FERMILAB-CONF-11-710-PPD

Performance Study of GPUs in Real-Time Trigger Applications for HEP
Experiments

W. Ketchum?, S. Amerio®, D. Bastieri®®, M. Bauce®®, P. Catastini9, S. Gelain®, K. Hahnd, Y. K. Kim%2, T. Liu¢,
D. Lucchesi®®, G. Urso®

“University of Chicago
bINFN Padova
“University of Padova
4FNAL
¢ORMA Software

Abstract

Graphical Processing Units (GPUs) have evolved into highly parallel, multi-threaded, multicore powerful processors
with high memory bandwidth. GPUs are used in a variety of intensive computing applications. The combination of
highly parallel architecture and high memory bandwidth makes GPUs a potentially promising technology for effective
real-time processing for High Energy Physics (HEP) experiments. However, not much is known of their performance
in real-time applications that require low latency, such as the trigger for HEP experiments. We describe an R&D
project with the goal to study the performance of GPU technology for possible low latency applications, performing
basic operations as well as some more advanced HEP lower-level trigger algorithms (such as fast tracking or jet
finding). We present some preliminary results on timing measurements, comparing the performance of a CPU versus
a GPU with NVIDIA’s CUDA general-purpose parallel computing architecture, carried out at CDF’s Level-2 trigger
test stand. These studies will provide performance benchmarks for future studies to investigate the potential and
limitations of GPUs for real-time applications in HEP experiments.

Keywords: HEP Trigger, GPU, CPU, Fast track-fitting, Tracking trigger

1. Introduction

Commercially available graphical processing units (GPUs) have increased greatly in their performance capabilities
over the past decade, outpacing improvements in the number of floating-point calculations per second and overall
memory bandwidth in traditional central processing units (CPUs) [1]. Driven by the high demand of graphics-intense
applications in PCs, GPUs have evolved into powerful multicore processors, specializing in highly parallelized, multi-
threaded computations. This is accomplished by devoting a greater number of resources to data-processing, at the
expense of quick-access memory and simplicity of flow controls. Additionally, NVIDIA has developed a general-
purpose parallel computing architecture, CUDA, with a new parallel programming model and instruction set [1].
CUDA contains a software environment that allows developers to use C/C++ as a high-level programming language
for the GPU, making it more accessible to the general user.

Typically, low-level trigger systems of high energy physics (HEP) experiments have used dedicated hardware
and/or PCs with CPUs running decision algorithms. For example, the CDF Level 2 (L2) trigger system used dedi-
cated hardware combined with a single PC running an optimized Linux kernel to perform real-time trigger decision
algorithms, and achieved a system-level latency on the order of tens of microseconds [2]. The serial nature of running
algorithms on a CPU, however, limits the performance of these systems and makes it harder to scale for experiments
that face much higher occupancies, like those that are expected at the LHC due to the greater number of multiple
interactions per proton bunch crossing, and a smaller time between bunch crossings. A processing device with a large

Preprint submitted to Elsevier February 17, 2012

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

number of parallel processing threads available, like a GPU, may be able to better address this issue of scaling. How-
ever, little is known about GPU performance, both in terms of HEP trigger algorithm speed and latency overheads, in
low-latency environments (~ 100 us).

We present initial studies on measuring the timing performance of a GPU using a simplified calculation mimicking
fast track-fitting, like that performed in the hardware based Silicon Vertex Trigger (SVT) system at CDF [3, 4, 5]. To
provide a basis for comparison, we also study the performance of a CPU doing the same calculation. Our setup,
described in Sec. 2, is unique in that one measures the latency using hardware independent of the PC, and without
relying on internal software time stamps.

