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Abstract. The supervisory level of the Detector Control System (DCS) of the CMS experiment 
is implemented using Finite State Machines (FSM), which model the behaviours and control 
the operations of all the sub-detectors and support services. The FSM tree of the whole CMS 
experiment consists of more than 30.000 nodes. An analysis of a system of such size is a 
complex task but is a crucial step towards the improvement of the overall performance of the 
FSM system. This paper presents the analysis of the CMS FSM system using the micro 
Common Representation Language 2 (mcrl2) methodology. Individual mCRL2 models are 
obtained for the FSM systems of the CMS sub-detectors using the ASF+SDF automated 
translation tool. Different mCRL2 operations are applied to the mCRL2 models. A mCRL2 
simulation tool is used to closer examine the system. Visualization of a system based on the 
exploration of its state space is enabled with a mCRL2 tool. Requirements such as command 
and state propagation are expressed using modal mu-calculus and checked using a model 
checking algorithm. For checking local requirements such as endless loop freedom, the 
Bounded Model Checking technique is applied. This paper discusses these analysis techniques 
and presents the results of their application on the CMS FSM system. 
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1.  Introduction 
The CMS experiment is conceived to study a wide range of particles and phenomena produced in the 
high-energy collisions in the LHC. The control, configuration, readout and monitoring of hardware 
devices as well as the monitoring of external systems, such as the electrical system, cooling system, 
etc, are carried out by the Detector Control System (DCS). The modeling of the control system is 
implemented as a hierarchy of Finite State Machines (FSM) and is developed using the SMI++ toolkit 
[1]. FSMs are described using the State Manager Language (SML) and are organized in a tree 
structure where each node has one parent and zero or more children, except for the top node, which 
has no parent. Commands are sent from a parent node down to its children and the states of the 
children are propagated up the tree (Figure 1). The FSM tree of the whole CMS experiment consists of 
more than 30.000 nodes, which makes the design and implementation of a homogenous and consistent 
system a complex task. A single badly designed FSM may be sufficient to lead to endless loops, 
potentially hampering the performance of the experiment. 

 

 
 

Figure 1. A simple control system modeled using Finite State Machines 
 

In view of the complexity of the FSM system, it is almost impossible to track down problems when 
unexpected behaviors manifest themselves. In this project we developed automated verification 
tooling for our analysis purpose. The project is divided into two main parts. First, we formalised the 
SML by mapping its language construct onto constructs in the process algebraic language mCRL2 [2]. 
Second, we identified properties that can be verified for FSMs in isolation and developed dedicated 
verification tooling based on Bounded Model Checking [3].  

Using the ASF+SDF meta-environment [4], we developed a prototype translation implementing 
our mapping of SML to mCRL2. This allowed us to quickly assess the correctness of the translation 
through simulation and visualization of FSMs in isolation. Our dedicated verification tools allow the 
FSM developers to quickly perform behavioural sanity check on their code and use the feedback to 
further improve on their design.  

2.  The State Manager Language (SML) 
The FSMs are described using the State Manager Language which is provided by the SMI++ toolkit. 
Listing 1 shows a snippet of the definition for a class in SML.  

A class is the declaration of a FSM object and consists of one or more states clauses. Each state 
clause consists of zero or more when clauses and action clauses. The when clauses describe how the 
object will behave in a certain state, i.e. the rules by which the object will obey for transition between 
states or the execution of a command. A when clause has two parts: a guard which is a Boolean 
constraint on the states of the children of the object, and a referrer which describes what should 
happen if the guard evaluates to true.  An action clause consists of a name and a list of statements. 
When an object in a state S receives a command from its parent, it looks inside the state clause of state 
S for an action clause with the same name as the command. If such an action clause exists, it executes 
its statement list. Commands received which are not declared in the action clause are ignored.  
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class: $FWPART_$TOP$RPC_Wheel_CLASS 
    state: OFF   

when ( $ANY$FwCHILDREN in_state ERROR )  move_to ERROR 
when ( $ANY$FwCHILDREN in_state RAMPING )  move_to RAMPING 

     when ( $ALL$FwCHILDREN in_state STANDBY )  move_to STANDBY 
when ( $ALL$FwCHILDREN in_state ON )  move_to ON 
when ( ( $ALL$FwCHILDREN not_in_state OFF ) and 

