

Early experience on using glideinWMS in the cloud

W Andrews
3
, B Bockelman

4
, D Bradley

5
, J Dost

3
, D Evans

1
, I Fisk

1
, J Frey

5
, B

Holzman
1
, M Livny

5
, T Martin

3
, A McCrea

3
, A Melo

6
, S Metson

2
, H Pi

3
, I

Sfiligoi
3
, P Sheldon

6
, T Tannenbaum

5
, A Tiradani

1
, F Würthwein

3
 and D Weitzel

4

1
 Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA

2
 University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

3
 University of California, San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA

4
 University of Nebraska-Lincoln, 118 Schorr Center, Lincoln, NE 68588, USA

5
 University of Wisconsin, Madison, WI, USA

6
 Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235, USA

E-mail: burt@fnal.gov

Abstract. Cloud computing is steadily gaining traction both in commercial and research

worlds, and there seems to be significant potential to the HEP community as well. However,

most of the tools used in the HEP community are tailored to the current computing model,

which is based on grid computing. One such tool is glideinWMS, a pilot-based workload

management system. In this paper we present both what code changes were needed to make it

work in the cloud world, as well as what architectural problems we encountered and how we

solved them. Benchmarks comparing grid, Magellan, and Amazon EC2 resources are also

included.

1. Introduction

In the last ten years, the High Energy Physics community has steadily adopted the grid computing

paradigm in order to process and analyze data on a global scale. The implementation for the Large

Hadron Collider (LHC), known as the Worldwide LHC Grid (WLCG), is built upon two international

cyberinfrastuctures – the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) [1-3].

The WLCG relies on leveraging resources (computing, storage) that have been offered for use to the

community, but are owned, operated, and maintained by the resource owners. The resources are

widely distributed across the globe, and represent a very large scale in the aggregate.

GlideinWMS is a pilot-based workload management system designed for the grid. Principally

developed by the CMS experiment, it is currently in use by a large number of HEP and non-HEP

virtual organizations [4]. In essence, GlideinWMS sends a “pilot job” which dynamically provisions

resources from the grid and synthesizes them into a virtual Condor batch system. In addition to

presenting the user with a simplified interface in which to do work, the pilot approach has many other

advantages, including the ability to perform late-binding validation of acquired resources and custom

application-level monitoring in near real-time.

Recently, cloud computing has come into vogue as a solution for both commercial and scientific

computing. This term generically refers to a set of virtualized resources that are constructed and torn

down dynamically in response to demand. The current industry standard is considered to be Amazon

Web Services (AWS). AWS provides a computing resource – the Elastic Compute Cloud (EC2), and a

storage solution – Simple Storage Service (S3) [5,6]. Recently, the Department of Energy has begun

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062014 doi:10.1088/1742-6596/331/6/062014

Published under licence by IOP Publishing Ltd 1

FERMILAB-CONF-11-861-CD-CMS

Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy

operating the Magellan project, a research and development effort to provide a cloud-based distributed

computing and data analysis testbed [7]. The current Magellan implementation has been built with the

open source Eucalyptus software package [8] and has an EC2-compatible API.

In this work, we discuss the challenges and solutions in adapting glideinWMS to the cloud,

focusing on EC2-compliant implementations. We present benchmarks using CMS software on the

cloud via glideinWMS, and future directions for the project.

2. GlideinWMS – an overview on the grid

GlideinWMS leverages software from the Condor project [9] whenever possible, and is comprised of

several logical components as shown in figure 1 [10].

Figure 1. Overview of the glideinWMS system.

Briefly, the user submits work to a local scheduler (“schedd”) on a submit machine. A frontend polls a

set of submit machines, and sends a request for glideins to the glidein factory (“GF”). The glidein

factory interfaces with the grid gatekeepers and submits glideins for execution on remote sites. The

glideins begin executing, pull down factory and frontend-specific customizations if supplied, and

communicate back to a collector, creating a virtual Condor batch system. The workloads from the

submit machines are then matched to the glideins and executed via Condor communication protocols,

bypassing the gatekeepers.

3. Challenges

In the course of migrating the glideinWMS architecture from the grid to the cloud, we discovered

several differences between these distributing computing approaches. We categorized these

differences as either related to the different job environment in the cloud (the virtual machine

challenge) or the different credential management model in the cloud (the authentication challenge).

