number ofsimulation partiles. erf and table represent the weak-strong model, and look-up table model respetively.The performane of the master/slave parallelization approah has been investigated using a real lattieof the Tevatron whih has two head-on beam-beam ollisions and 70 long-range beam-beam interations.Speedup test has been performed on the Cray XT5 of the National Energy Researh Sienti� ComputingCenter at Lawrene Berkeley National Laboratory. The system is built up of 664 nodes with 2 quad-oreAMD 2.4 GHz proessors per node. The speedup of a parallel program is a measure of the utilization ofparallel resoures and is simply de�ned as the ratio between sequential exeution time and parallel exeutiontime [35℄:
Sp =

T1

Tp
, (34)where p is the number of proessors, T1 is the exeution time of the sequential algorithm, and Tp is theexeution time of the parallel algorithm with p proessors. For a �xed number of proessors p, typiallythe speedup is 0 < Sp ≤ p. Ideally all parallel programs should exhibit a linear speedup, i.e., Sp = p, butit is not ommon beause ommuniation between proessors is onsiderably slower than omputation ineah proessor. Figure 3 (a) illustrates the resulting speedup as a funtion of the number of proessors.The parallelization speedup based on the total simulation time is ompared for simulations with the weak-strong model and the look-up table model. The speedup urves are very lose to the ideal one below aertain number of proessors, while they are less than optimal when the number of proessors inreasesabove a ritial value, for example, 26 proessors. On large numbers of proessors a relative fration of theommuniation time in the total omputing time beomes large. A parallel e�ieny, de�ned as the speedupfator divided by the number of proessors, an be obtained as high as 87% up to the ritial number ofproessors. Though the e�ieny falls well below 38% when the number of proessors is beyond 210, it runs367 times faster than on a single proessor. In order to see the salability of our parallel ode for largerproblem sizes, Fig. 3 (b) shows the exeution time as a funtion of the number of maro-partiles. Here thenumber of proessors is �xed at 26 for all ases. It is seen that with inreasing the number of simulationpartiles, the exeution time also inreases linearly.4. AppliationsIn high energy storage-ring olliders, the beam-beam interations ause emittane growth, may reduebeam lifetime, and hene limit the ollider luminosity. We have used BBSIM to study beam-beam interationsand their ompensations in the Tevatron, in RHIC and in the LHC.12
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L =

N1N2fNB

4πσxσy
, (35)where N1 and N2 are the bunh populations of the olliding beams, f the revolution frequeny, NB thenumber of bunhes in one beam, and σx and σy the horizontal and vertial rms beam sizes at the ollisionpoints respetively. The beam-beam tune shift of beam 1 is proportional to the fator N2/σxσy and expe-riene from olliders worldwide has shown that the ahievable tune shift (and hene luminosity) is limitedby the dynamis of the beam-beam interation. In the Tevatron, proton and anti-proton bunhes ollideat two detetors alled CDF and D0. They share the same beam pipe. Sine the two beams irulateon helial orbits, the optis and dynamis of the beam-beam interations are omplex. The beam-beaminterations our all around the ring and at varying betatron phases. In Run II, eah beam has threetrains of 12 bunhes [36℄. Eah bunh experienes 72 interations: 2 interations are the head-on ollisionsin the detetors. However the other 70 interations are long-range, and are plaed at di�erent loationsfor eah bunh. Consequently the beam separation distanes between proton and anti-proton beams atthe long-range loations are di�erent from bunh to bunh. Figure 4 shows the radial beam separation ofthree anti-proton bunhes from the proton bunhes in units of the rms beam size of the proton beam at theloations of the beam-beam interations. The long-range interations of speial importane are those oneither side of the head-on interation points. These our at small separations and the beta funtions thereare large. It was observed that the emittane growth at the end bunhes of eah train is smaller than thosein the middle of the train. Here we hoose two end bunhes (#1 and #12) and one middle bunh (#6) ofthe �rst train.Beam emittane growth and loss rate are routinely measured during the Tevatron operation. They anbe diretly ompared with numerial simulations but only for relatively short times. Figure 5 (a) showsthe time evolution of the 4-dimensional emittane of bunhes #1, #6, and #12 for 15 hours of high energyphysis (HEP) run of store # 7650. The emittane is alulated and plotted by ǫ4d =

