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Abstract

These are the proceedings of the Workshop on Precision Measurements of αs held

at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop

explored in depth the determination of αs(mZ) in the MS scheme from the key cat-

egories where high precision measurements are currently being made, including DIS

and global PDF fits, τ -decays, electro-weak precision observables and Z-decays, event-

shapes, and lattice QCD. These proceedings contain a short summary contribution

from the speakers, as well as the lists of authors, conveners, participants, and talks.
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1 Introduction

The “Workshop on Precision Measurements of αs” was held at the Max Planck Institute for
Physics, February 9th through 11th of 2011. The meeting brought together experts from
several different fields where high precision measurements of αs(mZ) are currently being
made. Main goals of the workshop were to facilitate discussion between the groups, and in
particular to give speakers the opportunity to explain details that one would normally not
be able to present at a conference, but which have an important impact on the analyses. In
each field the session was led off by a review speaker, followed by more specialized talks, and
was closed with a dedicated time period for discussions.

There were 67 physicists who took part in the workshop, and 35 talks were presented.
Slides as well as background reference materials are available on the conference website

http://www.mpp.mpg.de/alphas

The sessions and talks in the workshop program were

• Welcome

– “World Summary of αs (2009) and beyond”, S. Bethke

• αs from Deep Inelastic Scattering and Global Fits

– “Review of αs Determinations from Jets at HERA” by C. Glasman
– “αs from Deep-Inelastic Scattering: DESY Analysis” by J. Blümlein
– “CTEQ-TEA Parton Distribution Functions and αs” by C.P. Yuan
– “αs in MSTW Analyses”, A. Martin
– “Unbiased αs from Global Fits: The NNPDF Approach” by S. Forte
– “Hera PDF” by B. Reisert
– Discussion Session on DIS and Global Fits, convened by V. Radescu

• Measurements of αs from τ Decays

– “αs Determinations from Hadronic τ Decays” by A. Pich
– “αs from Contour Improved Perturbation Theory (CIPT)” by S. Descotes-Genon
– “Fixed Order Perturbation Theory (FOPT) Analysis” by M. Beneke
– “FOPT and CIPT in τ Decays” by S. Menke
– “Duality Violations in Hadronic τ Decays” by M. Goltermaan
– “Perturbative Input to τ Decays” by J. Kühn
– “Running and Decoupling of αs at Low Scales” by M. Steinhauser
– Discussion Session on τ Decays, convened by A. Höcker

• αs from Z Decays and Electroweak Observables

– “αs in Electroweak Physics” by J. Kühn
– “αs with Global Analysis of Particle Properties (GAPP)” by J. Erler
– “αs from the Hadronic Width of the Z” by K. Mönig
– Discussion Session on Elecroweak Analyses, convened by W. Hollik

• αs from Event Shape Measurements

– “Review of event-shape measurements of αs” by G. Salam
– “αs at NNLO and NNLA from (mainly) ALEPH data” by T. Gehrmann
– “NNLO and Classic Power Corrections” by B. Webber
– “αs from Soft-Collinear Effective Theory analysis” by V. Mateu
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– “Five jets at LEP at NLO and αs(mZ)” by G. Zanderighi
– “Jet and Event Shape Observables at the LHC” by K. Rabbertz
– “Monte Carlo Tuning with Professor” by H. Schulz
– “Experimental Issues and Combination of Results” by S. Kluth
– Discussion Session on Event Shapes, convened by Y. Dokshitzer
– MPI Colloquium, “On the Other Side of Asymptotic Freedom” by Y. Dokshitzer

• Lattice Calculations and Quarkonia

– “Lattice QCD Calculations and αs” by A. Kronfeld
– “The QCD Coupling from Lattice QCD (HPQCD)” by G.P. Lepage
– “αs from Lattice QCD (PACS-CS)” by S. Aoki
– “αs from Lattice QCD (JLQCD)” by S. Hashimoto
– “αs from Lattice QCD (ALPHA)” by R. Sommer
– “αs from Bottomonium” by N. Brambilla
– Discussion Session on Lattice QCD, convened by C. Davies

• Applications and Future of αs Measurements

– “αs for New Physics” by Y. Nomura
– “The Strong Coupling and LHC Cross Sections” by F. Petriello
– “αs at the International Linear Collider (ILC)” by C. Pahl
– “The Principle of Maximum Conformality” by S. Brodsky
– Final Discussion Session, convened by S. Bethke

This web proceedings represent a collection of extended abstracts and references for the
presentations, summarizing the most important results and issues. In these writeups, unless
otherwise indicated, the strong coupling αs(µ) is defined in the MS scheme, and αs(mZ) is
the coupling with five light quark flavors.

Acknowledgments
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the Workshop on Precision Measurements of αs a very stimulating meeting. We cordially
thank our secretary Mrs. Rosita Jurgeleit for her excellent assistance, and the staff of the
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Workshop on Precision Measurements αs 2011:
Welcome and Introduction

Siegfried Bethke

Max-Planck-Institute of Physics, Munich, Germany

Heartiest welcome to all participants of the 2011 Workshop on Precision Measurements
on αs at the Max-Planck-Institute of Physics at Munich! The principal organisers, i.e. Andre
Hoang (Vienna Univ.), Stefan Kluth (MPP Munich), Jochen Schieck (LMU Munich), Iain
Stewart (MIT) and myself, are very glad to see so many representatives and world-experts
from all subfields of the workshop topics present at this meeting.

Measurements of αs, one of the basic constants of nature whose numerical value is not
given by any theory, continue to be at the fore-front of theoretical and experimental endeavors
in particle physics. The purpose of this workshop is

• to review the latest theoretical developments and experimental studies in this field,

• to discuss and possibly solve open questions and issues which currently limit the pre-
cision to which αs is known,

• to provide input for calculating a new 2011 world average of αs(mZ)

The latest comprehensive summary of αs measurements and calculation of a world com-
bined average value of αs(mZ) was given in [1] in 2009, which resulted in

αs(mZ) = 0.1184± 0.0007 .

This result was also adopted by the latest review of the particle data group [2].

Table 1: Summary of recent measurements of αs(mZ). The rightmost two columns give the
exclusive mean value of αs(mZ) calculated without that particular measurement, and the number
of standard deviations between this measurement and the respective exclusive mean.

Process Q [GeV] αs(mZ) excl. mean αs(mZ) std. dev.

τ -decays 1.78 0.1197 ± 0.0016 0.11818 ± 0.00070 0.9

DIS [F2] 2 - 170 0.1142 ± 0.0023 0.11876 ± 0.00123 1.7

DIS [e-p → jets] 6 - 100 0.1198 ± 0.0032 0.11836 ± 0.00069 0.4

Lattice QCD 7.5 0.1183 ± 0.0008 0.11862 ± 0.00114 0.2

Υ decays 9.46 0.119+0.006
−0.005 0.11841 ± 0.00070 0.1

e+e− [jets & shps] 14 - 44 0.1172 ± 0.0051 0.11844 ± 0.00076 0.2

e+e− [ew prec. data] 91.2 0.1193 ± 0.0028 0.11837 ± 0.00076 0.3

e+e− [jets & shps] 91 - 208 0.1224 ± 0.0039 0.11831 ± 0.00091 1.0
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Figure 1: Summary of measurements of αs(mZ). The vertical line and shaded band mark the
final world average value of αs(mZ) = 0.1184±0.0007 determined from these measurements.
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The individual results entering that determination of αs(mz) are given in Table 1, and a
graphical representation in Fig. 1; see [1] and references therein. All results are compatible
with the quoted overall world average; the largest deviation from an exclusive mean being
less than two standard deviations (interpreting quoted uncertainties of αs results as gaussian
errors). In fact, the χ2 of the overall average is close to unity per degree of freedom [1]. While
the 2009 average came out in a rather consistent way, some questions and potential problems
remained:

• the individual result with smallest quoted uncertainties is from lattice QCD; it largely
dominates (not so much) the overall average and (mainly) its assigned error;

• there are large systematic differences between different studies of αs from τ decays,
depending on the type of perturbative prediction (CIPT and FOPT), leading to an
increased uncertainty assigned to the value listed in Table 1;

• are there systematic unknowns in the DIS/F2 result?

• theoretical uncertainties are defined using different definitions in most of the input
studies; do they lead to a consistent guess-timate of the overall uncertainties?

As will be seen in the course of this workshop, the consistency of an overall new world
summary may look more unfavorable in the light of some of the most recent results (see the
summary contribution to this workshop [3]).

References

[1] S. Bethke, Eur.Phys.J. C64 (2009) 689-703, arXiv:0908.1135 [hep-ph].

[2] Particle Data Group, J.Phys.G G37 (2010) 075021.

[3] S. Bethke, these proceedings.
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Review of αs determinations from jets at HERA

Claudia Glasman
(On behalf of the H1 and ZEUS Collaborations)

Universidad Autónoma de Madrid, Spain

The H1 and ZEUS Collaborations at HERA have performed precise determinations of
αs(MZ) using observables such as jet cross sections, ratios of jet cross sections, and internal
structure of jets in different regimes. Some of them are reviewed in this report. In addition,
the energy-scale dependence of the coupling has been determined very precisely. The results
are in good agreement with the predicted running of αs with small experimental uncertainties
in a wide range of the scale.