3.1. The Virtual Machine Challenge

One challenge in transitioning from the grid to the cloud is how one manages the virtual machines. In

the grid, the maintenance of the operating system, system libraries, and other core services are the

responsibility of the site administrator; and application software is installed as needed in persistent

storage. On the cloud, these responsibilities shift to the user. For the benchmark results presented

here, images were manually create and uploaded; this method will not scale for future use.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062014 doi:10.1088/1742-6596/331/6/062014

2

3.1.1. Contextualization

There are two types of virtual machine contextualization that are often discussed. The first, “image

contextualization”, refers to modifying a stock virtual machine to perform specific functions; for

example, the creation of a web server VM image. “Instance contextualization”, on the other hand,

refers to the ability to perform customizations of the virtual machine at run-time. Amazon EC2 and

EC2 API compliant clouds require image contextualization in order to perform instance

contextualization. The challenge then is to make use of the instance contextualization facilities

provided by the cloud implementations. Amazon EC2 and EC2 API-compliant clouds provide a “user

data” facility; when a request is submitted for a VM, up to 16KB can be forwarded to an internal web

server. The VM, if so configured via image contextualization, can access the user data and

appropriately customize the instance during the VM’s boot cycle.

In order for a glideinWMS to make use of a cloud, the VM instance must be made "glideinWMS

aware". In the grid environment, the glidein startup script, glidein_startup.sh, is submitted as an

executable to a remote gatekeeper to be run on the worker node. To replicate this behaviour in the

cloud, we created a custom image containing a bootstrap service. This service accesses the EC2 user

data, which contains a configuration file from the glideinWMS factory and an X.509 proxy used for

authenticating for the factory. The bootstrap service then downloads glidein_startup.sh from the

glideinWMS factory. This is executed as on a grid batch system, and the image spawns the required

components in order to form the virtual Condor node.

In the course of this work, we extended the functionality of glidein_startup.sh to make it

sufficiently general to execute in both grid and cloud environments; the same script can instantiate a

pilot on an EC2 instance or a batch system.

3.1.2. Virtual Organization (VO) Supplied Software

Some VOs have software that is relatively simple to install and configure. These VOs can include their

software as part of the setup for their user jobs or as the part of the image contextualization. However,

some VOs, like CMS, have large, frequently updated, complex software packages. On the grid, these

VOs typically pre-install and update their software at each supported site through special installation

jobs. The software is then shared via a networked file system and mounted on each worker node in the

cluster. This model is not a good fit for the cloud, as no vendor-provided shared filesystem exists.

A solution that we investigated is CVMFS [11]. This provides a read-only file system mounted on

the virtual machine. The file system is a FUSE mount served over HTTP. We configured the virtual

machines to point directly to a server located at CERN (deemed acceptable as we were running only

small scale tests). CVMFS can also specify a number of HTTP proxy servers for load-balancing. One

advantage to this approach is, unlike a networked file system installation, only the files opened by the

user job are retrieved and cached on the virtual machine. It is not necessary to install all of CMS

software (50 gigabytes or more) on a foreign site. It also eliminates the need to load CMS software

into Amazon’s S3, which decreases the associated cost with using the cloud.

3.1.3. Image Creation

The question of VM image authorship is a non-trivial one. GlideinWMS deployments generally

service multiple VOs – who retains the responsibility for maintaining the image? If the VO provides

the image, it has complete control over customization and testing; on the other hand, it still must

follow the process as outlined in section 3.1.1, possibly resulting in significant duplicated efforts. If

the glidein factory provides a base image, the work is performed once by the factory owner, and

should better ensure the required glideinWMS services are properly installed. However, removing the

OS customization flexibility negates one of the most powerful advantages of cloud computing. A

solution currently under investigation allows the factory to provide a glideinWMS-compatible base

image, and allow the VO to perform image contextualization. This enables VOs to use glideinWMS

regardless of whether they need contextualization. There are some drawbacks – it may make it more

difficult for VOs to validate the dynamically-produced image, and could have a negative impact on

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062014 doi:10.1088/1742-6596/331/6/062014

3

performance, but we believe the advantages of providing a highly-customizable cloud solution to the

end user at little cost outweighs the disadvantages.