        ( $ANY$FwCHILDREN in_state STANDBY ) )  move_to STANDBY 
 
        action: STANDBY  
            do STANDBY $ALL$FwCHILDREN 
        action: OFF  
            do OFF $ALL$FwCHILDREN 
        action: ON   
            do ON $ALL$FwCHILDREN 

 
Listing 1. Part of the definition of the Wheel class in SML 

 

2.1.  From SML to mCRL2 
We formalise the semantics of programs written in SML using the process algebra mCRL2 by 
providing a mathematical model for the language constructs of SML. Consequently the SML codes 
can be analysed mathematically. mCRL2 is a specification language that can be used to specify and 
analyse the behaviour of large distributed systems. The language is supported by a toolset enabling 
simulation, visualisation and verification of software requirements. 

We utilised the ASF+SDF meta-environment to develop an automatic translator which will 
translate SML into mCRL2. This allows us to model a FSM model in the mCRL2 language, upon 
which the verification tool from the mCRL2 toolset is applied (see Section 3). The Syntax Definition 
Formalism (SDF) was used to describe the syntax of both SML and mCRL2, whereas the Algebraic 
Specification Formalism (ASF) was used to express the term rewrite rules for the actual translation. 
An example of the translation is shown in Translation 1.  

 
 
SML 
 
State: OFF 
 
when G1 move_to S1 
… 
when Gn move_to Sn 
 
 

 
mCRL2 
 
inState_OFF(s) && isWhenPhase(phase) -> ( 
  translation_of_G1 -> 

move_state(self,S1). 
Wheel(self,parent,S1,chs,phase,aArgs) <> 

  … 
  translation_of_Gn -> 

move_state(self,Sn). 
Wheel(self,parent,Sn,chs,phase,aArgs) <> 

  send_state(self,parent,s). 
  move_phase(self,ActionPhase). 
  Wheel(self,parent,s,chs,ActionPhase, 
        reset(aArgs))) 
  

Translation 1. A simplified translation of the when clauses of a state OFF for the Wheel class 
 
Due to the intricacies of the language, the formalisation of SML was far from trivial. We used the 

mCRL2 simulation and visualization tools to ensure a translation that reflects the real system 
accurately. This is an important part of the project as subsequent model checking using the mCRL2 
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verification tool is performed on this mCRL2 model derived from the translation. It is crucial that the 
translated model is as close to the actual behaviour as possible because otherwise, the outcome of the 
analysis of the models which is conducted using mCRL2 (or BMC, which will be discussed in section 
4) may not reflect what goes on in the real system. 

3.  General Tooling for Verification 
The analysis of a system often involves showing that the modelled system exhibits certain desired 
properties, or does not exhibit an undesired one. A powerful verification method supported by the 
mCRL2 toolset is model checking. A formula expressing a desired property that the system should not 
violate (or satisfy) is needed for model checking. Such formulas are expressed in regular modal mu-
calculus [5]. The formulation of requirements is an involved matter and often requires several attempts 
before the desired property is accurately expressed. To this end we have formulated some basic 
requirements and check them on the Wheel subsystem, see Table 1.  

 
Table 1. Basic requirements for the Wheel subsystem; i:Id denotes an identifier of an FSM; i_c:Id 

denotes a child of FSM i; c:Command denotes a command; c2s(c) denotes the state with the 
homonymous command name, e.g., c2s(ON) = ON 

                                     
 

1. Absence of deadlock: 
      nu X. [true]X && <true>true 
 

2. Absence of endless loop: 
      nu X. [true]X && 
         [exists s:State. move_state(i,s)](nu Y 

               [(!move_phase(i,ActionPhase))]Y && 
               [exists s:State. move_state(i,s)] false) 

 
3. Responsiveness: 

      nu X. [true]X && [comm_command(i,i_c,c)](mu Y. <true>true && 
         [!comm_state(i_c,i,c2s(c))|| 
           exists c’:Command. comm._command(i,i_c,c’))]Y) 

 
4. Progress: 

   nu X. [true]X && mu Y. <exists s:State. move_state(i,s)>true || 
         [true]Y 
 

         
The first two requirements are fairly straightforward while the third and forth requirements are 

more elaborate. The ‘Responsiveness’ requirement expresses the inevitability of a state change by a 
child once such a state change has been commissioned while the ‘Progress’ requirement asserts that 
state changes should always be attainable, i.e., an FSM will eventually change its state. All these 
requirements hold for the Wheel subsystem. 

