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Abstract. Large international scientific collaborations such as the Compact Muon Solenoid 
(CMS) experiment at the Large Hadron Collider have traditionally addressed their data 
reduction and analysis needs by building and maintaining dedicated computational 
infrastructure. Emerging cloud computing services such as Amazon’s Elastic Compute Cloud 
(EC2) offer short-term CPU and storage resources with costs based on usage. These services 
allow experiments to purchase computing resources as needed, without significant prior 
planning and without long term investments in facilities and their management. We have 
demonstrated that services such as EC2 can successfully be integrated into the production-
computing model of CMS, and find that they work very well as worker nodes. The cost-
structure and transient nature of EC2 services makes them inappropriate for some CMS 
production services and functions. We also found that the resources are not truely “on-
demand” as limits and caps on usage are imposed. Our trial workflows allow us to make a cost 
comparison between EC2 resources and dedicated CMS resources at a University, and 
conclude that it is most cost effective to purchase dedicated resources for the “base-line” needs 
of experiments such as CMS. However, if the ability to use cloud computing resources is built 
into an experiment’s software framework before demand requires their use, cloud computing 
resources make sense for bursting during times when spikes in usage are required. 

1.  Introduction 

Large international scientific collaborations face significant computing challenges: multi-Petabyte data 
sets that require petaflops of computing as well as globally distributed users and computing resources. 
To insure they meet their scientific goals, these collaborations have invested heavily in dedicated 
computing resources. These resources require expensive floor space, power, and cooling, as well as 
careful management, the use of grid technologies, highly developed strategies for data movement and 
placement, and the use of high performance networks.  

The Compact Muon Solenoid
5
 (CMS) experiment at the Large Hadron Collider

6
 (LHC), for 

example, processes several petabytes of data yearly, using approximately 45,000 cores purchased and 
maintained by the experiment and spread globally across the grid. Their use is highly managed to 
insure that the highest priority experimental goals are met. There is some fluctuation in demand: the 
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experiment doesn’t log data year-round and user demand has some variation depending on the 
schedule of conferences. The experiment makes opportunistic use of shared resources such as those 
offered by various academic computing centers/collaborations. Purchasing hardware to increase 
capacity is not cost effective if it will spend a significant fraction of its year unused: fixed costs and 
depreciation occur even if the machines are idle. 

Recently, a number of “computing as a utility” or “cloud computing” services have been started 
which offer users the ability to purchase CPU time at an hourly rate, with little to no commitment. 
Service providers are often internet businesses, such as Google and Amazon, that have had to build 
extremely large compute server facilities. Amazon’s Elastic Compute Cloud

7
 (EC2) is a commercial 

on-demand compute service where a user can rent virtual machines by the hour and merely pay the 
hourly rate plus bandwidth charges. The costs of housing, powering, cooling, maintaining, and 
managing this hardware is borne by the provider. A number of users ranging from individuals and 
startup companies to large multinational corporations use EC2 and similar services to handle short-
term computing needs, when it would be difficult, expensive and time-consuming to roll out more 
capacity for what may be a transient need

8
. 

2.  Cloud Computing Services and CMS 
Cloud computing resources free the user from the burden of housing, servicing, and managing 
expensive and fickle equipment. They also allow the user to purchase only those compute cycles and 
bits of storage needed to fulfill their specific goals or mission. In principle these can be purchased just-
in-time as needed. Economies of scale may lead to a lower support cost per unit of hardware, and 
these lower costs may be passed on to the user.  

There are also potential downsides to cloud computing services. The provider must balance 
availability with inactivity – if it over buys hardware then it has increased its cost without recovery, 
and these costs must be passed on to the consumer. If it under buys hardware, then an important user 
advantage – being able to get access to resources when needed – is compromised. The provider must 
also make a profit, increasing cost. Economies of scale may not dramatically lower support costs, 
since large scale increases management and maintenance complexity, as does the need to support a 
user base with broad requirements and usage patterns. Supporting infrastructure that has only one 
“user” (like a dedicated CMS site) is likely to be significantly easier and less expensive. 

We have investigated using EC2 to supplement or replace the compute capacity of CMS by renting 
out virtual machines and integrating them into our offline computing system. Our goal was to 
determine if this is both technically feasible and under what circumstances this makes financial sense.  

