
An Analysis of the Control Hierarchy Modelling of the CMS
Detector Control System

Yi Ling Hwong2, Tim Willemse8, Vincent Kusters8, Gerry Bauer7, Barbara Beccati2,
Ulf Behrens1, Kurt Biery6, Olivier Bouffet2, James Branson5, Sebastian Bukowiec2,
Eric Cano2, Harry Cheung6, Marek Ciganek2, Sergio Cittolina,2, Jose Antonio
Coarasa2, Christian Deldicque2, Aymeric Dupont2, Samim Erhan4, Dominique Gigi2,
Frank Glege2, Robert Gomez-Reino2, Andre Holzner5, Derek Hatton1, Lorenzo
Masetti2, Frans Meijers2, Emilio Meschi2, Remigius K. Mommsen6, Roland Moser2,
Vivian O'Dell6, Luciano Orsini2, Christoph Paus7, Andrea Petrucci2, Marco Pieri5,
Attila Racz2, Olivier Raginel7, Hannes Sakulin2, Matteo Sani5, Philipp
Schieferdeckerbb,2, Christoph Schwick2, Dennis Shpakov6, Michal Simon2, Konstanty
Sumorok7

1DESY, Hamburg, Germany, 2CERN, Geneva, Switzerland, 3Eidgenössische Technische
Hochschule, Zurich, Switzerland, 4University of California, Los Angeles, Los Angeles,
California, USA, 5University of California, San Diego, San Diego, California, USA, 6FNAL,
Chicago, Illinois, USA, 7Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA,8 Eindhoven University of Technology ,aAlso at University of California, San Diego,bNow
at Universitaet Karlsruhe

Email: Yi Ling Hwong - yi.ling.hwong@cern.ch

Abstract. The supervisory level of the Detector Control System (DCS) of the CMS experiment
is implemented using Finite State Machines (FSM), which model the behaviours and control
the operations of all the sub-detectors and support services. The FSM tree of the whole CMS
experiment consists of more than 30.000 nodes. An analysis of a system of such size is a
complex task but is a crucial step towards the improvement of the overall performance of the
FSM system. This paper presents the analysis of the CMS FSM system using the micro
Common Representation Language 2 (mcrl2) methodology. Individual mCRL2 models are
obtained for the FSM systems of the CMS sub-detectors using the ASF+SDF automated
translation tool. Different mCRL2 operations are applied to the mCRL2 models. A mCRL2
simulation tool is used to closer examine the system. Visualization of a system based on the
exploration of its state space is enabled with a mCRL2 tool. Requirements such as command
and state propagation are expressed using modal mu-calculus and checked using a model
checking algorithm. For checking local requirements such as endless loop freedom, the
Bounded Model Checking technique is applied. This paper discusses these analysis techniques
and presents the results of their application on the CMS FSM system.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022010 doi:10.1088/1742-6596/331/2/022010

Published under licence by IOP Publishing Ltd 1

FERMILAB-CONF-11-859-PPD

Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy

mailto:yi.ling.hwong@cern.ch�

1. Introduction
The CMS experiment is conceived to study a wide range of particles and phenomena produced in the
high-energy collisions in the LHC. The control, configuration, readout and monitoring of hardware
devices as well as the monitoring of external systems, such as the electrical system, cooling system,
etc, are carried out by the Detector Control System (DCS). The modeling of the control system is
implemented as a hierarchy of Finite State Machines (FSM) and is developed using the SMI++ toolkit
[1]. FSMs are described using the State Manager Language (SML) and are organized in a tree
structure where each node has one parent and zero or more children, except for the top node, which
has no parent. Commands are sent from a parent node down to its children and the states of the
children are propagated up the tree (Figure 1). The FSM tree of the whole CMS experiment consists of
more than 30.000 nodes, which makes the design and implementation of a homogenous and consistent
system a complex task. A single badly designed FSM may be sufficient to lead to endless loops,
potentially hampering the performance of the experiment.