Values of αs(MZ) were extracted by the H1 Collaboration from the double-differential
inclusive-jet, dijet and trijet cross sections at low Q2 (5 < Q2 < 100 GeV2) using 43.5 pb−1

of integrated luminosity [1]. Jets were searched using the kT cluster algorithm in the Breit
frame with PT > 5 GeV and −1 < ηjetLAB < 2.5. The values of αs(MZ) extracted are shown
in Table 1 (rows 1, 2 and 3; row 4 shows the combined value). These values have small
experimental uncertainties; however, the theoretical uncertainty, dominated by terms beyond
NLO, is large. A reduction of the theoretical uncertainties can be achieved by determining
αs(MZ) from the trijet to dijet ratio; the value obtained is shown in row 5 and has a smaller
theoretical uncertainty.

Values of αs(MZ) were extracted by the H1 Collaboration from the double-differential
inclusive-jet, dijet and trijet normalised cross sections at mediumQ2 (150 < Q2 < 15000 GeV2)
using 395 pb−1 of integrated luminosity [2]. Jets were searched using the kT cluster algo-
rithm in the Breit frame with PT > 5 GeV and −0.8 < ηjetLAB < 2. The values of αs(MZ)
extracted are shown in rows 6, 7 and 8. Row 9 shows the combined αs(MZ) value, which has
a very small experimental uncertainty; the theoretical uncertainties, though still dominated
by the terms beyond NLO, are smaller than for the low Q2 analysis. This reduction was
accomplished by using normalised cross sections, for which correlated uncertainties cancel,
and making the extraction at higher Q2, where the contribution from the terms beyond NLO
is reduced.

The ZEUS Collaboration extracted values of αs(MZ) from the inclusive-jet cross sections
based on the kT , anti-kT and SIScone jet algorithms at high Q2 (Q2 > 500 GeV2) using
82 pb−1 of integrated luminosity [3],[4]. Jets were searched in the Breit frame with Ejet

T,B > 8

GeV and −2 < ηjetB < 1.5. The values of αs(MZ) extracted are shown in rows 10, 11 and
12. Row 13 shows an updated value using HERA II statistics (L = 300 pb−1) [5]. The
experimental uncertainty is dominated by the jet energy scale and amounts to 2%. The
theoretical uncertainties are dominated by the terms beyond NLO and amount to around
1.5% for the three jet algorithms. The reduction of the theoretical uncertainty was obtained
by restricting to the high Q2 region; even though the experimental uncertainty increases at
high Q2 (mainly due to statistics), the total uncertainty remains small.

Values of αs(MZ) were extracted by the ZEUS Collaboration from the inclusive-jet cross
section in photoproduction at high Ejet

T (21 < Ejet
T < 71 GeV) using 189 pb−1 of integrated

luminosity [6],[7]. Jets were searched using the kT , anti-kT and SIScone jet algorithms in the
laboratory frame. The values of αs(MZ) extracted are shown in rows 14, 15 and 16. These
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have similar precision. In photoproduction, there is an additional uncertainty coming from
the photon PDFs, which is as large as that coming from higher orders.

A completely different approach to the extraction of αs at HERA is given by the analysis
of the internal structure of jets. The internal structure of jets can be studied by means of the
integrated jet shape and the subjet multiplicity. The ZEUS Collaboration extracted values of
αs(MZ) from the measured mean integrated jet shape [8] for Ejet

T > 21 GeV using 82.2 pb−1

of integrated luminosity and from the mean subjet multiplicity [9] for Ejet
T > 25 GeV with

38.6 pb−1 of integrated luminosity. Jets were searched using the kT cluster algorithm in
the laboratory frame. The values of αs(MZ) extracted are shown in rows 17 and 18. In
both cases, the experimental uncertainties are small; however, the theoretical uncertainty,
dominated by the terms beyond NLO, is much bigger than for the extraction from jet cross
sections.

From the results presented, it is concluded that the dominant uncertainty in the extrac-
tion of αs(MZ) at HERA comes from terms beyond NLO. This uncertainty decreases with
increasing Q2 or Ejet

T , so an extraction at high Q2 or Ejet
T is advantageous to minimise this

contribution. In addition, such uncertainty cancels partially when ratios of jet cross sections
are used for the extraction, and lower Q2 or Ejet

T values can be used. The uncertainties
coming from the PDFs are also smaller as Q2 increases.

To summarise, jet physics at HERA provides precise values of αs(MZ) in different regimes
and precise determinations of the running of the coupling over a wide range of the scale.
There is still room for improvement. All HERA data have been analysed: the values of
αs(MZ) obtained have very small experimental uncertainties; the theoretical uncertainties
are dominant, in particular that coming from terms beyond NLO. Therefore, enormous
benefit will be gained from NNLO calculations for jet cross sections at HERA to improve
the precision in αs(MZ).

References
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Process Collab. Value Exp. Th. Total (%)

(1) Inc. jets at low Q2 H1 0.1180 0.0018 +0.0124
−0.0093

+0.0125
−0.0095

+10.6
−8.1

(2) Dijets at low Q2 H1 0.1155 0.0018 +0.0124
−0.0093

+0.0125
−0.0095

+10.8
−8.2

(3) Trijets at low Q2 H1 0.1170 0.0017 +0.0091
−0.0073

+0.0093
−0.0075

+7.9
−6.4

(4) Combined low Q2 H1 0.1160 0.0014 +0.0094
−0.0079

+0.0095
−0.0080

+8.2
−6.9

(5) Trijet/dijet at low Q2 H1 0.1215 0.0032 +0.0067
−0.0059

+0.0074
−0.0067

+6.1
−5.5

(6) Inc. jets at medium Q2 H1 0.1195 0.0010 +0.0052
−0.0040

+0.0053
−0.0041

+4.4
−3.4

(7) Dijets at medium Q2 H1 0.1155 0.0009 +0.0045
−0.0035

+0.0046
−0.0036

+4.0
−3.1

(8) Trijets at medium Q2 H1 0.1172 0.0013 +0.0053
−0.0032

+0.0055
−0.0035

+4.7
−3.0

(9) Combined medium Q2 H1 0.1168 0.0007 +0.0049
−0.0034

+0.0049
−0.0035

+4.2
−3.0

(10) Inc. jets at high Q2 (anti-kT ) ZEUS 0.1188 +0.0036
−0.0035

+0.0022
−0.0022

+0.0042
−0.0041

+3.5
−3.5

(11) Inc. jets at high Q2 (SIScone) ZEUS 0.1186 +0.0036
−0.0035

+0.0025
−0.0025

+0.0044
−0.0043

+3.7
−3.6

(12) Inc. jets at high Q2 (kT ; HERA I) ZEUS 0.1207 +0.0038
−0.0036

+0.0022
−0.0023

+0.0044
−0.0043

+3.6
−3.6

(13) Inc. jets at high Q2 (kT ; HERA II) ZEUS 0.1208 +0.0037
−0.0032

+0.0022
−0.0022

+0.0043
−0.0039

+3.6
−3.2

(14) Inc. jets in γp (anti-kT ) ZEUS 0.1200 +0.0024
−0.0023

+0.0043
−0.0032

+0.0049
−0.0039

+4.1
−3.3

(15) Inc. jets in γp (SIScone) ZEUS 0.1199 +0.0022
−0.0022

+0.0047
−0.0042

+0.0052
−0.0047

+4.3
−3.9

(16) Inc. jets in γp (kT ) ZEUS 0.1208 +0.0024
−0.0023

+0.0044
−0.0033

+0.0050
−0.0040

+4.1
−3.3

(17) Jet shape ZEUS 0.1176 +0.0013
−0.0028

+0.0091
−0.0072

+0.0092
−0.0077

+7.8
−6.5

(18) Subjet multiplicity ZEUS 0.1187 +0.0029
−0.0019

+0.0093
−0.0076

+0.0097
−0.0078

+8.2
−6.6

HERA average 2004 0.1186 ±0.0011 ±0.0050 ±0.0051 ±4.3

HERA average 2007 0.1198 ±0.0019 ±0.0026 ±0.0032 ±2.7

Table 1: Values of αs(MZ) extracted from jet observables at HERA together with their
uncertainties (rows 1 to 18). The 2004 [10] and 2007 [11] HERA averages are shown in the
last two rows.
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αs(M
2
Z
) in NNLO Analyses of Deep-Inelastic World Data

S. Alekhin1,2, J. Blümlein1, H. Böttcher1, and S.-O. Moch1

1 Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
2 Institute for High Energy Physics, 142281 Protvino, Moscow Region, Russia

The present world data of deep-inelastic scattering (DIS) reached a precision which allows the
measurement of αs(M

2
Z) from their scaling violations with an error of δαs(M

2
Z) ≃ 1%. This

requires at least NNLO analyses, since NLO fits exhibit scale uncertainties of ∆r,fαs(M
2
Z) ∼

0.0050. The NNLO values for αs obtained are summarized in the following Table.

αs(M
2
Z)

BBG 0.1134 +0.0019
−0.0021 valence analysis, NNLO [1]

GRS 0.112 valence analysis, NNLO [2]
ABKM 0.1135 ± 0.0014 HQ: FFNS Nf = 3 [3]
ABKM 0.1129 ± 0.0014 HQ: BSMN-approach [3]
JR 0.1124 ± 0.0020 dynamical approach [4]
JR 0.1158 ± 0.0035 standard fit [4]
MSTW 0.1171 ± 0.0014 [5]
ABM 0.1147 ± 0.0012 FFNS, incl. combined H1/ZEUS data [6]

Gehrmann et al. 0.1153 ± 0.0017 ± 0.0023 e+e− thrust [7]
Abbate et al. 0.1135 ± 0.0011 ± 0.0006 e+e− thrust [8]