2. Setup

The test setup, shown in Fig. 1, is based on the CDF L2 trigger test stand, consisting of a VME crate running as
one partition of the CDF DAQ system, and two general-purpose PULSAR (PULser And Recorder) boards [6]. One
PULSAR board is configured as an S-LINK [7] transmitter (Tx) that, upon a user-generated L1 accept, sends user-
defined patterns which mimic raw silicon hits data. The transmitter simultaneously sends two copies of these patterns:
one copy is sent to a PC, while the other is sent to another PULSAR board, configured as an S-LINK receiver (Rx).
The receiver records the time of arrival of the S-LINK packet coming directly from the Tx (#;), and of the S-LINK
packet containing results from the PC (#,) with respect to the L1 accept. The total latency is then #, — #;.

The PC has an Intel Core 17-930 CPU and is instrumented with an nVidia GeForce GTX 285 GPU on a PCle slot.
A comparison of some of the specifications of these devices is shown in Tab. 1. Additionally, the PC is equipped with
two S-LINK-to-PCI interface cards on its PCI-X slots: the CERN FILAR (Four Input Links for Atlas Readout) [8]
receives S-LINK packets from the Tx, and an S32PCI64 [9] SOLAR (Single Output Link for Atlas Readout) sends
algorithm results in S-LINK packets from the PC to the Rx.

Intel Core i7-930 nVidia GeForce GTX 285
CPU GPU
Microprocessors 1 30
Cores 4 240
Threads (per microprocessor) 8 1024
Cache Size (per microprocessor) 8 MB 8kB

Table 1: Comparison of the CPU and GPU used in these studies.

3. Benchmark Algorithm

Many tasks performed by trigger systems may benefit from the parallelization available in a GPU (e.g., jet clus-
tering and track finding). For this study, we choose as a benchmark a simplified fast track-fitting algorithm which was
used in CDF’s Silicon Vertex Trigger (SVT) [3, 4]. This algorithm uses a linearized approximation to track-fitting as
implemented in hardware (described in greater detail in [5]). With the SVT approach, the determination of the track
parameters (p;) is reduced to a simple scalar product:

pi=fi-%i+q

where x; are input silicon hits, and f; and g; are pre-defined constant sets. For each set of hits, the algorithm computes
the impact parameter dj, the azimuthal angle ¢, the transverse momentum pr, and the y? of the fitted track by using
simple operations such as memory lookup and integer addition and multiplication. In our testing of the track-fitting
algorithm, each S-LINK word in the user-defined test pattern is treated to represent a set of silicon hits. While
the track-fitting algorithm itself is simple, it must be performed on many combinations of hits in a given event,
especially in high-occupancy environments. Its is an ideal benchmark for testing performance of a GPU, using massive
parallelization, at low latencies.

PULSAR
S-LINK Tx

P SOLAR

PULSAR
S-LINK Rx

Figure 1: Schematic of the test stand setup for latency measurements of our track fitting procedure. We use two PULSARSs, one transmitter and
one receiver, and send data from the transmitter to the PC’s FILAR, and back from the PC to the receiver via a SOLAR. The receiver measures the
arrival time of data directly from the transmitter (¢1) and the PC (,) since a user-generated L1 accept.

4. Measurements

The data flow through the test setup can be divided into the following steps:

1. S-LINK packets from the Tx, containing the input silicon hits information, are received by the FILAR and put
into the CPU’s memory via direct memory access;

2. if the track-fitting algorithm is to be performed in the GPU, these hits are copied from the CPU (also referred
to as the “host”) to the memory of the GPU (also referred to as the “device”);

3. the benchmark algorithm is performed, either in the CPU or the GPU;

4. if the algorithm was performed in the GPU, the results are copied from the GPU back to the CPU;

5. the results are sent in S-LINK packets from the SOLAR to the Rx.

This study focuses on the measurement of the contribution of each of these steps to the total latency. While we perform
measurements for a variety of number of S-LINK words (each 32-bit), by default we send 500 words as input, perform
the track-fitting algorithm on all 500 input words, and store the output in 2000 words (four output words for each input
word, as the fit returns four track parameters for each set of input hits). After sending the output to the Rx, we perform
a check using the CPU to ensure all calculations were done properly in the GPU, but this latency is not included in the
measurement. For simplicity, we run at a sufficiently low rate to ensure all calculations are finished before the next
test pattern is sent to the PC.