Figure 1. A simple control system modeled using Finite State Machines

In view of the complexity of the FSM system, it is almost impossible to track down problems when
unexpected behaviors manifest themselves. In this project we developed automated verification
tooling for our analysis purpose. The project is divided into two main parts. First, we formalised the
SML by mapping its language construct onto constructs in the process algebraic language mCRL2 [2].
Second, we identified properties that can be verified for FSMs in isolation and developed dedicated
verification tooling based on Bounded Model Checking [3].

Using the ASF+SDF meta-environment [4], we developed a prototype translation implementing
our mapping of SML to mCRL2. This allowed us to quickly assess the correctness of the translation
through simulation and visualization of FSMs in isolation. Our dedicated verification tools allow the
FSM developers to quickly perform behavioural sanity check on their code and use the feedback to
further improve on their design.

2. The State Manager Language (SML)
The FSMs are described using the State Manager Language which is provided by the SMI++ toolkit.
Listing 1 shows a snippet of the definition for a class in SML.

A class is the declaration of a FSM object and consists of one or more states clauses. Each state
clause consists of zero or more when clauses and action clauses. The when clauses describe how the
object will behave in a certain state, i.e. the rules by which the object will obey for transition between
states or the execution of a command. A when clause has two parts: a guard which is a Boolean
constraint on the states of the children of the object, and a referrer which describes what should
happen if the guard evaluates to true. An action clause consists of a name and a list of statements.
When an object in a state S receives a command from its parent, it looks inside the state clause of state
S for an action clause with the same name as the command. If such an action clause exists, it executes
its statement list. Commands received which are not declared in the action clause are ignored.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022010 doi:10.1088/1742-6596/331/2/022010

2

class: $FWPART_$TOP$RPC_Wheel_CLASS
 state: OFF

when (ANYFwCHILDREN in_state ERROR) move_to ERROR
when (ANYFwCHILDREN in_state RAMPING) move_to RAMPING

 when (ALLFwCHILDREN in_state STANDBY) move_to STANDBY
when (ALLFwCHILDREN in_state ON) move_to ON
when ((ALLFwCHILDREN not_in_state OFF) and

 (ANYFwCHILDREN in_state STANDBY)) move_to STANDBY

 action: STANDBY
 do STANDBY ALLFwCHILDREN
 action: OFF
 do OFF ALLFwCHILDREN
 action: ON
 do ON ALLFwCHILDREN

Listing 1. Part of the definition of the Wheel class in SML

2.1. From SML to mCRL2
We formalise the semantics of programs written in SML using the process algebra mCRL2 by
providing a mathematical model for the language constructs of SML. Consequently the SML codes
can be analysed mathematically. mCRL2 is a specification language that can be used to specify and
analyse the behaviour of large distributed systems. The language is supported by a toolset enabling
simulation, visualisation and verification of software requirements.

We utilised the ASF+SDF meta-environment to develop an automatic translator which will
translate SML into mCRL2. This allows us to model a FSM model in the mCRL2 language, upon
which the verification tool from the mCRL2 toolset is applied (see Section 3). The Syntax Definition
Formalism (SDF) was used to describe the syntax of both SML and mCRL2, whereas the Algebraic
Specification Formalism (ASF) was used to express the term rewrite rules for the actual translation.
An example of the translation is shown in Translation 1.

SML

State: OFF

when G1 move_to S1
…
when Gn move_to Sn

mCRL2

inState_OFF(s) && isWhenPhase(phase) -> (
 translation_of_G1 ->

move_state(self,S1).
Wheel(self,parent,S1,chs,phase,aArgs) <>

 …
 translation_of_Gn ->

move_state(self,Sn).
Wheel(self,parent,Sn,chs,phase,aArgs) <>

 send_state(self,parent,s).
 move_phase(self,ActionPhase).
 Wheel(self,parent,s,chs,ActionPhase,
 reset(aArgs)))

Translation 1. A simplified translation of the when clauses of a state OFF for the Wheel class

Due to the intricacies of the language, the formalisation of SML was far from trivial. We used the

mCRL2 simulation and visualization tools to ensure a translation that reflects the real system
accurately. This is an important part of the project as subsequent model checking using the mCRL2

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022010 doi:10.1088/1742-6596/331/2/022010

3

verification tool is performed on this mCRL2 model derived from the translation. It is crucial that the
translated model is as close to the actual behaviour as possible because otherwise, the outcome of the
analysis of the models which is conducted using mCRL2 (or BMC, which will be discussed in section
4) may not reflect what goes on in the real system.