BBG 0.1141 +0.0020
−0.0022 valence analysis, N3LO [1]

world average 0.1184 ± 0.0007 [9]

NNLO non-singlet data analyses have been performed in [1] and [2]. The analysis of Ref. [1]
is based on an experimental combination of flavor non-singlet data referring to F p,d

2 (x,Q2)
for x < 0.35 and using the respective valence approximations for x > 0.35. The d − u
distributions and the O(α2

s) heavy flavor corrections were accounted for. At low Q2 and at
large x also at low W 2 higher twist corrections have to be taken into account [10]. The
corresponding region was cut out in [1] performing the fits for the leading twist terms only.
The analysis could be extended to N3LO effectively due to the dominance of the Wilson
coefficient in this order [11] if compared to the anomalous dimension, cf. [1] and [12]. This
analysis led to an increase of αs(M

2
Z) by +0.0007 if compared to the NNLO value.

A combined singlet and non-singlet NNLO analysis based on the DIS world data, in-
cluding the Drell-Yan and di-muon data, needed for a correct description of the sea-quark
densities, was performed in [3]. In the fixed flavor number scheme (FFNS) the value of
αs(M

2
Z) is the same as in the non-singlet case [1]. The comparison between the FFNS and

the BMSN scheme [13] for the description of the heavy flavor contributions induces a sys-
tematic uncertainty ∆αs(M

2
Z) = 0.0006. The NNLO analyses of Ref. [4] are statistically

compatible with the results of [1] and [3] while those of [5] yield a higher value.
In Ref. [6] the combined H1 and ZEUS data were accounted for in a NNLO analysis for

the first time, which led to a shift of +0.0012. However, running quark mass effects [14] and
the account of recent FL data reduce this value again to the NNLO value given in [3]. We
mention that other recent NNLO analyses of precision data, as the measurement of αs(M

2
Z)

using thrust in high energy e+e− annihilation data [7], [8] result in lower values than the
2009 world average [9] based on NLO, NNLO and N3LO results. The sensitivity of the fits
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to a precise description of the longitudinal structure function FL has been demonstrated in
[15] recently, in the case of the NMC data. Inconsistent descriptions of FL induce a high
value of αs of ∼ 0.1170 to be compared with that obtained in [5]. It is observed that the
values of

αs(M
2
Z) with σNMC with FNMC

2 difference

NNLO 0.1135(14) 0.1170(15) +0.0035 ≃ 2.3σ
NNLO +FL O(α3

s) 0.1122(14) 0.1171(14) +0.0050 ≃ 3.6σ

αs found in NLO fits are systematically higher than those in NNLO analyses. αs mea-
surements based on jet data can be performed presently at NLO only. Here typical values
obtained are αs(M

2
Z) = 0.1156 +0.0041

−0.0034 [16], αs(M
2
Z) = 0.1161 +0.0041

−0.0048 [17] in recent examples.

The precise knowledge of αs(M
2
Z) is of instrumental importance for the correct prediction of

the Higgs boson cross section at Tevatron and the LHC [18].
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Abstract

After summarizing a simple method to fully reproduce the correlated dependence of
theoretical cross sections on the QCD coupling strength αs and parameters of parton
distribution functions (PDFs), we present a series of CTEQ6.6AS and CT10.AS PDFs,
realizing this approach, for αs values in the interval 0.113 ≤ αs(MZ) ≤ 0.123. If αs is
solely determined by the QCD global analysis data, and not by the world average value
of αs(MZ) as done in the CT10 PDF analysis, we find that α(MZ) = 0.1197 ± 0.0061
at the 90% CL.

In a recent paper [1], we examined the dependence of parton distribution functions (PDFs)
on the value of the QCD coupling strength αs(MZ), in the QCD global analysis performed by
the CTEQ-TEA (Tung et al.) group. We demonstrated a simple method that is rigorously
valid in the quadratic approximation normally applied in PDF fitting, and fully reproduces
the correlated dependence of theoretical cross sections on αs and PDF parameters. This
method is based on a statistical relation that allows one to add the uncertainty produced by
αs, computed with some special PDF sets, in quadrature with the PDF uncertainty obtained
for a fixed αs value (such as the CTEQ6.6 PDF set). A series of four CTEQ6.6AS PDFs
realizing this approach, for αs values between 0.116 and 0.120, was made available online
[2]. Using these PDFs, the combined αs and PDF uncertainty can be assessed for theoretical
predictions at the Fermilab Tevatron and Large Hadron Collider. In a more recent paper
[3], we provided a similar series, CT10.AS PDFs, but with a larger range of αs values, from
0.113 to 0.123 [4].

Below, we summarize a few important features of, for example, the CTEQ6.6AS PDF
analysis. Using the setup of the CTEQ6.6 PDF analysis and taking the world-average (w.a.)
value [5] (αs)w.a. ± (δαs)w.a. = 0.118± 0.002 (at 90% CL [6].) as a separate data point in
addition to the complete CTEQ6.6 set of hadronic scattering data, we allow αs(MZ) to vary
within the global fits and find

αs(MZ) = 0.1180± 0.0019 (at 90% CL). (1)

Thus, the constraint on αs(MZ) is dominated by the world-average uncertainty, (δαs)w.a..
Using the αs series of PDFs, and including the PDF uncertainty, we can estimate the uncer-
tainties of cross section calculations. For any calculated quantity σ, we denote the central

15



prediction, corresponding to αs(MZ) = 0.118, by σ0. There are two contributions to the un-
certainty: the PDF uncertainty (∆σPDF ) and the αs uncertainty (∆σαs) of σ. The combined
uncertainty ∆σ for CTEQ6.6+CTEQ6.6AS is (∆σ)2 = (∆σPDF)

2 + (∆σαs)
2 .

The independence of the αs uncertainty from the PDF uncertainty in the CTEQ6.6AS
method does not preclude existence of some correlation between the αs and PDF parameters.
This correlation arises from the hadronic scattering experiments, which probe a variety of
combinations of the PDFs and αs, and can be closely examined by analyzing the correlation
cosine as introduced in Refs. [7]. For that purpose, we performed the full fit CTEQ6.6FAS
with the floating αs and examined the correlation between αs(MZ) and individual PDFs
fa(x,Q). Fig. 8 of [1] shows the correlation cosine, cosϕ versus x, for the PDFs that
have the largest correlations with αs(MZ), at Q = 2 and 85 GeV. The best-fit value of
αs(MZ) is thus determined by several types of the data, probing the gluon evolution in
DIS at moderately small x, the singlet PDF evolution in DIS at large x, and HERA charm
semi-inclusive DIS data. The correlation of each kind disappears if the relevant data set is
removed.

After the completion of Refs. [1] and [3], we performed a similar analysis on the deter-
mination of αs(MZ) value but with the CT10 setup. We find that, without including the
world-average αs(MZ) value as an input data, the constraints of the global fit on αs are
relatively weak, and

αs(MZ) = 0.1197± 0.0061 (at 90% CL), (2)

where the error is an estimate of the uncertainty (at about 90 % C.L.) from all typical
sources, including the statistical error, dependence on the parametrization form and free
theoretical parameters. Within this range, χ2 exhibits nearly parabolic dependence on αs.
Eq. 2 shows clearly that constraints imposed on αs by the hadronic scattering data only are
significantly weaker than from the world average data point.

Finally, we note that replacing the NMC F2 data by the corresponding differential cross
section data in the CT10.AS PDF global analysis does not change our conclusion about the
determination of the αs(MZ) value.

References

[1] H.L. Lai, et al., Phys. Rev. D82, 054021.

[2] http://hep.pa.msu.edu/cteq/public/cteq6.html.

[3] H.L. Lai, et al., Phys. Rev. D82, 074024.

[4] http://hep.pa.msu.edu/cteq/public/ct10.html.

[5] S. Bethke, Eur. Phys. J. C64, 689 (2009). ).

[6] M. Botje et al., arXiv:1101.0538 [hep-ph].

[7] P.M.Nadolsky, et al., Phys.Rev.D78, 013004 (2008).

16



αS in MSTW analyses

A.D. Martin, W.J. Stirling, R.S. Thorne, and G. Watt
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In the MSTW2008 [1] global PDF analysis of DIS and related hard-scattering data the
value of αS(M

2
Z) was left as a free parameter and its optimum value determined. Subse-

quently, in [2], a detailed study was made of its ‘experimental’ uncertainty. The values
found in the NLO and NNLO analyses are

NLO: αS(M
2
Z) = 0.1202 +0.0012

−0.0015 (68% C.L.) +0.0032
−0.0039 (90% C.L.), (1)

NNLO: αS(M
2
Z) = 0.1171 +0.0014

−0.0014 (68% C.L.) +0.0034
−0.0034 (90% C.L.). (2)

We note that the NNLO value is smaller than that at NLO since NNLO evolution is faster
and since NNLO coefficient functions are generally positive. Fig. 1 shows the constraints
on αS coming from the individual data sets in the NNLO global analysis. Inclusive jet
production is the only process proportional to α2

S at LO. Moreover, since the normalisation
of the CDF jet production data is tied to the observed CDF Z rapidity distribution, we
see that these jet data give the tightest constraint on αS. In addition to the ‘experimental’
errors shown in (1) and (2), there is also a ‘theory’ uncertainty, which is estimated [2] to be
±0.003 at NLO and at most ±0.002 at NNLO.