4.1. Tx — PC — Rx Data Transfer Latency

We first measure the latency attributable to the data transfer between the Tx/Rx and the PC (items 1 and 5 above).
This latency, #;¢, is an overhead due only to data transfer. For these measurements, shown in Fig. 2 and summarized
in Tab. 2, we send 1, 10, 100 or 500 words from the Tx, and send an acknowledgement from the PC to the Rx via
the SOLAR after all input words are received. There is an overhead, independent of the number of words being sent,
of about 6 us. The overall latency increases as a function of the input words. The latency for 500 input words, our
default, is t;0 ~ 21 us.

Latency Measurements for PC Input

—
400

— 1 Word Received
— 10 Words Received
—— 100 Words Received
—— 500 Words Received

Events /100 ns

300

200

100

0 | | L

N 10 20 30 40

ol o b e Ty

0
Latency (us)

Figure 2: Latency for transferring data from PULSAR Tx into the PC and acknowledging acceptance.

’ Nyordas Input ~ Mean Latency (us) ‘

1 6
10 6
100 10
500 21

Table 2: The mean of the latency for transferring data from PULSAR Tx into the PC and acknowledging acceptance. The number of input words
used in our default configuration is shown in bold.

4.2. CPU (Host) «<— GPU (Device) Data Transfer Latency

In this section, we present measurements of the latency for copying data from host to device and copying results
from the device to the host without performing our benchmark algorithm (steps 2 and 4 in the list above). The
transfer of data between the CPU and GPU is an additional overhead on the latency for GPU applications that must be
considered. These measurements are shown in Fig. 3 and summarized in Tab. 3. In all cases we send 500 words from
the Tx, and send acknowledgement to the Rx upon completion of the data transfer, thus the ¢;¢ is included in each of
the latency measurements.

We find that when copying data from the CPU to GPU, there is an average latency of 26 us for copying 500 words,
and it does not depend much on the number of words copied. Transferring data in the reverse direction, from the GPU
to the CPU, takes considerably longer, highlighting an asymmetry in the memory transfer between host and device.
For the default configuration, copying 2000 words from the GPU to the CPU, the average latency is 39 us. We also
see a larger spread in the latency times than we did in #;¢, indicating some jitter in the data transfer process. After
removing the PULSAR«PC data transfer overhead (#;0, see Fig. 2), the latency for copying from host to device is
ty—p ~ 5 ps, and for device to host is fp_,y ~ 18 us in the default configuration. In reality, the number of output words
sent back to the CPU can be greatly reduced for in an actual track-fitting implementation as most hits combinations
will have poor fits with large y? values, and could be rejected in the GPU.

4.3. Latency of Benchmark Algorithm

With the latency overhead due to data-flow characterized, we then measure the total latency when performing the
benchmark algorithm described in Sec. 3. We compare the latency for running the track-fitting algorithm in the CPU
in series, where the fits are handled one at a time, and in the GPU, where the fits are performed in parallel: each
computational thread in the GPU performs a single fit for a set of hits. For the cases where Ny;; < 100, we assign all
threads to one block in the GPU. When we run calculations performing fits for all 500 input words, we use a total of 5
blocks. Also, when performing measurements for the GPU, we copy to the GPU all 500 input words, and copy back
2000 output words, regardless of the number of calculations performed.

