
Multi-core aware applications in CMS

C D Jones1, P Elmer2, L Sexton-Kennedy1, C Green1 and A Baldooci1

1 Fermilab, P.O.Box 500, Batavia, IL 60510-5011, USA
2 Physics Department Princeton University, Jadwin Hall, Princeton NJ 08544, USA

E-mail: cdj@fnal.gov

Abstract. One of the significant trends of recent years has been the move towards multicore
CPU's with ever increasing numbers of cores. CMS has been preparing multicore aware
applications that rely on "multi-processing", namely the sharing of memory between processes
forked from a single parent process. First experience with deploying these applications for
production will be presented, as well as results from detailed profiling done to understand the
limits of scaling with increasing numbers of cores.

1. Introduction
HEP data processing is naturally parallelizable given that we have billions of statistically independent
events. All experiments exploit this parallelization by processing events concurrently in separate
machine processes. However, this style of data processing may not be possible in the future due to
memory limitations in future architectures. Historically, memory per unit cost has increased at the
same rate as the number of transistors in a CPU[1]. However, IT infrastructure funding levels for HEP
experiments are not guaranteed to stay at our present levels so just because experiments can afford to
put 2 GB per core now does not mean they will be able to afford to do that into the future. In addition,
opportunistic use of grid sites improves if we lower our memory requirements since not all grid sites
have 2GB per core. Finally, there are up coming technical limitations on connecting many cores to
shared system memory[2]. Therefore future applications will likely need to find ways to decrease their
memory footprints.

Multi-core aware applications can improve memory sharing. This can be achieved in two different
ways: threading and forking. Either of these mechanisms would allow processing of multiple events
simultaneously while sharing resources across events. In threading, all threads share the same address
space but have to worry about concurrent usage. In forking, one parent process is started and then the
parent ‘clones’ itself into independent child processes. Each child process gets its own address space
but untouched memory set up by the parent process is shared between the child processes.

In this paper we will describe and provide measurements of CMS’ use of forking and provide
estimates for performance gains that might be possible by using threading on a sub-event level.

2. Forking

2.1. Copy on write
When forking, you start with a parent process and this parent then calls ‘fork’ to create child
processes. Each child process starts by sharing the same memory pages as its parent. If a child asks for
new memory it will be given a new page which it exclusively owns. If a child attempts to write to a
memory page it shares with its parent or another sibling then the operating system will make a copy of
that memory page and give sole ownership of that copy to the child. This is known as copy on write.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 042012 doi:10.1088/1742-6596/331/4/042012

Published under licence by IOP Publishing Ltd 1

FERMILAB-CONF-11-872-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

Therefore to maximize memory sharing between children the parent process needs to load into
memory often used, nonvolatile data such as conditions, calibrations or geometry.

2.2. Use in CMS
CMS has one main application which is used for all offline data processing. This application was
updated to accommodate forking and the steps used by the application during the forking process are
described below.

When the parent process starts it first reads the configuration file, loads all the shared libraries
containing the modules (algorithms which do a specific task) listed in the configuration and then
creates instances of the modules. The configuration also says how many child processes should be
forked and how the events should be distributed between children. The second step is to open the input
file and find the first run which will be processed. The run is then used to prefetch all conditions,
calibrations and geometry. During this step no event processing modules are called and no events are
ever processed. The third step is to send a message to all modules telling them that forking is going to
happen. This is done to allow them to release any resources, e.g. the source module closes the input
file. The final step is to fork the children.

The child processes perform the following steps. First they redirect standard out and standard error to
their own files whose names contain the parent PID and the child number (i.e. the first forked child
uses the number 0). Second the child process sends messages to all modules saying that this process is
child number X. The output modules use this information to append the child number to all file names.
The source uses this information to calculate the event ranges to process (no interprocess
communication is used) and then reopens the input file. Finally the child process processes events
normally except for only processing a limited range of the events in the input files.

2.3. Measurements
All measurements were performed using CMS’ 64bit reconstruction code on a 4 CPU, 8 core/CPU
2GHz AMD Opterontm Processor 6128. In addition, all input files were read from a local disk and all
output files were written to the same local disk.

Below is shown the shared and private memory for the parent and child processes. Figures 1 and 2
show how the private and shared memory for the parent process, in blue, and four child processes
change over time. Initially, all memory is held privately by the parent since no children were yet
forked. After initialization and prefetching have finished, around the two minute mark, all four
children are forked and the private memory temporarily goes to 0 since all memory becomes shared.
However, right after that mark we see that each child gains each own private memory used for event
processing. In addition we see that some of the previously shared memory is returned to the parent
process. This ‘returned’ memory is probably due to memory buffers still held by the parent for the
input file or to the condition objects containing caches which get reset during event processing. Once
in steady state event processing we see that we get approximately 700MB of memory shared between
all the children and approximately 375MB of private memory for each child. For a 32 core machine
we find that forking takes a total of 13GB while running 32 independent processes takes 34 GB.
Therefore forking gives us a memory sharing of 62%.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 042012 doi:10.1088/1742-6596/331/4/042012

2

Another measurement of interest is throughput, i.e., how many events per unit time can be processed.
Figure 3 shows the throughput as a function of the number of forked children. From the figure we see
that up to 32 children we get a consistent throughput for each child but once we attempt to use more

children than there are cores on the machine we do not gain in throughput. We also see that we get the
same throughput for 32 independent processes, shown by the red box, as we do for a job with 32
forked children, the blue cross. The values shown in Figure 3 were calculated by taking the total
number of events processed by all children divided by the sum of the time taken by each child to just
process events. Therefore the values ignore edge effects created by startup and shutting down of the
processes.