The αS(M
2
Z) values found by MSTW are, in general, greater than those of other PDF

analyses, and are more consistent with the world average value [3]. There are two reasons
for this. First, MSTW have a more flexible low-x parametrisation of the input gluon PDF.
The flexibility is required by the data and gives a negative input behaviour at small x, which
is confirmed by the NNPDF analyses [4]. The second reason is the inclusion of the Tevatron
jet data in the analysis. It is informative to repeat the NNLO MSTW2008 analysis fitting
only inclusive DIS data, which gives αS(M

2
Z) = 0.1104 compared to αS(M

2
Z) = 0.1171 for

the global fit, but with a negative input gluon for x > 0.4 due to lack of a data constraint,
implying a negative F charm

2 and an awful description of Tevatron jet data (χ2/Npts. ∼ 10).
Fixing the high-x gluon parameters to be the same as in the global fit gives αS(M

2
Z) = 0.1172

in the DIS-only fit. A DIS-only fit without BCDMS data gives αS(M
2
Z) = 0.1193, while a

global fit without BCDMS data gives αS(M
2
Z) = 0.1181. We conclude that the Tevatron jet

data are vital to pin down the high-x gluon, giving a smaller low-x gluon by the momentum
sum rule, at the expense of some deterioration in the fit quality of BCDMS data. Thus, both
reasons imply a larger αS from the scaling violations (∼ αSg) of HERA data.

Concerning the NMC data, ref. [5] notes that it is better to use the NMC cross-section
measurements rather than F2, since for x < 0.12 NMC used a Q2-independent R = σL/σT
value to extract their default F2. Does this bias the MSTW value of αS? As a check, we
repeated the NNLO global fit with the NMC F2 extracted using the SLAC R1990(x,Q

2) for
all x, which is close to the MSTW NNLO R(x,Q2) in the most relevant x bins. This has a
very small effect, with the NNLO αS(M

2
Z) moving only from 0.1171 to 0.1167.

Finally, let us comment on the ‘low’ value αS(M
2
Z) = 0.1141+0.0020

−0.0022 obtained in [6], since
it is often taken as the ‘DIS’ value in world average compilations, where it is listed as DIS
F2(N

3LO) [3]. This determination assumes that F2 is pure non-singlet for x > 0.3. We may
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Figure 1: Ranges of αS(M
2
Z) for which data sets are described within their 90% C.L. limit (outer

error bars) or 68% C.L. limit (inner error bars) in the NNLO global fit. The points (•) indicate
the values of αS(M

2
Z) favoured by each individual data set n, that is, the values for which χ2

n is
minimised. The figure is taken from [2].

examine this assumption using MSTW2008 PDFs. For the F p
2 and F d

2 measurements with
x > 0.3 we have χ2 = 329 for 282 data points, of which 160 are from BCDMS. However,
if we consider only non-singlet contributions then χ2 = 1449 for 282 data points. In fact,
contributions other than valence quarks amount to about 10% at x = 0.3, and still 2% at
x = 0.5. We conclude that the anomalously low value of αS found in [6] is due both to the
dominance of BCDMS data (cf. Fig. 1) and to the neglect of singlet contributions.
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The determination of αs (MZ) from the same wide of set of data which is used to determine
PDFs is appealing because it simultaneously exploits the dependence on the coupling of
scaling violations as well as that on individual hard matrix elements of the various processes
under consideration. On the other hand, in such a determination the value of αs is necessarily
correlated to the best-fit form of the PDFs, and thus subject to potential sources of bias
which may affect the PDFs, such as for example an insufficiently flexible parametrization.

Determining αs with NNPDF partons has the advantage that in this approach parametriza-
tion bias is reduced to a minimum, thanks to the use of neural networks as unbiased interpo-
lating functions coupled with a Monte Carlo approach. It has the disadvantage that, because
NNPDF partons are delivered in the form of a Monte Carlo sample, the χ2 of the comparison
between data and theory is a random variable, which only tends to a constant value in the
limit in which the size of the Monte Carlo sample tends to infinity. In order to determine αS

accurately one thus needs a number of Monte Carlo replicas of the same order of magnitude
of the number of datapoints (more than 3500 for NNPDF and other global PDF sets).

We have determined αs by constructing sets of at least 500 replicas for each of the
eleven values of αs for which NNPDF2.1 parton distributions have been provided [1]. The
comparison to the data is done at NLO in QCD and includes heavy quark mass effects using
the so-called FONLL method [2]. The uncertainty on each value of χ2 due to the finite size
of the replica sample is determined using the bootstrap method from the fluctuations of χ2

computed from subsets of replicas in the given sample. The value of αs is then determined
by fitting a parabola to the χ2 viewed as a function of αs. The minimum of the parabola
provides the best-fit value of αs (MZ) while the ∆χ2 = 1 range gives the uncertainty on it.
The further uncertainty due to the finite-size fluctuations is propagated from the uncertainty
on each data point and is essentially negligible with the given sample size. The quality of
the parabolic fit is assessed by evaluating the corresponding χ2

par/Ndof , with Ndof = Nαs − 3.
We have performed [3] this determination both for the global NNPDF2.1 dataset, for all

deep-inelastic data included in this dataset, and for HERA data only. The best-fit values and
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αs (MZ)

NNPDF2.1 0.1191± 0.0006stat ± 0.0001proc

NNPDF2.1 DIS–only 0.1177± 0.0009stat ± 0.0002proc

NNPDF2.1 HERA–only 0.1103± 0.0033stat ± 0.0003proc

Table 1: Values of αs (MZ) and associated uncertainties. All uncertainties shown are 68% confi-
dence levels.

uncertainties are collected in Table 1; the uncertainty from the ∆χ2 = 1 range denoted with
“stat” and the uncertainty from the finite size of the replica sample denoted with “proc”.

Our best-fit value of αs is in good agreement with the current PDG value, and it has
a surprisingly small statistical uncertainty. The statistical uncertainty increases as the size
of the dataset is reduced, as it ought to. We see no evidence that DIS data prefer a sig-
nificantly lower value of αs: the difference between the global and DIS-only determinations
is compatible with a statistical fluctuation. HERA data, however, lead to a rather smaller
value of αs, though with much larger uncertainty. This may be related to deviations from
predicted scaling violations, which have been observed [4] in HERA data at low x and Q2.
If so, the value of αs could be brought in line with other determinations by an inclusion of
small x resummation [5].

From the behaviour of the χ2 as a function of αs for individual datasets for the global and
the DIS-only fit we find evidence [3] that BCDMS data prefer a lower value of αs, but only
in the DIS only fit. Also, the correlation between the χ2 of the fit to various datasets and
individual PDFs as a function of αs provides evidence that this behaviour is due to the fact
that at low αs the χ2 for BCDMS can be lowered by modifying the gluon distribution in a
way which is incompatible with jet data. However, the best-fit αs for the DIS fit is unaffected
by all this, perhaps becuase of the great flexibility of the NNPDF parton parametrization.

Theoretical uncertainties on our results are likely to be dominant. The main ones are
likely to be related to higher order QCD corrections and their resummation, and to the
treatment of heavy quarks. These uncertainties are presumably of similar size here as in
other determinations of αs based on the same QCD processes. A detailed study of these un-
certainties, which are likely to be dominant, would be of great interest once QCD corrections
to the highest available order have been included.
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The inclusive character of the total τ hadronic width renders possible [1] an accurate
calculation of the ratio Rτ ≡ Γ[τ− → ντ hadrons]/Γ[τ

− → ντe
−ν̄e]. Its Cabibbo-allowed

component can be written as [2]

Rτ,V+A = NC |Vud|2 SEW {1 + δP + δNP} , (1)

where NC = 3 is the number of quark colours and SEW = 1.0201 ± 0.0003 contains the
electroweak radiative corrections. The non-perturbative contributions are suppressed by six
powers of the τ mass [1] and can be extracted from the invariant-mass distribution of the
final hadrons [3]. From the ALEPH data, one obtains δNP = −0.0059± 0.0014 [4].

The dominant correction (∼ 20%) is the perturbative QCD contribution [1] [3]

δP =
∑

n=1

KnA
(n)(αs) =

∑

n=1

(Kn + gn) a
n
τ ≡

∑

n=1

rn a
n
τ , (2)

which is determined by the coefficients of the perturbative expansion of the (NF = 3) QCD
Adler function, already known toO(α4

s) [5]: K0 = K1 = 1; K2 = 1.63982; K3(MS) = 6.37101
and K4(MS) = 49.07570. The functions [3]

A(n)(αs) =
1

2πi

∮

|s|=m2
τ

ds

s

(

αs(−s)
π

)n (

1− 2
s

m2
τ

+ 2
s3

m6
τ

− s4

m8
τ

)

= anτ +O(an+1
τ ) (3)

are contour integrals in the complex plane, which only depend on aτ ≡ αs(m
2
τ )/π. Using the

exact solution (up to unknown βn>4 contributions) for αs(−s) given by the renormalization-
group β-function equation, they can be numerically computed with very high accuracy [3].