The latency measurements, including running the track-fitting algorithm, are shown in Fig. 4, and summarized in
Tab. 4. We see a natural increase in the latency as we increase the number of fits performed in the CPU, with a total

4

Latency Measurements for Host to Device Copy Latency Measurements for Device to Host Copy

0 200————— T 0 200—————T————
= - . = - ,
0 L i 0 L]
o | i o | N i
z L —— 1 Word Copied] E i :[—— 1 Word Copied 1
$ 150 — S 150— —— 10 Words Copied]
2 L —— 10 Words Copied i H i]]
w N] w B —— 100 Words Copied 1
C — 100 Words Copled 1 - J —— 500 Words Copied | 1
100— —— 500 Words Copied — 100— —— 2000 Words Copied |
50— — 50— LL —
L ! ! ! 1 L ! . ! ! i

20 30 40 50 60 gO 30 40 50 60

Latency (us) Latency (us)

Figure 3: Latency for transfering data from CPU to GPU (left) and from GPU to CPU(right).

| Nyoras Copied Mean Latency (us) Latency — 150 (us) |

(CPU—-GPU) tH-p
1 26 5
10 26 6
100 27 6
500 26 5
(GPUSCPU) oon
1 36 15
10 36 15
100 36 15
500 37 16
2000 39 18

Table 3: The mean latency for transfering data from CPU to GPU (left) and from GPU to CPU(right). The default configuration latencies are shown
in bold.

calculation time of about 13 ns/fit. For the GPU, the spread in times are much larger, but are less dependent on the
increase in the number of fits. However, the overall time for performing the calculations in the GPU is longer—about
40 us—than the time taken in the CPU. Contributions from the memory copy operations are a significant part of this
difference: from Sec. 4.2, the overhead time for transferring data to and from the GPU is ty_p + tp— g ~ 24 us.

Latency Measurements for Calculations in CPU Latency Measurements for Calculations in GPU
o 500 o 120
< - - — = - i
g L ! Fanerformed g 3 L ——— 1 Fit Performed]
Z | —— 10 Fits Performed . ~ 100) 1
2 400 —— 100 Fits Performed — 2 - — 10Fits Performed B
g - —— 500 Fits Performed - 2 L i —— 100 Fits Performed]
Z r - w
r] 80— —— 500 Fits Performed]
300— — B i
L] 60— -
200~ - r]
C] 40— —
100 — 20l]
oL L [] oL e n]
o20 25 30 50 60 70 80 920
Latency (us) Latency (us)

Figure 4: Latency when performing our track-fitting algorithm in the CPU (left) and GPU (right), varying the number of fits performed.

Nyis Mean Latency, CPU (us) Mean Latency, GPU (us) \

1 21 62
10 21 62
100 22 62
500 27 63

Table 4: The mean of total latency when performing our track-fitting algorithm in the CPU and the GPU, varying the number of fits performed.
Further detail is provided in Fig. 4.

4.4. Latency Dependence on Memory Types Used

Latency from GPU calculations also depends on the type of memory used inside the GPU. GPUs that follow the
CUDA architecture have a variety of types of device memory [1]. The global memory has the largest size, is accessible
to all threads in the GPU calculations, and has both read and write capabilities; however, it is not located on the actual
microprocessor chip, and access to it tends to be slow. Constant memory is also located off of the chip, but it can
be cached, allowing quicker access. Constant memory is, however, read-only, and limited in size. Register memory
is the fast memory available directly on the chip used by the thread, but its size is severely limited, and not directly
accessible from the host (CPU). It is important to study the latency for using different kinds of GPU memory in order
to optimize performance for a given application.

In the previous measurements for the GPU, the constant sets were stored in the constant memory. In Fig. 5
we show the latency for performing the track-fitting algorithm in the GPU when storing the constant sets in global
memory, constant memory, and the register memory. We find differences of up to 7 us for different memory usage.
These measurements show that not only is optimizing memory transfer between the CPU and GPU important, but that
the memory management within the GPU has a significant effect on the overall latency.