Depending on how events are distributed to the different child processes, some children may finish
processing their allotted events before other children thereby causing some cores to be idle towards the

0E+00

2E+05

4E+05

6E+05

8E+05

00:00 02:30 05:00

Sh
ar

ed
 D

at
a

(k
B)

Time since start of process (minutes)

0E+00

2E+05

4E+05

6E+05

8E+05

00:00 02:30 05:00

Pr
iv

at
e

D
at

a
(k

B)

Time since start of process (minutes)

Figure 1. Amount of private data owned by
parent (blue) and 4 child processes

Figure 2. Amount of shared data between parent
(blue) and 4 child processes

0

0.275

0.550

0.825

1.100

0 8 16 24 32 40

Ev
en

ts/
se

c/
co

re

Number of Children Used
Figure 3. Events per second per core vs the number of forked
child processes for a data file ignoring startup and shutdown

effects.

Measured Forked
Measured Independent

0E+00

2E+05

4E+05

6E+05

8E+05

00:00 02:30 05:00

Pr
iv

at
e

D
at

a
(k

B
)

Time since start of process (minutes)

Parent Child 1

Child 2 Child 3

Child 4

0E+00

2E+05

4E+05

6E+05

8E+05

00:00 02:30 05:00

Pr
iv

at
e

D
at

a
(k

B
)

Time since start of process (minutes)

Parent Child 1

Child 2 Child 3

Child 4

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 042012 doi:10.1088/1742-6596/331/4/042012

3

end of a processing job. We refer to the variation in end time as dispersion. In the present
implementation of forking in the CMS application, the framework pre-assigns which events will be
processed by each child. The algorithm is as follows. In the configuration, the user specifies how
many contiguous events, N, each child will process, e.g. N=100. The starting point for each child is
just determined by its child number and the number of contiguous events to process. So if we had
three children, the first child would start at event 1, the second child would start at event 101 and the
third would start at 201. Once a child is finished with its contiguous section, e.g. child one finishes
event 1 to 100, it skips (number of children-1)*(N) events and then begins processing N
contiguous events. So for child 1 it would processes 300 to 301. This continues until the child reaches
the end of the number of available events. We measure dispersion by calculating utilization:

(sum of child processing time)/[(max child processing time)*(number of children)]
If all children finish their processing at the same time the utilization will be equal to one, else it will be
less than one.

We found reasonable utilization values when running reconstruction jobs on different monte carlo
event types using the largest value for the sequential number of events to process, i.e. total events
divided by the number of children. High Pt QCD samples gave utilization of 0.92, TTbar gave 0.92
and minimum bias gave 0.85. These samples were chosen since high Pt QCD samples take the longest
time to processes one event, minimum bias takes the least time and TTbar falls between those two
extremes. However, when processing real data files we have found utilizations as low as 0.38. After
investigating these files we found that the events in the beginning of the file generated output events
which were twice the size on disk as the events at the end of the file. However, if we changed from
using the largest possible sequential events to process to the smallest, i.e. just process one event and
then skip, we were able to get a utilization of 0.95 for that file.

From the previous paragraph we see that a large value of N can lead to poor utilization if event
characteristics change over the length of the input file (i.e. change with time). However, large values
of N are very good for I/O. ROOT has a read-ahead cache so large N means more reads from one cache
fill. When using the maximum value for N on a 32 core machine we see an average total read
operations per second after startup of 6.2 operations/s and an average read size after startup of 600kB.
However, when using N=1 we get 156 operations/s and an average read size of only 25kB. Clearly a
large N gives better I/O performance.

Besides better I/O performance for the reconstruction job, using the maximum value for N also
improves the I/O characteristics of the resulting file created by merging the output files of all child
processes. The first reason for this is a constraint in the CMS framework which requires all events
from the same luminosity section be processed in one block. In CMS, a new luminosity section is
created every 23 seconds during data taking. As its name implies, a luminosity section is the smallest
granularity of timing for which CMS measures integrated luminosity. For proper luminosity
accounting CMS requires all events for a luminosity section must be processed by a job or none of
them should be. The second reason for N affecting read performance of the merged file is CMS
performs a merge by simply concatenating the output files using a fast copy mechanism. Therefore all
the events processed by the first child are in the beginning of the file, all the events from the second
child are added right after that and so forth until the last child’s events are placed at the end of the
merged file. Therefore if N is small enough such that each child jumps from events in one luminosity
section to events in another luminosity section it causes events from one luminosity section to be
distributed throughout the resulting merged file. Reading back such a merged file leads to many
random accesses throughout the merged file. For a merged file created from a job with N set to its
maximum size we saw 5.9GB read from ROOT’s read-ahead cache. For a merged file created from a
job with N=1 we saw only 750MB read from the cache.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 042012 doi:10.1088/1742-6596/331/4/042012

4

The optimum solution is to keep events from the same luminosity section together in the resulting
merge file. This happens automatically for N set to its maximum value. However, since large N can
lead to poor CPU utilization we are working on an alternative. Instead of having each child process
write out one temporary file we will have each child write one temporary file per luminosity section.
The merge job will then read the temporary files in luminosity section order and therefore group all
events of a luminosity section together in the resultant merged file.