If the integrals A(n)(αs) are expanded in powers of aτ , one recovers the naive perturbative
expansion of δP shown in the rhs of Eq. (2). This approximation is known as fixed-order
perturbation theory (FOPT), while the improved expression, keeping the non-expanded values
of A(n)(αs), is usually called contour-improved perturbation theory (CIPT) [3]. Even atO(a4τ ),
FOPT gives a rather bad approximation to the integrals A(n)(αs), overestimating δP by 12%
at aτ = 0.11. The long running of αs(−s) along the circle |s| = m2

τ generates very large gn
coefficients, which depend on Km<n and βm<n [3]: g1 = 0, g2 = 3.56, g3 = 19.99, g4 = 78.00,
g5 = 307.78. These corrections are much larger than the original Kn contributions, giving
rise to a badly behaved perturbative series (at the four-loop level the expansion of αs(−s)
in powers of aτ is only convergent for aτ < 0.11, which is very close to the physical value
of aτ ). Thus, it seems compulsory to resum the large logarithms, logn (−s/m2

τ ), using the
renormalization group. This is precisely what CIPT does.

It has been argued that in the asymptotic regime (large n) the renormalonic behaviour of
the Kn coefficients could induce cancelations with the running gn corrections, which would
be missed by CIPT. In that case, FOPT could approach faster the ‘true’ result provided by
the Borel summation of the full renormalon series. This happens actually in the large–β1
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limit, which however does not approximate well the known perturbative series (for n ≤ 4 the
true Kn coefficients add constructively with the gn contributions). Models of higher-order
corrections which assume a precocious asymptotic behaviour of the Adler function already
at n = 3, 4 [6] [7] seem to favour the FOPT result. The CIPT procedure is much more
reliable in all other scenarios.

The present experimental value Rτ,V+A = 3.4771±0.0084 [8] implies δP = 0.2030±0.0033.
The two different treatments of the perturbative series result in

αs(m
2
τ )CIPT = 0.3412± 0.0041

δP

+0.0069
− 0.0064K5

+0.0050
− 0.0001µ

+0.0039
− 0.0034β5

= 0.344± 0.014 , (4)

αs(m
2
τ )FOPT = 0.3194± 0.0028

δP

+0.0039
− 0.0035K5

+0.0105
− 0.0045µ

+0.0019
− 0.0045β5

= 0.321± 0.015 . (5)

Higher-order corrections have been estimated adding the fifth-order term K5A
(5)(αs) with

K5 = 275 ± 400. We have also included the 5-loop variation with changes of the renor-
malization scale in the range µ2/(−s) ∈ [0.4, 2.0]. The error induced by the truncation of
the β function at fourth order has been conservatively estimated through the variation of
the results at five loops, assuming β5 = ±β2

4/β3 = ∓443; in CIPT this slightly changes the
values of A(n)(αs), while in FOPT it increases the scale sensitivity. The FOPT result shows
as expected [3] [9] a much more sizeable µ dependence, but it gets smaller errors from δP
and K5. The three theoretical uncertainties (K5, µ, β5) have been added linearly and their
sum combined in quadrature with the ‘experimental’ error from δP .

Combining the two results with the PDG prescription (scale factor S = 1.14), one gets
αs(m

2
τ ) = 0.334± 0.011. We keep conservatively the smallest error, i.e.

αs(m
2
τ ) = 0.334± 0.014 −→ αs(M

2
Z) = 0.1204± 0.0016 . (6)

The resulting value is in excellent agreement with the direct measurement of αs(MZ) at the
Z peak, providing a very significant experimental verification of asymptotic freedom.
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Several recent results motivated the reanalysis of αs from τ decays in ref. [1]. On the
experimental side, new BABAR measurements of the e+e− annihilation cross section into
KK̄π using the radiative return method increase the accuracy on the vector/axial-vector
fractions in the corresponding τ decays, and better results are available on τ decays into
strange final states from BABAR and Belle. On the theory side, the fourth-order term K4

in the perturbative expansion of the Adler function was recently calculated [2]. Unitairty
yields the vector/axial tau hadronic widths in terms of the experimentally accessible spectral
functions (imaginary parts of two-current correlators Π). The integral can be reexpressed
using analyticity and Operator Product Expansion (OPE) as the sum of contributions from
non-perturbative condensates and δ(0) the (dominant) perturbative contribution involving
the Adler function D(s) = −sdΠ/ds along a circular contour |s| = s0 =M2

τ :

1 + δ(0) = −2πi
∫

|s|=s0
ds
s

[

1− 2 s
s0
+ 2 s3

s3
0

− s4

s4
0

]

D(s) , D(s) = 1
4π2

∑∞
n=0 K̃n(ξ)a

n
s (−ξs0) .

as(s) = αs(s)/π on the contour is obtained by applying the Renormalisation Group Equation
(RGE) known up to four loops. The phase space involved in the τ hadronic width leads to
an integral for δ(0) with a so-called pinched kernel, vanishing for s = s0. We reexamined the
convergence properties of the perturbative expansions for the τ hadronic widths, and the
ambiguity between the fixed-order (FOPT) and contour-improved (CIPT) approaches for
determining αs along the circle of integration and summing up the series (as the difference
between the two approaches exceeds the other sources of theoretical uncertainty). Starting
from the value of αs in the Euclidean region where OPE is known to be valid, CIPT cor-
responds to solving the RGE along the circle of integration by small steps, whereas FOPT
corresponds to a Taylor expansion in powers of αs(m

2
τ ) and log(s/s0). We compared different

implementations of FOPT, corresponding to keeping further terms derived from RGE along
the circle of integration. The main difference between FOPT and CIPT was seen to arise
from the truncation of higher orders perfomed in FOPT after the contour integral has been
computed. We identified specific consistency issues for FOPT, which do not exist in CIPT:
the convergence of the Adler function near the positive axis cut is problematic for FOPT
(less visible once the Adler function convoluted with pinched weights vanishing at s = m2

τ ),
and the scale dependence of δ(0) is much more pronounced than for CIPT.

Possible violations of quark-hadron duality at the τ mass scale have been considered using
specific but crude models (equally-spaced resonances or instanton model). Their effect has
been found to be well within our quoted overall theoretical uncertainty when we considered
the V +A spectral function. Due to the very simple models considered, we did not introduce
additional theoretical uncertainties. We did not investigate the separate vector and axial
channels, as discussed in refs. [3] and [4], since the more inclusive quantity V +A provided a
more stable determination of αs than V or A separately. This was obtained by performing a
combined fit of the τ hadronic width R00

τ,V/A = Rτ,V/A and hadronic spectral moments from

the ALEPH collaboration of the form Rkl
τ,V/A =

∫ m2
τ

0
ds
(

1− s
m2

τ

)k(
s

m2
τ

)l dRτ,V/A

ds
with (k, l) =
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(1, 0), (1, 1), (1, 2), (1, 3), expressed through OPE in terms of 4 unknown quantities (αs,D = 4
gluon condensate, D = 6 and D = 8 effective condensates). The D = 4 quark condensate
was expressed in terms of quark masses through the Gell-Mann-Oakes-Renner relation, and
D ≥ 10 contributions neglected, even for higher moments (this approximation may feed back
in theD = 6, 8 condensates). The fit for V +A was indeed more satisfactory than the separate
V and A fits, yielding αs(τ) = 0.344±0.005exp±0.007theo, consistent with the previous value
obtained for three known orders, with a 20% reduced theoretical uncertainty. The evolved τ
result at theMZ scale was: αs(MZ) = 0.1212±0.0005exp±0.0008theo±0.0005evol, which agrees
remarkably well with the value directly extracted at this scale (the FOPT value evolved at
MZ would be lower by 0.0028).

After the completion of this work, it was pointed out in ref. [4] that the spectral functions
from the ALEPH data seemed much more correlated than the currently available correlation
matrix, which indeed does not take into account properly the correlations due to unfolding. A
study is currently under way to assess these uncertainties precisely, but preliminary studies
indicate that they have only a limited impact on the correlations between the pinched-
weight moments used in the analysis of ref. [1]. Another issue was raised in ref. [5], where
a model was introduced for the higher orders of the Adler function in perturbation theory,
including the known properties derived from renormalon calculus. This model assumed
that the perturbative series was saturated by three renormalons (two infrared ones and an
ultraviolet one) and that the asymptotic behaviour for these renormalons could already be
used with a good accuracy at order α3

s. The Borel sum of the model (assumed to yield
the ”true” value of the Adler function) was used to compute δ(0) and compared with CIPT
and FOPT results at increasing orders of perturbation theory, leading to favouring FOPT.
In ref. [6], we discussed some assumptions of this model, showing that different conclusions,
favouring either FOPT, CIPT or neither could be drawn from rather simple variations of this
model (asymptotic behaviour setting in than at a higher order than α3

s, presence of several
subleading infrared renormalons), as well as they depend on the particular weight chosen
for the analysis. An alternative model [7] led to the conclusion that a different treatment
of FOPT and CIPT could lead to the same result at high orders for some classes of models
combining renormalon calculus and conformal mapping.
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The inclusive τ hadronic width provides one of the most precise determinations of the strong
coupling, since despite the low scale, non-perturbative condensate contributions are below 5%
of the perturbative correction [1]. Subtracting the condensate terms (PC) from the ALEPH
data, the experimental value of the perturbative QCD correction relative to the parton model
decay is δ

(0)
phen = 0.2037± 0.0040exp ± 0.0037PC. Theoretically, the perturbative expansion is

obtained from the vector and axial-vector current correlation functions, whose expansion is
known to O(α4

s) [2], by integrating the Adler function along a circle in the complex Q2 plane.
Depending on whether one performs a strict expansion of this integral in αs(mτ ) (fixed order,
FO) or integrates the running coupling along the circle exactly (contour-improved, CI), one
obtains

δ
(0)
FO =

∞
∑

n=1

a(m2
τ )

n
n
∑

k=1

k cn,k Jk−1 and δ
(0)
CI =

∞
∑

n=1

cn,1 J
a
n(m

2
τ ), (1)

respectively. In both cases, the dynamical input resides only in the expansion coefficients
cn,1 of the Adler function, but when one truncates the expansions at some value of n, the
resulting value of δ(0) is different, since the two expressions treat formally higher-order terms
differently. The numerical effect is significant, as can be seen from

δ
(0)
FO = 0.1082 + 0.0609 + 0.0334 + 0.0174 + 0.0088 = 0.2288

δ
(0)
CI = 0.1479 + 0.0297 + 0.0122 + 0.0086 + 0.0038 = 0.2021 (2)

(using the estimate c5,1 = 283 and αs(mτ ) = 0.34), and increases as more terms are added,
which points to a systematic problem in one of the two approaches. As will be explained
below, the fixed-order approach is strongly preferred. Repeating the fixed-order analysis of
[3] with δ

(0)
phen as given above we obtain

αs(mτ ) = 0.3199± 0.0034exp ± 0.0031PC ± 0.0026c5,1
+0.0105
− 0.0052 (scale), (3)

which implies αs(MZ) = 0.1185± 0.0004exp
+0.0013
− 0.0008 (th)± 0.0002evol.