√
ǫxǫy. It is observedthat during the HEP run, the emittane growth is nearly linear. The growth rate is 6.7%/hr. Figure 5 (b)shows the measured beam loss rates of anti-proton bunhes during the �rst 1 hour of store #7601-#7650 atollision energy 960 GeV. In order to see the e�ets of beam-beam interations on the beam loss, the lossrate is obtained by subtrating the partile losses due to luminosity at the main interation points from thetotal beam loss rate. Averaged loss rates of bunh #1 and #12 are 1.4 %/hr and 1.2 %/hr respetively,13
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(d)Figure 5: (a) Variation of anti-proton emittane of three bunhes, #1, #6, and #12, of store #7650, (b)non-luminous loss rates of anti-proton during the �rst 1 hour of stores #7601-#7650, () simulation ofanti-proton emittane growth, and (d) simulation of anti-proton beam loss. Here the emittane is plottedas ǫ4d =
√
ǫxǫy. In the simulation, initial anti-proton emittane (ǫx, ǫy) is (9.0,7.8) m-mrad, bunh length1.5 nse, and bunh intensity 0.86 × 1011. Proton's initial emittane is (18,23) m-mrad, bunh length 1.7nse, bunh intensity 2.64× 1011. Nominal tune is (20.571, 20.569). Revolution frequeny is 47.7 kHz.
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√
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√

Jx + Jy for di�erent longitudinal ation. The axis variables are normalized by rms size of transverseation.while the loss rate of bunh #6 is 2.3 %/hr. We performed the simulations of emittane growth and partileloss of anti-proton beam, as shown in Fig. 5 ()-(d). The partile traking is arried out over 107 turnsorresponding to approximately 3.5 minutes storage time of the Tevatron. In the simulation, nominal tuneis (20.571, 20.569). Initial transverse emittane of anti-proton (ǫx, ǫy) is set to be (9.0,7.8) m-mrad fromaveraging the measured emittanes while proton's initial emittane is (18,23) m-mrad. Bunh intensities ofanti-proton and proton are 0.86×1011 and 2.64×1011 respetively. Figure 5 () shows the emittane growthof three bunhes during the simulation. The growth rate is approximately 9 %/hr, whih is lose to themeasured growth rate 7 %/hr in Fig. 5 (a). The emittane does not vary from bunh to bunh. However,the beam losses vary onsiderably from bunh to bunh. As shown in Fig. 5 (d), bunh #6 loses morepartiles than bunhes #1 and #12, whih agrees well with the observation. For the simulation of beamloss, we used the hollow Gaussian distribution in transverse ation oordinates. Most of the lost partileshave large transverse ations as shown in Fig. 6 (a), while the lost partiles are distributed over the entirerange of longitudinal ation, as shown in Fig. 6 (b). The ompensation of long-range e�ets in the Tevatronwith a urrent arrying wire was investigated using an earlier version of the ode [5℄. It was found that asingle wire was unable to ompensate for all the 70 interations, sine they were all at di�erent betatronphases from the wire.4.2. Relativisti Heavy Ion ColliderWe have studied the e�ets of a urrent-arrying wire on the beam dynamis in RHIC [30℄. Two urrentarrying wires, one for eah beam, have been installed between the magnets Q3 and Q4 of IP6 in the RHICtunnel. Their impat on a beam was measured during the physis run 7 and 8 with deuteron and gold beams.No attempt was made to ompensate the beam-beam interation sine parasiti beam-beam ollisions donot our in the interation region with the present bunh spaing. However, the experimental results helpto understand the beam-beam e�ets beause the wire fore is similar to the long-range beam-beam foreat large separations. As an example, Fig. 7 plots the beam loss rate due to the wire as a funtion ofbeam-wire separation distane. The onset of beam losses is observed at 8 σ and 9 σ for gold and deuteronbeams respetively. The threshold separation for the onset of sharp losses observed in the measurementsand simulations agree to better than 1 σ. It is also signi�ant that the simulated loss rates at 7 and 8 σseparation for the gold beam and 8 and 9 σ for the deuteron beam are very lose to the measured loss rates.At �xed separation, the wire auses a muh higher beam loss with the deuteron beam than with the gold15
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(b)Figure 7: Comparison of the simulated beam loss rates with the measured as a funtion of separations. (a)gold beam at ollision energy, (b) deuteron beam at ollision energy.Pro�le Intensity (4× 1011
) Partile loss†(%)