The expressiveness of the modal mu-calculus entails the versatility of the mCRL2 verification tool 
to check for any requirements. However, the enormous state-space of the FSM system renders this a 
time consuming process.   

4.  Dedicated Tooling for Verification 
In an attempt to improve on the time performance of a general verification tooling, we explored the 
possibilities of using Bounded Model Checking (BMC) to analyse a FSM in isolation. The basic idea 
of BMC is to check for a counterexample in bounded runs. If no bugs are found using the current 
bound, then the bound is increased until either a bug is found, the problem becomes intractable, or 
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some pre-determined upper bound is reached upon which the verification is complete. The BMC 
problem can be efficiently reduced to a propositional satisfiability problem, and can therefore be 
solved using a SAT solving tool [6]. We have applied BMC techniques for the detection of endless 
move_to loops and the detection of unreachable states and trap states. An example of an endless 
move_to loop can be seen in Listing 2, showing an excerpt of the ECALfw_CoolingDee SML code 
which our tool found to contain issues. If an instance of ECALfw_CoolingDee has one child in state 
ERROR and one child in state NO_CONNECTION, it will loop indefinitely between these two states. 
 

state: ERROR   
    when ( $ANY$FwCHILDREN in_state NO_CONNECTION ) move_to NO_CONNECTION 
    when ( $ALL$FwCHILDREN in_state OK ) move_to OK 

      
 

  state: NO_CONNECTION 
    when ( $ALL$FwCHILDREN in_state OK ) move_to OK 
    when ( $ANY$FwCHILDREN in_state ERROR ) move_to ERROR 

Listing 2. An excerpt from the ECALfw_CoolingDee SML code that exhibits an endless loop 
 

We formulated the problem of detecting a loop into a SAT problem with the predicate in_state 
defined as follows: in_state(s,p,i) holds if and only if the process with identifier p is in state s after i 
steps. We assign the identifier zero to the FSM under consideration. The resulting formula has three 
components: the state constraints, the transition relation and the loop condition. The state constraints 
ensure the FSM is always in exactly one state and that the states of the children do not change during 
the execution of the when phase. The transition relation is the translation of the when clauses, denoting 
the move_to steps that a FSM is allowed to take. The loop condition states that if in_state(s,0,0) holds, 
then in_state(s,0,i) must hold for i > 1, indicating that the parent returns to the state in which it started.  

For the detection of unreachable states and trap states, we adopted a graphical approach. For this, 
we determine whether there is a configuration of children such that a FSM F can execute a move_to 
action from a state s to a state s’. Doing so for all pairs (s,s’) of states of F yields a graph encoding all 
possible state changes of F. Computing the strongly connected components (SCCs) of the thusly 
obtained state change graph gives us a clear overview of the reachability of the FSM states. A well 
designed FSM should contain only one single SCC. A system displaying more than one SCC is often 
an indication of a faulty design. The state change graph of the ESfw_Endcap FSM class is shown in 
Figure 2. We can clearly see that the state OFF can never be reached from any of the other states. 

 
 

Figure 2. The state change graph of the ESfw_Endcap FSM class. The SCCs are placed within a 
dashed frame 
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5.  Results 
We obtained very encouraging results with our dedicated tools for verification. We have analysed 
more than 40 FSM classes so far and found 6 to contain issues, two of them shown in Listing 2 and 
Figure 2 respectively. Note that although trivial at first glance, such errors are difficult to be detected 
due to the size of an average FSM class which contains more than 100 SML code in general. We 
automated the process of pinpointing the source of an error and this is done in typically less than one 
second. Our state change graph verification method has been incorporated in the FSM 3D 
visualization tool which is currently being developed.  

6.  Conclusion 
The Finite State Machine (FSM) system of the CMS experiment is a large and complex system. We 
studied the State Manager Language (SML) which is used to describe the FSMs and formalised it 
using the process algebraic language mCRL2. The translation of SML into mCRL2 was implemented 
using the ASF+SDF meta-environment. We carried out formal verification of a small subsystem using 
the model checking tool provided by mCRL2. Based on specific needs for certain requirements such 
as endless loops freedom and the reachability of all states, we also built dedicated tools based on 
Bounded Model Checking for verification of FSMs in isolation. Results so far are very satisfactory 
and we plan to further explore SAT solving techniques and combine it with symbolic verification 
techniques such as the ones currently offered in the mCRL2 and LTSmin toolsets [7]. 
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