3. General Tooling for Verification
The analysis of a system often involves showing that the modelled system exhibits certain desired
properties, or does not exhibit an undesired one. A powerful verification method supported by the
mCRL2 toolset is model checking. A formula expressing a desired property that the system should not
violate (or satisfy) is needed for model checking. Such formulas are expressed in regular modal mu-
calculus [5]. The formulation of requirements is an involved matter and often requires several attempts
before the desired property is accurately expressed. To this end we have formulated some basic
requirements and check them on the Wheel subsystem, see Table 1.

Table 1. Basic requirements for the Wheel subsystem; i:Id denotes an identifier of an FSM; i_c:Id

denotes a child of FSM i; c:Command denotes a command; c2s(c) denotes the state with the
homonymous command name, e.g., c2s(ON) = ON

1. Absence of deadlock:
 nu X. [true]X && <true>true

2. Absence of endless loop:
 nu X. [true]X &&
 [exists s:State. move_state(i,s)](nu Y

 [(!move_phase(i,ActionPhase))]Y &&
 [exists s:State. move_state(i,s)] false)

3. Responsiveness:

 nu X. [true]X && [comm_command(i,i_c,c)](mu Y. <true>true &&
 [!comm_state(i_c,i,c2s(c))||
 exists c’:Command. comm._command(i,i_c,c’))]Y)

4. Progress:

 nu X. [true]X && mu Y. <exists s:State. move_state(i,s)>true ||
 [true]Y

The first two requirements are fairly straightforward while the third and forth requirements are

more elaborate. The ‘Responsiveness’ requirement expresses the inevitability of a state change by a
child once such a state change has been commissioned while the ‘Progress’ requirement asserts that
state changes should always be attainable, i.e., an FSM will eventually change its state. All these
requirements hold for the Wheel subsystem.

The expressiveness of the modal mu-calculus entails the versatility of the mCRL2 verification tool
to check for any requirements. However, the enormous state-space of the FSM system renders this a
time consuming process.

4. Dedicated Tooling for Verification
In an attempt to improve on the time performance of a general verification tooling, we explored the
possibilities of using Bounded Model Checking (BMC) to analyse a FSM in isolation. The basic idea
of BMC is to check for a counterexample in bounded runs. If no bugs are found using the current
bound, then the bound is increased until either a bug is found, the problem becomes intractable, or

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022010 doi:10.1088/1742-6596/331/2/022010

4

some pre-determined upper bound is reached upon which the verification is complete. The BMC
problem can be efficiently reduced to a propositional satisfiability problem, and can therefore be
solved using a SAT solving tool [6]. We have applied BMC techniques for the detection of endless
move_to loops and the detection of unreachable states and trap states. An example of an endless
move_to loop can be seen in Listing 2, showing an excerpt of the ECALfw_CoolingDee SML code
which our tool found to contain issues. If an instance of ECALfw_CoolingDee has one child in state
ERROR and one child in state NO_CONNECTION, it will loop indefinitely between these two states.

state: ERROR
 when (ANYFwCHILDREN in_state NO_CONNECTION) move_to NO_CONNECTION
 when (ALLFwCHILDREN in_state OK) move_to OK

 state: NO_CONNECTION
 when (ALLFwCHILDREN in_state OK) move_to OK
 when (ANYFwCHILDREN in_state ERROR) move_to ERROR

Listing 2. An excerpt from the ECALfw_CoolingDee SML code that exhibits an endless loop

We formulated the problem of detecting a loop into a SAT problem with the predicate in_state
defined as follows: in_state(s,p,i) holds if and only if the process with identifier p is in state s after i
steps. We assign the identifier zero to the FSM under consideration. The resulting formula has three
components: the state constraints, the transition relation and the loop condition. The state constraints
ensure the FSM is always in exactly one state and that the states of the children do not change during
the execution of the when phase. The transition relation is the translation of the when clauses, denoting
the move_to steps that a FSM is allowed to take. The loop condition states that if in_state(s,0,0) holds,
then in_state(s,0,i) must hold for i > 1, indicating that the parent returns to the state in which it started.