3.2. The Authentication Challenge

All grids currently used by the HEP community use X.509 proxies [12] as the underlying

authentication mechanism. A proxy is used for the initial job submission, and it is also forwarded to

the worker node to allow the job to access remote resources while it is executing. GlideinWMS was

thus designed around it, with the frontend delegating a X.509 proxy to the factory for both glidein

submission and for the glidein to secure the communication with the VO services. Unfortunately,

cloud resources are not based around this security paradigm. This introduced three problems for the

glideinWMS: the lack of a credential delegation mechanism, the need for two sets of credentials, and

credential lifetime concerns.

The X.509 proxy delegation is the foundation of glideinWMS security. The proxy being delegated

to the worker node is used by the glidein to secure the communication to the VO-run collector;

without it, the glidein would not be trusted by the VO. Since most clouds do not support any credential

delegation, we decided to continue to use X.509 proxies, and find ways to deliver them to the worker

nodes via secure channels. We currently have a solution for the AWS: we ship the proxy as one of the

job arguments, which is sent using SOAP via secure HTTP and has privacy guarantees within the

cloud [13]. We are investigating how best to translate this solution to other cloud architectures.

The use of X.509 proxies in the glideins in the cloud implies that the glideinWMS now needs to

handle two sets of credentials: a non-X.509 credential for glidein submission, and an X.509 credential

for glidein authentication to the VO services. This was not envisioned in the initial glideinWMS

design so the protocol between the frontend and the factory was extended. We added this functionality

in a backwards-compatible manner by leaving the X.509 proxy delegation unchanged, and allowing

for an additional, optional credential forwarding step. If the optional credential is not present, the

factory will default to using the proxy for glidein submission.

One useful property of the X.509 proxy security model is the ability to derive short-lived

credentials from long-lived ones; this significantly reduces the security risk of delegating work to

another party. With respect to glideinWMS, this allows the VO to reduce the risk associated to the

delegation of its credential to a factory operated by a different party. We have not yet found a good

solution to this issue in the cloud, and are currently delegating long-lived credentials. Amazon’s

Identity and Access Management system [14] appears promising, but has not been fully evaluated.

4. Benchmarks

We selected a few fundamental measurements to characterize the performance of glideinWMS on the

cloud. We identified three metrics of interest: how long it takes to provision resources; how efficiently

the acquired resources perform a domain-specific computing task; and how quickly the resources can

perform the same task.

4.1. Performance

We ran a CMS benchmark to get a performance comparison between the Amazon EC2 virtual

machine and a physical machine. The CMS benchmark is a Monte Carlo simulation of top and anti-top

quark production. This simulation was specifically chosen because it generates many particles, each of

which is tracked through the CMS detector. Simulating and tracking multiple trajectories is a CPU-

intensive process. Since little storage is required to run the simulation, most of the resulting I/O will be

memory I/O.

The benchmark is first run as a single process to obtain baseline data. It then simultaneously

executes one job per core. The benchmark outputs the wall time and CPU time; the CPU efficiency is

calculated as the ratio of CPU time to the wall time. The benchmark was run on a typical worker node

in the USCMS Tier-1 facility at Fermi National Accelerator Laboratory and on an “m1.large” EC2

instance. The worker node is an AMD Opteron 2915 node with 8 physical cores, 24 GB memory, and

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062014 doi:10.1088/1742-6596/331/6/062014

4

runs Scientific Linux 5.4. The EC2 m1.large instance has 2 virtual cores (with 2 EC2 Compute Units

each), 7.5 GB memory, and runs Scientific Linux 5.5.

Table 1. Benchmark results for a CMS Monte Carlo simulation.

System Number of

cores

Avg. CPU Time

per core (s);

smaller is better

Avg. Wall

Time

per core (s)

Avg. CPU

Efficiency

Amazon EC2 1 76.98 103.7 74.22%

 2 74.91 142.5 52.71%

AMD Opteron 2915 1 68.81 96.22 71.51%

 8 69.04 96.19 71.79%

The physical machine reported just over 96 seconds per event for the single process. When the

number of processes was scaled to the number of cores, the time per event remains relatively

unchanged with only sub-second fluctuations. With a single process the EC2 instance was able to

process at a rate of 103.7 seconds per event. When both cores are used the time per event is increased

to 142.5 seconds.