3.  Methodology 

To explore the use of cloud computing services such as EC2 we first had to integrate EC2 resources 
into the CMS production framework. The framework requires the existence of persistent servers and 
the requisite databases to support those services. Specifically, a scheduling master (i.e. Condor or 
PBS), a WMAgent instance, and a storage element are required. It does not make sense to use cloud 
computing resources to provide these services – the pricing model is based on occasional use and cost 
recovery for these services is almost certainly based on a model that assumes nodes will not be used 
100% of the time (24/7/365).  We therefore decided to use EC2 nodes only as worker nodes in a larger 
production workflow. The architecture of this workflow is shown in figure 1. We had to figure out 
how to convince an EC2 node to behave just like a CMS worker node (see below), once that was done 
we were able to run sample production workflows and see how well the EC2 resources would  
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Figure 1. Architecture of the CMS production 
workflow.  Once our VM is running on the EC2 
instance, it is functionally equivalent to a regular CMS 
worker node. 

  

work in the CMS production environment. We ran this workflow with (a) just EC2 worker nodes, (b) a 
mixture of EC2 nodes and regular CMS worker nodes, and (c) only regular CMS nodes at the 
beginning, to which we dynamically added EC2 nodes once the workflow had begun. 

To convince an EC2 node to behave like a CMS worker node we put together a virtual machine 
(VM) slave that can receive work from an outside source, execute a CMSSW job to perform the work, 
and perform the necessary stage-out tasks on the output data. 

Because of our requirement that the VM slave must have up-to-date versions of CMSSW installed, 
we decided to base it on the ready-built virtual machine provided by CERN (CernVM

9
). Maintained 

by CERN, it has a virtual, distributed filesystem that stores the CMSSW installs. This allows us to 
decouple the release schedule for our VM slave from the release schedule for CMSSW. An additional 
advantage of CernVM is that it comes with all the necessary CMS-specific prerequisites installed, 
some of which aren't provided in the SLC base install. 

To CernVM, we add a standalone Condor slave.  Our Condor slave is a modified version of the 
Condor glidein tool which pulls the necessary configuration values from the EC2 contextualization 
environment (for instance, the user can specify a requested Condor master address). Condor glidein 
allows you to insert “vanilla” cluster resources into a Condor pool. For instance, if one had access to a 
non grid-aware cluster (running any scheduler), submitting Condor glideins to run on worker nodes of 
this vanilla cluster allows these nodes to function as members of a Condor pool. The cluster will 
execute the glideins like a normal process; the glideins will boot and locate their masters, seek out 
work, and then execute jobs specified by the Condor master (not the cluster master). One benefit of 
this infrastructure is that resources become homogenized, meaning the details of where and how jobs 
run are the same regardless of whether the hardware is local or running at EC2. This makes it possible 
to run workflows on a heterogeneous cluster.  

Architecturally, bootstrapping EC2 and connecting it to the CMS production framework 
(WMAgent) is simple. We wrote a wrapper around EC2’s instance request tool to request an instance 
with CernVM’s image and have it execute a small bootstrapping script on startup. This bootstrapping 
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script downloaded a tarball with a Condor startd daemon and some additional tools. Once the tarball 
was unpacked, a Condor slave was executed which connected back to a central Condor master, which 
makes the presents the VM as a worker node to the production framework. We then had a WMAgent 
connected to the Condor pool create the jobs that would be run on EC2.  

Our configuration also allows us to dynamically add new worker nodes to the pool, if needed. One 
could imagine a situation where, due to a deadline, some processing needed to be done soon, so the 
user could choose to add more nodes partway through their jobs. In our case, we were able to have a 
mixed cluster containing both Vanderbilt and Amazon resources by running Condor slaves at each 
site. Once the slaves connected back to the master, they behaved similarly to each other, and our jobs 
could run without modification. 

Early on, we made a choice to only test Monte Carlo event generation and not raw data 
reconstruction, which would have required bringing external event data into EC2. We had two reasons 
for this. First, EC2’s bandwidth charges are prohibitively high and we predicted that these costs 
would’ve made an already cost-ineffective option worse. Additionally, we wanted to choose a CPU-
bound test to make as equal of a comparison as possible since jobs running locally at Vanderbilt have 
the advantage of very fast, local worker node storage compared with EC2. 

We generated a half million Monte Carlo events at both Amazon and Vanderbilt. At Amazon, the 
nodes were the “large” instance with 7.5GB of memory and 2 virtual cores. At Vanderbilt, we used 19 
dual quad-core Opteron machines with 32GB of ram each. We also tested a configuration where we 
ran with a fixed number of cores at Vanderbilt and later added additional cores to the pool from EC2. 
Finally, we ran the same Monte Carlo generation procedures on the differently sized EC2 instances to 
see if the performance scaled with size. 

Once we connected all the components together, we generated 500,000 events on both EC2 and at 
Vanderbilt using the same configuration to make a comparison between EC2 and a dedicated cluster. 
We then benchmarked how long it took for each cluster to produce the events. 