The CI method is often argued to be the method of choice since it exhibits a faster
apparent convergence and since the expansion of the running coupling on the circle is barely
convergent near the Minkowskian axis Q2 < 0. However, the expansion of the Adler function
has zero radius of convergence (due to renormalon and other singularities in the Borel plane
[4]), and is only asymptotic. The finite radius of convergence of the coupling expansion along
the circle is therefore of subordinate significance – the assumption made in the CI approach
is that the higher order terms in the Adler function series are negligible in comparison to
running coupling effects despite their factorial divergence.
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In order to clarify the discrepancy between the FO and CI approaches, in [3] we included
in addition to the known cn,1 all available information on the structure of the large-order
behaviour of the Adler function. The analysis is based on the assumption that the Adler
function series is sufficiently regular, as seen in the known terms, and that sufficiently many
low-order terms are known, so that one can smoothly connect them with an ansatz for the
Borel transform that contains the leading singularities. (This does not imply that the series
is in the asymptotic regime for n ≈ 5 – the known terms do not exhibit factorial behaviour. A
pattern with several singularities being relevant at intermediate n is expected by comparison
with the exact all-order series in the large-β0 expansion [5].) With such an ansatz for the
Borel transform we find that only the FO series approaches the “true” result represented
by Borel sum within its ambiguity, shown as the grey band in the figure above (plotted for
αs(mτ ) = 0.34), while the CI approximation is systematically too low. In particular, this
conclusion applies to n = 4, 5, up to which the series is already known (or estimated).

How general is this conclusion? An important point, specific to the hadronic τ width,
is that the gluon condensate contribution is strongly suppressed. This is reflected in large
cancellations in the large-order behaviour of the series coefficients cn,1+gn of the expansion of
the τ hadronic width associated with the first infrared renormalon: (cn,1 + gn)/cn,1 ∼ 1/n2.
These cancellations are destroyed in the CI expansion, which sums the running coupling
terms gn, but drops the Adler function coefficients cn,1 in higher orders. The CI method
therefore fails whenever the first infrared renormalon makes the dominant contribution to
the series of the hadronic τ width in intermediate orders. We find that this is always the
case unless we choose an ansatz in which we suppress this contribution by hand, or allow
large and unnatural cancellations between the first and second infrared renormalon.
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FOPT and CIPT in τ Decays
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One of the largest theoretical uncertainties assigned to the strong coupling constant
αs as determined from hadronic tau decays [2,3,4,5] (for recent reviews see [6,7,8,9,10,11])
stems from the differences in the results for Fixed Order Perturbation Theory (FOPT),
Contour Improved Perturbation Theory (CIPT) and Renormalon Chain Perturbation Theory
(RCPT). The results of [1] are presented here where it is shown that FOPT and the FOPT
part of RCPT have much larger errors than usually assumed and agree within their respective
errors with CIPT. For the non-strange decay width of the τ the perturbative part is given
by

1 + δpert =
4
∑

n=0

Kn

2πi

∮

|s|=m2
τ

ds

s

(

1− 2
s

m2
τ

+ 2
s3

m6
τ

− s4

m8
τ

)(

αs(−s)
π

)n

+O(αs
5), (1)

with the known coefficients Kn=0..4 [12,13,14,15,16,17]. The fifth-order term has been es-
timated to K5 ≃ 275 in [17], but the large deviation of the exact K4 from it’s prediction
suggests that a 100% error on K5 is realistic and K5 = 400±400 is used in [1]. The methods
FOPT and CIPT [5] differ in the way (1) is calculated. In the CIPT approach the β-function
is used to numerically solve αs(−s) in the complex s-plane by starting with αs(m

2
τ ). The in-

tegrand is thus calculated in small steps on the circle |s| = m2
τ and the sum of all pieces gives

the total integral. For the FOPT method the β-function and its derivatives are Taylor ex-
panded in s around s0 = m2

τ which leads to a power series representation of αs(−s) in powers
of αs(m

2
τ ). The series is truncated at the desired order (here the 5th) in the strong coupling

and inserted in the integral which becomes solveable now. For the purpose of showing the
impact of the arbitrary choice to develop around s0 = m2

τ this approach can be generalized
to first evolve αs(m

2
τ ) to αs(m

2
τ exp(iϕ0)) with the numerically solved β-function and derive

the Taylor series of δpert around this new point. In order to preserve the symmetry

αs(m
2
τ exp(−iϕ)) = αs(m

2
τ exp(iϕ))

∗ (2)

the upper semi-circle is developed around s0 = m2
τ exp(iϕ0) while the lower semi-circle is

developed around s∗0 = m2
τ exp(−iϕ0). Other schemes to preserve this symmetry and to

avoid imaginary contributions to δpert lead to similar results and are not further discussed.
Numerically the central result reads [1]:

δpert = a+ 0.849 b+ (−4.5ϕ0 + 0.808) a b+ (1.910ϕ0 + 5.202) (a2 − b2) +

(−5.063ϕ2
0 + 5.214ϕ0 + 26.37) (a3 − 3 a b2) + (4.297ϕ2

0 + 27.41ϕ0 + 12.36) (b3 − 3 a2 b) +

(−9.669ϕ3
0 − 101.5ϕ2

0 − 71.63ϕ0 + 127.1) (a4 − 6 a2 b2 + b4) + (3)

(45.56ϕ3
0 − 100.9ϕ2

0 − 918.6ϕ0 − 521.1) (a3 b− a b3) +

(25.63ϕ4
0 − 92.90ϕ3

0 − 1221ϕ2
0 − 1273ϕ0 +K5 + 307.8) (a5 − 10 a3 b2 + 5 a b4) +

(21.76ϕ4
0 + 324.8ϕ3

0 + 271.8ϕ2
0 − 1612ϕ0 + 0.849K5 − 1414) (b5 + 5 a4 b− 10 a2 b3),
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with ϕ0 ∈ [−π, 0], and αs(m
2
τ exp(iϕ0))/π = a + ib, which resembles the usual FOPT result

for ϕ0 = 0 and b = 0.
This FOPT result depends largely on the choice of ϕ0. FOPT agrees with CIPT around

ϕ0 ≃ −1 but spans over a much larger range of δpert values. Compared to the uncertainty
from the neglected higher orders this intrinsic error is 4 times larger as none of the choices
for ϕ0 should be excluded. The default choice of ϕ0 = 0 leads to the largest possible value
of δpert and therefore αs from FOPT used to be smaller than from CIPT. The deviation can
however not be attributed to higher order terms in the series of δpert.

For the Renormalon Chain Perturbation Theory (RCPT) δpert can be written as

δRCPT
pert = δrenormalon − δFOPT

large−β0
+ δFOPT

pert , (4)

where the three terms in the sum refer to the renormalon chain result, the large-β0 re-
summed result up to the order used in FOPT, and the FOPT result, respectively. For the
FOPT correction and the fixed order large-β0 correction the same arbitrariness of the choice
of ϕ0 as discussed above exists, as long as both the FOPT term and the fixed order large-β0
term are expanded around the same ϕ0. Therefore the variation of δFOPT

pert − δFOPT
large−β0

with ϕ0

is a source of uncertainty in the RCPT approach. The generalized δFOPT
large−β0

can be derived
from the generalized FOPT solution by setting βn = 0 for n > 0 and replacing the Kn with
β
(n−1)
0 κn, which are given up to n = 4 in [18] and up to n = 12 in [11]. The numerical

form is given in [1]. Furthermore the αs in the renormalon part and the fixed order part
of eq. (4) refers to the same quantity. This is probably not the case. The renormalon part
in [18] is derived from the one-loop coupling in the so-called V scheme, αV

s (µ
2) which is

matched on the 0-loop level to αMS
s (exp(−5/3)µ2). The problem therefore is that we have a

coupling constant on the 3-loop level in the FOPT parts, but treat it as a one-loop coupling
in the renormalon parts. A possible solution would be to use 2-loop matching to go from the
MS-scheme to the V scheme [19,20]. The generalized RCPT result with 2-loop matching for
αV
s shows a large overlap with the CIPT result and the uncertainties in the deduced strong

couplings from both theories are much smaller than previously assumed [1].
Using the same numerical value for δpert = 0.2042±0.0038exp±0.0033non−pert as obtained

in [10] and used in [11], where the first error is the experimental one, dominated by the non-
strange hadronic decay ratio of the τ , Rτ,V+A and the second is due to the non-perturbative
and quark-mass corrections, the results for CIPT and generalized FOPT and RCPT read [1]:

αCIPT
s (m2

τ ) = 0.3406± 0.0047exp ± 0.0041non−pert ± 0.0066K5
,

αFOPT
s (m2

τ ) = 0.3535± 0.0061exp ± 0.0053non−pert ± 0.0208ϕ0

+0.0005
−0.0001K5

, (5)

αRCPT
s (m2

τ ) = 0.3440± 0.0030exp ± 0.0026non−pert ± 0.0061ϕ0
± 0.0019K5

.,

All three results agree within the error due to ϕ0 which is very large for FOPT but moderate
in case of RCPT. The difference between CIPT and RCPT is of the same size as the error
due to ϕ0 for RCPT and the average between both values (and conservatively assigning the
larger of the two results errors to the average) leads to [1]:

αs(m
2
τ ) = 0.3423± 0.005exp ± 0.007∆K5

± 0.004non−pert
+0.005
−0.001µ

, (6)

where the fourth error is due to the variation of the renormalization scale. The total theo-
retical error (including the non-perturbative part) is with ±0.008 only marginally larger
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than the experimental error. Evolving αs given by eq. (6) from mτ = 1.7768GeV to
mZ0 = 91.1876GeV gives [1]:

αs(m
2
Z0) = 0.1213± 0.0006exp ± 0.0008∆K5

± 0.0004non−pert
+0.0005
−0.0001µ

± 0.0002ev, (7)

where the last error is the evolution uncertainty due to the variation of the thresholds
mq < mthresh < 2mq and the quark masses itself within their respective errors.
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Current estimates of the size of nonperturbative effects on the precision determination of
αs from hadronic τ decays are incomplete for at least three reasons: (i) In none of the existing
determinations has the effect of duality violations (DVs) been estimated quantitatively. We
demonstrated in previous work [1], [2] and in this talk that effects from DVs may turn out
to be numerically significant, and that the use of only doubly-pinched moments of the τ
spectral functions in order to suppress DVs is not reliable. (ii) While the moments used by
ALEPH[4] and OPAL[5] in principle probe the OPE up to dimension D=16, the analyses
retain contributions only up to D=8. This was shown to be not self-consistent [3]. (iii) The
most precise quoted values for αs are based on ALEPH data. However, it is now known that
correlations due to the unfolding of spectral functions were omitted in ALEPH’s latest data
analysis [2]. Our preliminary explorations indicate that the impact of this on the error in αs

is not necessarily negligible.
The physical reason for the appearance of DVs is the presence of resonances in the vector

(V ) and axial (A) τ spectral functions, which neither QCD perturbation theory nor the OPE
describe adequately. As demonstrated in Ref. [1], it is possible that the pattern of resonances
is rather different in vector and axial channels, and this could lead to a significant effect on
the value of αs even if the sum of V and A spectral functions (V + A) looks relatively flat
in the region between s ≈ 1 GeV2 and s = m2

τ . In other words, the assumption that DVs
can be safely neglected in V +A may turn out not to be justified. Because of this and point
(ii) above, the estimates of the nonperturbative part of Rτ (and other moments) used in the
literature need to be revisited.

There is no quantitative theory of DVs in QCD, and in order to investigate this issue in
more detail, one has to resort to a (physically reasonable) model [1]. This makes it possible
to explore finite-energy sum rules with simple, nonpinched weights. Figure 1 shows a fit to
the nonstrange integrated vector spectral function using the sum rule

∫ s0

0

ds ρexp(s) = − 1

2πi

∮

|s|=s0

ds ΠOPE(s)−
∫ ∞

s0

ds ρDV (s) . (1)

Here ρexp(s) is the experimental spectral function, available up to s0 = m2
τ , ΠOPE(s) the

OPE expression for the vacuum polarization, and ρDV (s) the “duality-violating” part of
the spectral function, i.e., the part not present in Im ΠOPE(s + iǫ). The contour integral
over ΠOPE(s) is parametrized by αs(m

2
τ ) and the OPE condensates. The functional form of

ρDV (s) is not known from first principles. Following Ref. [1], we model it as

ρDV (s) = κ e−γs sin (α + βs) , (2)

which introduces four new parameters into the fits to experimental data. We restrict s0 to
an interval s0 ∈ [smin, m

2
τ ], and we vary smin in order to check for stability. For the physical
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Figure 1: Fit to Eq. (1), with the ansatz (2) (red curve) and without the ansatz (green curve).

motivation of the model of Eq. (2), see Ref. [1]. The fit in Fig. 1 was done with OPAL data
[5], and smin = 1.5 GeV2. The result for αs(m

2
τ ) is

αs(m
2
τ ) = 0.307(18)(4)(5) (FOPT) , αs(m

2
τ ) = 0.322(25)(7)(4) (CIPT) , (3)

where errors are the χ2 error from the fit, from varying smin = 1.5 ± 0.1 GeV2, and from
varying the estimated coefficient of (αs/π)

5 in the Adler function in the range 0 to 566.
Fig. 1 demonstrates that DVs cannot, in general, be neglected in analyzing hadronic τ

decay data, even integrated versions thereof. This is confirmed by explorations which also
include the axial channel in the fits. Essentially all existing τ -based extractions of αs neglect
DVs, and thus assume model (2) with κ set to zero by hand. Such an assumption is necessar-
ily accompanied by an uncertainty not accounted for in currently quoted errors for αs. Fig.
1 shows that it is dangerous to assume, a priori, that this uncertainty can be neglected for
analyses involving doubly-pinched weights. We are presently studying different combinations
of V and A spectral-function moments with the goal of quantifying this uncertainty. This
may help reducing the fitting errors on αs, but at present, if one wishes to be conservative,
and stick only to results not subject to additional, currently unquantified uncertainties, one
should treat αs from τ decays as being known to at best the accuracy given in Eq. (3).
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The aim of this brief contribution is to recollect the motivation for the evaluation of the
α4
s corrections to the semileptonic tau decay rate, to describe the essential methods and, last

not least the numerous cross checks which have been performed to establish the correctness
of the result which, up to now, has not yet been verified by an independent calculation.

Removing the effect of the CKM matrix element Vud, QED and as well as electroweak
corrections and subtracting a small nonperturbative piece, the perturbative QCD corrections
to the Cabbibbo allowed decay rate can be collected in the quantity δP which has been
experimentally determined to be close to 0.2 with a relative error of about 2%. In view
of the relatively large value of αs at this low scale, corrections of higher orders play an
extremely important role in the extraction of the strong coupling constant. In particular it
seemed important to study the difference between the results based on contour improvement
and fixed order perturbation theory, that had been observed and studied in [1], and to
investigate the behavior of this difference upon inclusion of higher orders.

The key element is the evaluation of the α4
s correction to the vector current correlator

Π(q2), more precisely, its absorptive part. Exploiting the renormalization group equation for
the vacuum polarization function, it can be demonstrated that this requires the evaluation of
the four-loop contributions to Π, including its constant (non-logarithmic) part and the five-
loop anomalous dimension of Π, which can be obtained from a suitably chosen combination
of four-loop propagator integrals [2]. The problem is thus reduced to the evaluation of the
finite parts of four-loop massless propagators. This is performed in two steps: the algebraic
reduction to a sum of master integrals f (α), multiplied with coefficients C(α) which depend
on the amplitude to be evaluated and which are known to be rational functions of the
space-time dimension d, C = P n/Qm, with polynomials P n and Qm and m + n typically
of order 60 or larger.(Dimensional regularization is understood throughout.) In [3],[4] a
method has been proposed which allows to solve for the coefficients C in the limit of large
d and to represent the coefficients of its (1/d) expansion in terms of Gauss integrals. Given
sufficiently many terms in the expansion, the rational function can be fully reconstructed,
and the reduction to masters can be solved purely ”mechanically”, albeit at the expense
of enormous algebraic effort. This has required the development of PARFORM [5] and
TFORM [6], parallel versions of FORM [7] with speedups around ten for twenty processors.
The analytic results for the 28 master integrals have been obtained [8] using the method of
”glue and cut” and were obtained in 2004 already. Only recently these master integrals were
also evaluated numerically [10], using the program FIESTA [11], and agreement to four up
to five significant figures has been observed.

Using these ingredients, the Adler function and thus the perturbative corrections to
the tau decay rate and to the R ratio as measured in electron-positron annihilation were
evaluated in order α4

s, first for QCD [9] and later for a general gauge theory [14]. A completely
independent cross check of the reduction to master integrals has not yet been possible.
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However, recently the four-loop corrections to the Bjorken sum rule have been obtained
[14]. Using then a generalized version [13] of the Crewther relation [12] which connects in a
nontrivial way the QCD corrections to the Adler function and to the Bjorken sum rule and
the QCD beta function, one finds six nontrivial constraints which are indeed fulfilled [14] .
This observation gives additional confidence in both results. A more detailed discussion of
various technical aspects can be also found in Ref. [15].