Comparing the single-process results, one can see that there is a 7% performance penalty incurred

when running on EC2. This is likely due to the virtualization layers. There is also a significant

performance decrease on EC2 when going from one to two cores. This merits further investigation, but

suggests we are running into a memory bottleneck within EC2’s virtualization.

4.2. Startup Time

Measurements of time to provision new resources and begin utilizing them were conducted in the EC2

and Magellan clouds, as depicted in figures 2 and 3. In EC2, new worker nodes appeared in the

Condor pool about 1.5 minutes after they were requested. Startup of jobs on those nodes then

happened with a scheduling lag within Condor of about three minutes. In Magellan, worker nodes

appeared in the Condor pool about 5 minutes after they were requested. Startup of jobs was not

successful due to problems that are under investigation.

4.3. Network

Figure 2. Response time for provisioning

glideinWMS execute nodes in Amazon EC2.

 Figure 3. Response time for provisioning

glideinWMS execute nodes in Magellan.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062014 doi:10.1088/1742-6596/331/6/062014

5

Network bandwidth was measured using the iperf tool between worker nodes in EC2 and

computers at the University of Nebraska-Lincoln. The observed transfer rate was 500 Mbps. The

round trip time was 35 ms. This connection benefits from the peering arrangements between Amazon

and Internet2, and may not be indicative of performance at other research computing facilities.

5. Summary and Outlook

Interest in cloud computing continues to increase from both the academic and commercial spheres.

With this work, we have established first steps towards utilizing the widely available glideinWMS

framework in order to utilize cloud resources. A key result was the ability to seamlessly combine

cloud- and grid-based resources without presenting a different end-user experience.

We are working on making available more dynamic contextualization services to allow VOs to

provide significant portions of the image environment (or none, if the stock environment provided by

the glideinWMS factory meets their needs). We are also evaluating new cloud credential management

tools such as Amazon’s Identity and Access Management.

Acknowledgments

This work was partially funded by the US National Science Foundation under Grants No. PHY-

0533280 (DISUN), PHY-0612805 (CMS M&O), and OCI-0943725 (STCI); the US Department of

Energy under Grant No. DEFC02-06ER41436 subcontract No. 647F290 (OSG); and several US CMS

related grants. The research used resources of the Argonne Leadership Computing Facility at Argonne

National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy

under contract DE-AC02-06CH11357, funded through The American Recovery and Reinvestment Act

of 2009.

References

[1] Pordes R et al. 2007 The Open Science Grid Journal of Physics: Conference Series 78 012057.

[2] Shiers J 2007 The Worldwide LHC Computing Grid (worldwide LCG) Comp. Phys. Comm.

177 219-223.

[3] The European Grid Infrastructure (EGI), http://www.egi.eu

[4] Sfiligoi I et al. 2010 Operating a Production Pilot Factory Serving Several Scientific Domains,

these proceedings

[5] Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2

[6] Amazon Simple Storage Service (S3), http://aws.amazon.com/s3

[7] The Magellan Project, http://magellan.alcf.anl.gov/, http://magellan.nersc.gov/

[8] Nurmi D et al. 2009 Eucalyptus: an Open-source Cloud Computing Infrastructure J. Phys.:

Conf. Ser. 180 012051

[9] Thain D, Tannenbaum T and Livny M 2005 Distributed Computing in Practice: The Condor

Experience Concurrency and Computation: Practice and Experience 17 323-356

[10] Sfiligoi I et al. 2009 The Pilot Way to Grid Resources Using GlideinWMS Proceedings of the

2009 WRI World Congress on Computer Science and Information Engineering 2 428-432

[11] Buncic P et al. 2010 CermVM – a Virtual Software Appliance for LHC Applications J. Phys.:

Conf. Ser. 219 042003

[12] RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List

(CRL) Profile, http://www-rfc-editor.org/rfc/rfc3280.txt

[13] Amazon EC2 User Guide, http://tinyurl.com/ec2-userguide

[14] Amazon Identity and Access Management (IAM), http://aws.amazon.com/iam

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062014 doi:10.1088/1742-6596/331/6/062014

6

http://www.egi.eu/
http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://magellan.alcf.anl.gov/
http://magellan.nersc.gov/
http://www-rfc-editor.org/rfc/rfc3280.txt
http://tinyurl.com/ec2-userguide
http://aws.amazon.com/iam

