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We give an update on simulation results for the decay constants fB, fBs , fD and fDs . These de-
cay constants are important for precision tests of the standard model, in particular entering as
inputs to the global CKM unitarity triangle fit. The results presented here make use of the MILC
(2+1)-flavor asqtad ensembles, with heavy quarks incorporated using the clover action with the
Fermilab method. Partially quenched, staggered chiral perturbation theory is used to extract the
decay constants at the physical point. In addition, we give error projections for a new analysis in
progress, based on an extended data set.
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1. Introduction

Within the standard model, the decay of mesons containing heavy quarks (in particular, B and
D mesons) into purely leptonic final states provides an important testing ground for a number of
theoretical ideas. Such decays involve both weak and strong interactions simultaneously, so that
a complete understanding of the standard model is necessary to describe them. In particular, the
decay width of a charged meson is proportional to both the meson decay constant (determined by
strong interactions) and the CKM mixing angle,

Γ(H→ `ν`) ∝ f 2
H |VQq|2. (1.1)

Because this fully leptonic decay has no hadrons in the final state, the meson decay constant fP

can be readily and accurately determined by lattice simulations [1, 2, 3, 4]. Such a determination
is in fact necessary in order to extract the CKM angles from experimental measurements of these
decays, and precise computations of the decay constants could potentially reveal the presence of
new physics through tension in the CKM unitarity triangle [5, 6, 7, 8]. In addition, certain leptonic
decay channels (e.g. Bs→ µ+µ−) are both loop and CKM suppressed in the standard model, and
so they may be particularly sensitive to flavor-changing interactions induced by new physics [9].

2. Simulation Details

We make use of the MILC asqtad-improved staggered gauge configurations, with 2+ 1 dy-
namical quarks in the sea [10]. For the light valence quarks, we make use of the same staggered
action, while charm and bottom valence quarks are incorporated using the clover action with the
Fermilab interpretation [11]. The particular set of ensembles used to obtain the results presented
here, along with the number of configurations and other relevant information, are detailed in Ta-
ble 1. Data on the coarsest lattice spacing a≈ 0.15 fm are shown in the analysis but are used only
for the purpose of estimating the discretization errors; these points are excluded from the final fit
used for chiral and continuum extrapolation.

3. Analysis and Fitting

The heavy meson decay constant is determined through the overlap of the meson wavefunction
|H〉 with the axial vector current:

〈0|A µ |H(p)〉(MH)
−1/2 = i(pµ/MH)( fH

√
MH)≡ i(pµ/MH)φH . (3.1)

The quantity φH ≡ fH
√

MH is thus proportional to the ground-state amplitude of the two-point
function between the axial vector current and a heavy-light pseudoscalar operator O . We there-
fore extract φH by fitting this two-point function simultaneously with the two-point pseudoscalar
correlator,

Φ
s
2(t) = 1

4 ∑
4
a=1〈A4

a
†(t,x)O(s)

a (0)〉, (3.2)

Cs,s′
2 (t) = 1

4 ∑
4
a=1〈O

(s)
a

†(t,x)O(s′)
a (0)〉, (3.3)
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≈ a [fm] amh aml β r1/a Nconf

0.09 0.031 0.0031 7.08 3.75 435
0.0062 7.09 3.79 557
0.0124 7.11 3.86 518

0.12 0.050 0.005 6.76 2.74 678
0.007 6.76 2.74 833
0.010 6.76 2.74 592
0.020 6.79 2.82 460
0.030 6.81 2.88 549

0.15 0.0484 0.0097 6.572 2.22 631
0.0194 6.586 2.26 631
0.0290 6.600 2.29 576

Table 1: Table of gauge configurations used for the full analysis to be presented. The ensembles with
a≈ 0.15 fm (italics) are excluded from the final chiral/continuum extrapolation, as described in the text.

where a is a staggered taste index. Precise definitions of the interpolating operators A4 and O are
given in Ref. [12].

For a correlation function with source type s and sink type s′, we fit to the “factorized" func-
tional form

Css′(t) =
NX

∑
n=0

[
As,nAs′,n

(
e−Ent + e−En(Nt−t)

)
− (−1)tA′s,nA′s′,n

(
e−E ′nt + e−E ′n(Nt−t)

)]
(3.4)

where NX denotes the number of excited states included in the fit. The pseudoscalar source and
sink type s,s′ can be either point-like or smeared, so that a total of six distinct correlators are
available for analysis. In the results shown here, joint fits are carried out to various combinations
of correlators, with Bayesian priors imposed as constraints on the fit parameters.