GPU Latency for 100 Fits Performed

100 Constant Memory Access

——— Global Memory Access

Events /0.5 us

80

Register Memory Access

60

40

20

=

|
920
Latency (us)

c
a
S
o
=]
~
=)
@
S

Figure 5: Latency when performing our track-fitting algorithm in the GPU, performing 100 fits, varying where in the GPU memory the constant
sets are stored.

] Memory Location Mean Latency (us) \

Global 66
Constant 63
Register 59

Table 5: The mean of latency measurements of performing our track-fitting algorithm in the GPU for various locations of the constant sets used in
the calculations. See Fig. 5 for more detail.

5. Summary and Outlook

We have presented timing measurements of the performance of a simplified track-fitting algorithm in a GPU to
determine the potential for using GPUs in low-level HEP trigger systems. These measurements have been performed
at the CDF L2 trigger test stand, where latencies can be measured without using software time stamps in the PC. The
total latency for our benchmark algorithm in the GPU is < 100 us, showing promise for future use in HEP triggers.
We have also compared performance for a GPU to that for a CPU.

Our studies indicate some properties of GPUs that will make their application in HEP trigger systems particularly
challenging. For instance, the latency due to the transfer of data from the CPU to the GPU and vice versa can
be significant. This data transfer overhead makes the CPU better-suited for our simplified track fitting algorithm
performing a small number of fits, as was shown in Sec. 4.4. However, the CPU latency increases with the number of
fits performed, while performance in the GPU remains relatively constant with the number of fits. We expect that as
the complexity of the algorithm and number of fits increases, the GPU’s advantages over the CPU will become more
pronounced. We plan to conduct further studies to investigate this.

Additional strategies to reduce the CPU<GPU data transfer latency exist [10]. A limited amount of data transfers
can be done using “pinned” memory, which may provide higher data transfer rates than “pageable” memory. Recent
GPUs also have a “zero-copy” feature that allows the GPU threads to directly access some host memory. Another new
feature from nVidia, DirectGPU, allows the GPU to share some pinned memory directly with other devices. Studies
using these strategies to reduce latency are underway.

Another factor in optimizing performance in the GPU involves memory access and allocation within the GPU.
Memory management within the GPU will, by nature, be application specific, and we are considering various strate-
gies for keeping the latency due to internal memory access low as we increase the complexity of the calculations we
perform in the GPU.

6. Acknowedgements

We would like to thank Simon Kwan of Fermilab for his early support of this project.

References

[1] NVIDIA, NVIDIA CUDA C Programming Guide,
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming Guide.pdf (2011).

[2] K. Anikeev, et al., CDF level 2 trigger upgrade, IEEE Trans.Nucl.Sci. 53 (2006) 653—658. doi:10.1109/TNS.2006.871782.

[3] B. Ashmanskas, et al., The CDF silicon vertex trigger, Nucl.Instrum.Meth. A518 (2004) 532-536. arXiv:physics/0306169.

[4] J. A. Adelman, et al, The Silicon Vertex Trigger upgrade at CDF, Nucl.Instrum.Meth. AS572 (2007) 361-364.
doi:10.1016/j.nima.2006.10.383.

[5] S. Amerio, et al., The GigaFitter: Performance at CDF and perspectives for future applications, J.Phys.Conf.Ser. 219 (2010) 022001.

[6] For more information, see http://hep.uchicago.edu/ thliu/projects/Pulsar/.

[7]1 E. van der Bij, et al., S-LINK, a data link interface specification for the LHC era, IEEE Trans.Nucl.Sci. 44 (1997) 398-402,
http://hsi.web.cern.ch/HSI/s-1ink/. doi:10.1109/23.603679.

[8] W.Iwanski, et al., http://hsi.web.cern.ch/HSI/s-1link/devices/filar/Welcome.html.

[9] W.Iwanski, et al., http://hsi.web.cern.ch/HSI/s-1link/devices/s32pcib4/.

[10] NVIDIA, NVIDIA CUDA C Best Practices Guide,

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C Best _Practices_Guide.pdf (2011).