3. Threading
CMS has found that forking has been very useful for event level parallelization of our legacy
framework. However, if event processing latency matters (e.g. in online processing) or if in the future
the memory requirement for processing an event is too large to allow further event level parallelization
then CMS may need to be able to do sub-event level parallelization. In that case threading seems like a
viable mechanism. In this section we will provide performance estimates for one simple parallelization
technique: simultaneous running of different modules.

In the CMS framework, jobs are composed of different algorithms, called modules, which are run in
sequence. The event is passed from one module to the next where each module reads from and then
writes to the event. Once all modules have finished processing the event is written out. However, if
two modules are not dependent upon each others results in principal those two modules could be run
simultaneously in different threads.

3.1. Methodology
One can estimate the performance benefits from module level parallelization if one knows the average
time each module takes to process an event and which modules create data used by another module.
CMS’ framework records both pieces of information. The steps of the calculation are as follows.
• Calculate the start and end time of each module. The start time of a module is the end time of the

last to stop dependent module. The end time of a module is just the start time plus the average event
processing time for that module.

• The end time of the last to finish module is the estimated parallel processing time for one event.
• The sum of all the average event processing time for all modules is the estimated serial processing

time for one event.
• The estimate of the number of concurrently running modules in a given time period is obtained by

counting how many module’s start/end times overlap with each other.

3.2. Estimates
Figure 4 shows the estimated number of concurrently running modules as a function of time for
processing one TTbar event. The figure shows that we get short periods of high parallelism and
extended periods of only one or two modules running concurrently. At the beginning of processing one
event we see large parallelism from all the different calibration modules all doing work for their
individual sub-detectors. The first highly sequential section, around 0.6 to 1.2 seconds, is when the
various tracking modules are working. Once tracking finishes we see another short burst of parallelism
which ends in another fairly sequential section, around 1.3 to 1.6 seconds, in which the electron and
muon modules are running.

Table 1 summarizes the module parallelization estimates done for three different event types:
minimum bias, TTbar and high Pt QCD. We see that to get the maximum performance improvement of
2.2 to 2.6 times speed up requires the use of 16 to 26 independent threads. However, instead of
assuming the availability of an infinite number of threads we can instead impose a maximum number

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 042012 doi:10.1088/1742-6596/331/4/042012

5

of threads. If the maximum number of concurrently runnable modules exceeds the maximum number
of threads we assume equal sharing of the time available and scale the running time of the modules
accordingly. E.g., if we have a maximum number of 4 threads but for the time span of interest we
could run 8 modules concurrently then we scale the time of that span by a factor of 2 (=8/4). Applying
this scale factor for a range of thread counts from 1 to the maximum number of threads we find that
we could reach 90% of the maximum speedup by only using 4 threads.

Table 1. Comparison of estimates of module
parallelism speedup for different event types
Table 1. Comparison of estimates of module
parallelism speedup for different event types
Table 1. Comparison of estimates of module
parallelism speedup for different event types

Event Type Max number
of threads

Speed up

Minimum bias 26 2.64
T Tbar 16 2.62
High Pt QCD 20 2.19

4. Conclusion
We have presented two separate approaches for multicore applications: forking and threading. CMS
has found that forking provides good event level parallelization while allowing substantial savings of
memory because of memory sharing between child processes. However, further work needs to be done
to guarantee good I/O performance. On the other hand, threading may be needed in the future to use
multiple cores to speed up the processing of a single event. However, the present decomposition of
algorithms into modules is not conducive to high parallelization. The work that would be needed to
make present code thread safe is beyond the potential gains when compared to forking. Therefore we
find that for now and the near future, forking provides the best benefits.

5. References
[1]	
 http://www.jcmit.com/memoryprice.htm
[2]	
 http://www.intel.com/technology/itj/2007/v11i3/3-bandwidth/7-conclusion.htm

0

4

8

12

16

20

0 0.5 1.0 1.5 2.0

N
um

be
r o

f r
un

ni
ng

 m
od

ul
es

Average timeline for processing one event (sec)

Figure 4. Number of concurrently running modules versus the
average timeline for processing one TTbar event.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 042012 doi:10.1088/1742-6596/331/4/042012

6

http://www.jcmit.com/memoryprice.htm
http://www.jcmit.com/memoryprice.htm
http://www.intel.com/technology/itj/2007/v11i3/3-bandwidth/7-conclusion.htm
http://www.intel.com/technology/itj/2007/v11i3/3-bandwidth/7-conclusion.htm