1σ Gaussian 1 6351/2 1151/4 631/8 30
2σ Gaussian 4 932 101 81/2 6SEFT 8 3304 212 221 61/2 6
†relative to that without beam-beam ompensationTable 1: Comparison of partile loss for di�erent eletron beam pro�les and intensities.beam. The loss-rate for the gold beam at a 8 σ separation is about 10 %/hr while for the deuteron beamthe loss rate is about an order of magnitude higher both in measurements and simulation. Simulations ofthe beam loss rate when the wire is present are in good agreement with the experimental observations.In the proton-proton runs of RHIC, the maximum beam-beam parameter reahed so far is about ξ =

0.008. This tune shift is large enough that the ombination of beam-beam and mahine nonlinearities exitebetatron resonanes whih ause emittane growth and di�use partiles into the tail of beam distributionand beyond. Consequently RHIC is atively investigating the use of an eletron lens for ompensating thehead-on interations. In order to seek the eletron lens parameters at whih the beam life time is improved,we hose three di�erent eletron beam distribution funtions: (a) 1σ Gaussian distribution with the samerms beam size as that of the proton beam σ, (b) 2σ Gaussian distribution with rms size twie that of theproton beam, and () Smooth-edge-�at-top (SEFT) distribution with an edge around at 4 σ. When theeletron beam pro�le mathes the proton beam, the full ompression of the tune spread requires the eletronbeam intensity Ne = 4× 1011 whih is de�ned as the eletron beam intensity required for full ompensation.Table 1 shows the results of partile loss for di�erent intensities with the three eletron beam pro�les.At an intensity Ne = 4×1011, the partile loss is nearly six times the loss without beam-beam ompensa-16
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(b)Figure 8: Plot of (a) beam-beam separation at IP 1 and 5 and (b) partile loss aording to wire separationdistane with wire strength 82.8 Am.tion. The beam lifetime at Ne = 2× 1011 however is omparable with that of no beam-beam ompensation.As the eletron beam intensity is dereased, the partile loss dereases signi�antly, and is redued to 30% ofthat without beam-beam ompensation at Ne = 0.5× 1011. For the 2σ Gaussian and SEFT eletron beampro�les, we alulated partile loss for di�erent eletron beam intensities. The upper limits of the eletronbeam intensity for these two distributions are hosen so that peak of the eletron pro�le mathes that ofthe full ompensation at 1σ Gaussian. For the intensities 2 × 1011 and 4 × 1011 of 2σ Gaussian pro�le,there is a signi�ant redution in beam loss, for example, below 10% of the partile loss without beam-beamompensation when the eletron beam intensity is 2×1011. A signi�ant improvement of beam lifetime withthe SEFT pro�le is also observed below 8× 1011. There is a threshold eletron beam intensity below whihbeam life time is inreased: 2× 1011 for the 1σ Gaussian, 8× 1011 for the 2σ Gaussian, and 16× 1011for theSEFT pro�le. Partile loss is relatively insensitive to eletron lens urrent variations below the thresholdurrent with the 2σ Gaussian and SEFT pro�les. This looser tolerane on the allowed variations in eletronintensity will allow greater intensity �utuations and is likely to be bene�ial during experiments.4.3. Large Hadron ColliderAs mentioned above, long-range beam-beam interations ause emittane growth or beam loss in theTevatron and are expeted to deteriorate beam quality in the LHC. Inreasing the rossing angle to reduetheir e�ets has several undesirable e�ets, the most important of whih is a lower luminosity due to thesmaller geometri overlap. For the LHC, a wire ompensation sheme has been proposed to ompensate thelong-range interations [20℄. However, several issues need to be resolved for e�ient ompensation. Withthe design bunh spaing, there are about 30 long-range interations on both sides of an interation point(IP). The beam-beam separation distane varies from 6.3 σ to 12.6 σ. The resulting beam-beam fore isnot idential to that generated by a single or multiple wire(s) but an be losely approximated by the wires.Unlike the Tevatron, the long-range fores in the LHC are all at nearly the same betatron phase and thismakes the ompensation sheme feasible. The wire-beam separation distane is one of the parameters whihdetermine the performane of a wire ompensator. Figure 8 (a) shows the beam-beam separation distanenormalized by the transverse rms bunh size. Two ounter-rotating beams ollide at a vertial rossing anglenear IP1 while they ollide at a horizontal rossing angle near IP5. The separations are asymmetri withrespet to the interation points. The referene wire-beam separation (9 σ) is hosen as the average of beam-beam separations. Figure 8 (b) shows the results of partile loss for di�erent wire-beam separations. Thepartile loss saturates at large separation while there is a sharp inrease of partile loss at small separation.We diretly see the minimum partile loss between 0.9 and 1.0 of the referene separation. It reveals that the17
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