For the detection of unreachable states and trap states, we adopted a graphical approach. For this,
we determine whether there is a configuration of children such that a FSM F can execute a move_to
action from a state s to a state s’. Doing so for all pairs (s,s’) of states of F yields a graph encoding all
possible state changes of F. Computing the strongly connected components (SCCs) of the thusly
obtained state change graph gives us a clear overview of the reachability of the FSM states. A well
designed FSM should contain only one single SCC. A system displaying more than one SCC is often
an indication of a faulty design. The state change graph of the ESfw_Endcap FSM class is shown in
Figure 2. We can clearly see that the state OFF can never be reached from any of the other states.

Figure 2. The state change graph of the ESfw_Endcap FSM class. The SCCs are placed within a
dashed frame

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022010 doi:10.1088/1742-6596/331/2/022010

5

5. Results
We obtained very encouraging results with our dedicated tools for verification. We have analysed
more than 40 FSM classes so far and found 6 to contain issues, two of them shown in Listing 2 and
Figure 2 respectively. Note that although trivial at first glance, such errors are difficult to be detected
due to the size of an average FSM class which contains more than 100 SML code in general. We
automated the process of pinpointing the source of an error and this is done in typically less than one
second. Our state change graph verification method has been incorporated in the FSM 3D
visualization tool which is currently being developed.

6. Conclusion
The Finite State Machine (FSM) system of the CMS experiment is a large and complex system. We
studied the State Manager Language (SML) which is used to describe the FSMs and formalised it
using the process algebraic language mCRL2. The translation of SML into mCRL2 was implemented
using the ASF+SDF meta-environment. We carried out formal verification of a small subsystem using
the model checking tool provided by mCRL2. Based on specific needs for certain requirements such
as endless loops freedom and the reachability of all states, we also built dedicated tools based on
Bounded Model Checking for verification of FSMs in isolation. Results so far are very satisfactory
and we plan to further explore SAT solving techniques and combine it with symbolic verification
techniques such as the ones currently offered in the mCRL2 and LTSmin toolsets [7].

7. Acknowledgement
This work has been supported in part by a Marie Curie Initial Training Network Fellowship of the
European Community’s Seventh framework program under contract number(PITN-GA-2008-211801-
ACEOLE). We would also like to thank Giel Oerlemans, Dennis Schunselaar and Frank Staals from
the Eindhoven University of Technology for their contribution to the automatic translator. We also
thank Clara Gaspar for her valuable advice about the SML language..

References
[1] B. Franek and C. Gasper. SMI++ object-oriented framework for designing and implementing

distributed control systems. IEEE Transactions on Nuclear Science, 52(4):891-895, 2005
[2] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J. v. Weerdenburg. Analysis

of distributed systems with mCRL2. In Process Algebra for Parallel and Distributed
Processing, pages 99–128. Chapman Hall, 2009

[3] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Bounded Model Checking.
Advances in Computers, 58:118–149, 2003

[4] M. Van den Brand, A. Van Deursen, J. Heering, H.A. De Jong, M. De Jonge, T. Kuipers, P.
Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The
ASF+SDF meta-environment: A component-based language development environment. In
Reinhard Wilhelm, editor, Proc. of Compiler Construction, volume 2027 of LNCS, pages
365–370. Springer, 2001

[5] J.F. Groote and T.A.C.Willemse. Model-checking processes with data. Science of Computer
Programming, 56(3):251–273, 2005

[6] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Bounded Model Checking Using
Formal Methods in System Design, 19, 7–34, 2001

[7] S.C.C. Blom, B. Lisser, J.C. van de Pol, and M. Weber. A database approach to distributed
state-space generation. Journal of Logic and Computation, 2009

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 022010 doi:10.1088/1742-6596/331/2/022010

6