From the two-point fits, we extract a bare value for the ground-state amplitude between an
axial-vector current and pseudoscalar operator, which must then be renormalized in order to obtain
the decay constant:

φH =
√

2ZA4
Qq

AA4
Qq,0

. (3.5)

To compute the heavy-light axial current renormalization constant ZA4
Qq

, we divide it into
flavor-diagonal contributions ZV 4

qq
,ZV 4

QQ
, which are determined non-perturbatively, and a flavor off-

diagonal piece ρA4
Qq

which is computed in lattice perturbation theory [13]. Our renormalized result

for φH = fH
√

MH is thus given by

φH =
√

2ZA4
Qq

AA4
Qq,0

=
√

2(ρA4
Qq

√
ZV 4

qq
ZV 4

QQ
)AA4

Qq,0
. (3.6)

We use rooted staggered chiral perturbation theory (rSχPT) [14] to extrapolate our results
simultaneously to the continuum limit and to the physical light-quark masses. (Heavy quark masses
are tuned non-perturbatively to give physical heavy-light meson masses, so no extrapolation is
necessary for them. Details of the tuning procedure are given in [15].) The chiral fit functions
incorporate terms describing a number of different effects, including discretization errors, finite-
volume corrections, and hyperfine splittings.
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Table 2: Error budget for the decay constants, as obtained in Section 4. In addition, projected improvements
to the decay constant error budget for the updated analysis in progress (discussed in Section 5) are shown
italicized and in brackets.

Source fD+( MeV) fDs( MeV) fB+( MeV) fBs( MeV)

Statistics 2.3 [1.1] 2.3 [1.1] 3.6 [1.8] 3.4 [1.7]
Heavy-quark disc. 8.2 [3.6] 8.3 [3.6] 3.7 [1.9] 3.8 [2.0]
Light-quark disc. 2.9 [0.7] 1.5 [0.3] 2.5 [0.6] 2.1 [0.5]
Chiral extrapolation 3.2 [1.6] 2.2 [1.1] 2.9 [1.5] 2.8 [1.4]
Heavy-quark tuning 2.8 [2.0] 2.8 [2.0] 3.9 [2.4] 3.9 [2.4]
ZV 4

QQ
and ZV 4

qq
2.8 [1.4] 3.4 [1.7] 2.6 [1.5] 3.1 [1.9]

u0 adjustment 1.8 [0] 2.0 [0] 2.5 [0] 2.8 [0]
Other sources 3.8 [3.8] 3.0 [3.0] 3.5 [3.5] 4.8 [4.8]
Total [projected] error 11.3 [6.1] 10.8 [5.6] 8.9 [5.5] 9.5 [6.4]

4. Results

Applying the procedure outlined above, we obtain the values for φ shown in Figures 1 and 2,
renormalized and in units of the standard scale r1. The chiral best-fit curve to the points is also
shown, both explicitly at each lattice spacing and extrapolated to the continuum limit.

Evaluating the continuum best-fit curves at the physical points, we obtain the following values
for the decay constants and their ratios:

fB+ = 196.9(8.9) MeV, (4.1)

fBs = 242.0(9.5) MeV, (4.2)

fBs/ fB+ = 1.229(0.026), (4.3)

fD+ = 218.9(11.3) MeV, (4.4)

fDs = 260.1(10.8) MeV, (4.5)

fDs/ fD+ = 1.188(0.025). (4.6)

The error bars quoted here include both statistical and systematic sources of error, which are ac-
counted for in a detailed error budget. A summary of the full error budget for the individual decay
constants is given in Table 2. We discuss the error budget further in Section 5 below, but a thor-
ough discussion is beyond the scope of this paper. Instead, we refer the reader to Ref. [12], which
contains a complete discussion of the systematic error analysis, including the full error budget for
the decay-constant ratios..

5. Outlook

A new analysis following the approach outlined above is currently in progress, based on an
expanded set of gauge configurations as shown in Table 3. In addition to extending the avail-
able simulations to finer lattice spacing and smaller quark mass, the “new" data set includes large
increases in statistics for several ensembles.

4



B and D meson decay constants from 2+1 flavor improved staggered simulations E. T. Neil

Figure 1: Extracted values of φ and chiral best-fit curves for the D system. Only points where valence and
sea light-quark masses are equal are shown here. Data from the a ≈ 0.15 fm ensemble are shown but not
included in the fit. The red curve and symbols show the continuum extrapolation and the continuum/physical
point extrapolation, respectively, for both φD+ and φDs . For the fully extrapolated points, the inner error bars
(bright red) represent statistical errors only, while the outer errors (dark red) include discretization errors.

Projected improvements in the error budget when the new data set is included are shown
alongside the previous error estimates in Table 2. Statistical errors are projected to improve as√

Ncfg, with Ncfg the number of gauge configurations available for a given ensemble. For the
various discretization errors, the projected improvements are a result of reducing the smallest lattice
spacing available from a= 0.09 fm to a= 0.045 fm. Light-quark discretization errors are estimated
to scale as O(αsa2); the heavy-quark discretization errors are estimated using the known functional
dependence, which has several terms. The decrease in the chiral extrapolation error is projected
based on the lightest available value of the quark mass in r1 units, mxr1. The heavy-quark tuning
error is based on a combination of statistical and discretization errors, and is treated as such. The
“u0 adjustment" error is the result of using different tadpole improvement factors for the valence
and sea quarks. This is rectified in the new data analysis, eliminating the associated error. Finally,
the error estimates for the heavy-quark renormalization factors ZV 4

QQ
,ZV 4

qq
are based on preliminary

non-perturbative results for those quantities.
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Figure 2: φ values and chiral best-fit curves as in Figure 1, but for the B system.
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