4.  Results 

One unanticipated lesson we learned from this activity was that EC2 was not fully an “on-demand” 
service. Amazon initially placed a very low cap on the number of processors we could use at any one 
time. It took a day or so to get this cap increased, and it took a few iterations of this procedure to get 
up to the “large” number of processors (a few hundred) we required for our sample production 
workflows. Based on our experience, provisioning thousands of cores would take additional 
negotiation and planning with Amazon. This is almost certainly going to be true for the cloud 
computing services offered by other vendors. It is probably true that as one established a relationship 
with vendors, this would become a simpler and more rapid process. However, one could also imagine 
a scenario where a large number of additional cores were needed quickly, and a vendor would not 
have those resources available on a sufficient timescale. 

The cloud computing model assumes that the services provided will be put up and torn down as 
they are needed, and cost recovery for these services is almost certainly based on a model that assumes 
nodes will not be used 100% of the time (24/7/365). In addition, local control and administration of 
some systems will always be necessary. Therefore, investment by experiments in dedicated hardware 
will always be necessary. CMS will always need to invest in some dedicated computing hardware, 
since some servers and services need to be owned, managed, and administered by the experiment and 
some services need to be provided 24/7/365. 

Using EC2 cores to provide additional or even all worker nodes for a production workflow worked 
extremely well. We did not test using more than two hundred cores at a time, but we saw no technical 
reason why usage couldn’t successfully scale to even larger numbers of cores. We purposely chose a 
CPU-bound test and, including the overhead from staging the output file from EC2 to Vanderbilt’s 
Storage Element (SE), achieved approximately 85% the performance our local cluster achieved. 
Though we had to transfer the output files over the internet to Vanderbilt’s storage element, this 
overhead only contributed a few minutes to the 6-8 hours that each job ran on an EC2 instance. We 
attribute most of this difference to differing speeds of the CPU cores at the two sites; we saw no 
evidence that there was any difference in “efficiency” (CPU time divided by clock time) for our jobs 
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at either site and the overhead was a relatively small contribution. Once we assembled the software 
necessary to successfully start a worker process on an EC2 core, these “worker nodes” proved as easy 
to use as those at dedicated CMS sites. We were even able to dynamically add EC2 cores to the pool 
of worker nodes that were working on a production workflow, allowing us to scale up the processing 
power for a workflow on the fly.  

One of our goals was to compare the cost of on-demand cloud computing services to dedicated 
hardware housed and managed by the experiment. From our tests, we are able to make a direct 
comparison of the costs of time on EC2 to the costs of a dedicated facility

10
 housed and operated at 

Vanderbilt University. In our CPU bound tests, generating 1000 Monte Carlo events at EC2 cost us 
$0.817 (US $) for CPU time (computed from the per-hour rate of $0.18/core) and $0.055 for 
bandwidth (moving the generated data out of EC2 and into CMS owned storage), for a total cost of 
$0.872 per 1000 events. The Vanderbilt site provides dedicated resources at a cost of $213.60 per core 
per year. This amortizes the purchase price of the hardware over three years, and includes all power, 
cooling, facilities, network bandwidth, and the costs of support, maintenance, and administration. The 
hardware includes the compute node and an appropriate share of the costs for internal cluster 
networking, racks, cluster system services, and shared disk space. One core on the Vanderbilt cluster 
could generate 244 Monte Carlo events an hour in our sample workflow, including all overheads.  
Assuming that a core is generating events full time, this means that the cost of generating 1000 events 
on the dedicated resources at Vanderbilt is $0.098, a factor of almost 9 less. Of course the cost of these 
dedicated facilities increases if they are not used 100% of the time.  

5.  Conclusions 
We have demonstrated that services such as EC2 can successfully be integrated into the production-
computing model of CMS. We have carried out example production runs that incorporate cloud 
computing resources as worker nodes in a production workflow, under this usage scenario they work 
very well.  

We used both EC2 and Vanderbilt to generate a half million Monte Carlo events. We purposely 
chose a CPU-bound test and found that the EC2 cores performed well as worker nodes. In addition, we 
demonstrated that we could dynamically add EC2 nodes to an already instantiated production run, 
which would allow a high priority production workflow to complete earlier if required. 

We found that the cost-structure and transient nature of EC2 services makes them inappropriate for 
some CMS production services and functions. We also found that the resources are not entirely “on-
demand.” Limits and caps on usage occur. Based on our cost comparison between EC2 resources and 
dedicated CMS resources at Vanderbilt University, we conclude that it is most cost effective to 
purchase dedicated resources for the “base-line” needs of experiments such as CMS. However, if the 
ability to use cloud computing resources is built into an experiment’s software framework before 
demand requires their use, we conclude that cloud computing can be a useful tool for bursting during 
times when spikes in usage are required. 

The source code for this project is available at http://bit.ly/cRbwHv. 
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