Varying the renormalization scale µ2/M2
τ in the range 0.4 – 2 one finds [9] αFO

s (Mτ ) =
0.322±0.004±0.02 and αCI

s (Mτ ) = 0.342±0.005±0.01 for the two options discussed above.
Here the first error results from the error in δP , the second one from the µ variation. The
difference between FO and CI perturbation theory remains unchanged, as anticipated in [1].
Taking the mean value between the two results as central value and 0.015 as an estimate of
the theory uncertainty we find

αs(Mτ ) = 0.332± 0.005± 0.015 (1)

and, after evolving up to the Z mass

αs(MZ) = 0.1202± 0.0019 (2)

as our final result. This is well consistent with the value of αs as determined directly from
the hadronic Z-boson decay rate, including the corresponding NNNLO corrections [1]

αs(MZ) = 0.1190± 0.0026 (3)
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Running and Decoupling of αs
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The β function governs the renormalization scale dependence of the strong coupling and
is known to four-loop accuracy since almost 14 years [1][2]. There are different ways to solve
the corresponding differential equation. The prefered method is the numerical solution with
truncation of β(αs) at the desired order. There are also several approximate (analytical)
expressions, e.g., the one based on the iterative (perturbative) solution where the result for
αs(µ) is given as an expansion in 1/L = 1/ ln(µ2/Λ2) [3]. This formula should be used
with care, in particular for small renormalization scales µ. If one considers, e.g., µ = Mτ

one observes a shift of +0.004 after including the four-loop corrections and negative shift of
approximately the same order of magnitude at five-loop level. These numbers have to be
compared with the current experimental precision which is cited as ±0.005 in Ref. [4] (see
also the other contributions on αs from τ decays in these proceedings).

Next to the running itself also the decoupling of heavy quarks form the running of the
strong coupling constant is a crucial ingredient of the precision determination of αs. Every
time a heavy quark threshold is crossed one has to apply the decoupling constants which

relate αs with nf active quark flavours, usually denoted by α
(nf )
s , to the coupling with only

nf − 1 active quark flavours. The decoupling constants are obtained by matching nf -flavour
QCD to the effective theory with the number of quarks equal to nf − 1. The theoretical
framework for the calculation of the decoupling constants has been set up in Ref. [5] where
formulae are given relating l-loop corrections to l-loop vacuum integrals.

µb(GeV)

α s(M
Z)

0.1197

0.1198

0.1199

0.12

0.1201

0.1202

0.1203

0.1204

0.1205

0.1206

1 10 10
2

As a consequence of the decoupling relations αs(µ) is not a continuous function of µ
but has finite steps at the energy scale where the heavy quark is integrated out, µdec. This
energy is not fixed by theory, should, however, be in the vicinity of the heavy quark mass. On
general grounds the dependence on µdec should become weaker if higher order perturbative
corrections are included in the analysis. This is demonstrated in the figure above where
α
(5)
s (MZ) is computed using α

(3)
s (Mτ ) as a starting point. The decoupling of the charm
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quark is performed at the fixed scale µc = 3 GeV and the decoupling scale of the the bottom
quark µb is varied in the broad range between 1 GeV and 100 GeV. N -loop running goes
along with (N − 1)-loop decoupling. Results are shown for N = 1 (upper right dotted line),
N = 2 (steep dashed line), N = 3 (lower dashed line) and N = 4 (dash-dotted line). One
observes a dramatic reduction of the µb dependence with increasing N resulting in a quite
flat four-loop result (Note that the scale on the ordinate only varies by 0.0009.).

For comparison we show in the figure two more curves which correspond to N = 5. They
incorporate the four-loop decoupling relations [6][7]. For the unknown five-loop coefficient
of the β function we have chosen β4 = 0 (solid line) and β4 = 150 (dashed line parallel to
the solid one; the normalization corresponding to {β0, β1, β2, β3} ≈ {1.92, 2.42, 2.83, 18.85}
has been chosen).

From the figure above it is possible to estimate an uncertainty on α
(5)
s (MZ) as obtained

from α
(3)
s (Mτ ) due to missing higher order corrections. If we restrict ourselves to a range of

µb between 2 GeV and 10 GeV and take the difference between the three- and four-loop curve
as an estimate for the uncertainty we obtain δα

(5)
s (MZ) ≈ 0.0002. The difference between the

four- and five-loop (dashed) curve would even lead to δα
(5)
s (MZ) ≈ 0.0003. The variation of

α
(5)
s (MZ) due to the variation of µb leads to an additional uncertainty of δα

(5)
s (MZ) ≈ 0.0002.

A similar uncertainty is obtained from the variation of µc between 2 GeV and 5 GeV. (This
can easily be checked with the program RunDec [8].) Thus a total uncertainty of ±0.0004

(obtained by adding the three uncertainties in quadrature) should be assigned to α
(5)
s (MZ).

The uncertainties induced by the errors in the quark masses are much smaller.
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The FORTRAN package GAPP [1] (Global Analysis of Particle Properties) computes
so-called pseudo-observables and performs least-χ2 fits in the MS scheme. Fit parameters
besides αs andMH include the heavy quark masses which are determined from QCD sum rule
constraints thus affecting and being affected by αs. When possible, analytical expressions
(or expansions) are used to capture the full dependence on αs and the other fit parameters.

Z-pole observables from LEP 1 and SLC include the Z-width, ΓZ , hadronic-to-leptonic
partial Z-width ratios, Rℓ, and the hadronic peak cross section, σhad. These are most sensitive
to αs by far, but the weak angle enters and needs to be known independently. Thus, the
extracted αs depends on the set of other, purely electroweak (EW) measurements employed
in the fits, such as various asymmetries and experiments exploiting parity violation. The
statistical and systematic experimental correlations of ΓZ , σhad and the Rℓ are known, small
and included. The parametric uncertainties (such as fromMH) are non-Gaussian but treated
exactly. The theoretical errors in ΓZ , σhad, and the Rℓ are identical, and induce a negligibly
small uncertainty in ∆αs(MZ) = ±0.00009, dominated (±0.00007) by the axial-vector singlet
contribution [2] which is unknown at O(α4

s). As in the case of τ decays, one may opt for
either fixed-order perturbation theory (FOPT) or contour-improved perturbation theory
(CIPT) [3], and we take the difference1 as the massless non-singlet uncertainty (±0.00005).
The W -width also features a strong αs dependence, but it is currently not competitive and
usually interpreted rather as a measurement of a combination of CKM matrix elements.

The global EW fit excluding τ decays (the Z-pole alone) yields αs(MZ) = 0.1203±0.0027
(0.1198 ± 0.0028). These results are expected to be stronger affected by physics beyond
the Standard Model than other αs determinations which is the primary reason to include
another αs constraint in the fits as a control. If the new physics affects only the gauge boson
propagators (oblique corrections) the resulting αs(MZ) = 0.1199+0.0027

−0.0030 hardly changes, while
allowing new physics corrections to the Zbb̄-vertex gives the lower αs(MZ) = 0.1167±0.0038.

As the aforementioned αs control we choose the τ lifetime, ττ , not least because of its
transparent (even if controversial) theory uncertainty. Our master formula [4] reads,

τ expt ≡ τ [Bexpt
e,µ , τ exptdirect] = ~

1− Bexpt
s

Γtheo
e + Γtheo

µ + Γtheo
ud

= 291.09± 0.48 fs , (1)

where τ exptdirect = 290.6 (1.0) fs is the directly measured τ lifetime [5]. τ [Bexpt
e,µ ] = 291.24 (0.55) fs

is the combination of indirect determinations, using τ [Be,µ] = ~Bexpt
e,µ /Γtheo

e,µ and the experi-
mental branching ratios, Bexpt

e = 0.1785 (5) and Bexpt
µ = 0.1736 (5), together with their 13%

anti-correlation [5]. Decays into net strangeness, S, are plagued by the uncertainty in the
MS strange mass, m̂s(mτ ), and a poorly converging QCD series proportional to m̂2

s, so that
in Eq. (1) we employ the measured ∆S = −1 branching ratio, Bexpt

s = 0.0286 (7) [5].

1This difference has the opposite sign from τ decays indicating that their theory errors are uncorrelated.
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The partial τ -width into light quarks contains logarithmically enhanced EW corrections,
S(mτ ,MZ) = 1.01907± 0.0003 [6], and reads (employing FOPT as advocated in Ref. [7]),

Γtheo
ud =

G2
Fm

5
τ |Vud|2

64π3
S(mτ ,MZ)

(

1 +
3

5

m2
τ

M2
W

)

× (2)

(

1 +
αs(mτ )

π
+ 5.202

α2
s

π2
+ 26.37

α3
s

π3
+ 127.1

α4
s

π4
− 1.393

α(mτ)

π
+ δq

)

,

where δq collects quark condensate, δNP [8], as well as heavy and light quark mass effects. The
dominant experimental and theoretical errors are given in the following tables, respectively:

source uncertainty ∆αs(MZ)

∆τ expt ±0.48 fs ∓0.00039

∆Bexpt
s ±0.0007 ∓0.00017

∆Vud ±0.00022 ∓0.00007

∆mτ ±0.17 MeV ∓0.00002

total 0.00043

source uncertainty based on ∆αs(MZ)

PQCD ∓0.0119 α4
s-term

+0.00167
−0.00137

RGE β4 = ∓579 [1] +0.00038
−0.00034

δNP ±0.0038 [8] ∓0.00048

OPE—— ±0.0008 [9] & [10] ∓0.00012

total +0.00178
−0.00150

The perturbative QCD (PQCD) error dominates and is estimated as the α4
s-term in Eq. (2).

It is re-calculated in each call in the fits to access its αs-dependence and features asymmetric.
It basically covers the range from the higher values favored by CITP down to the lower ones
one obtains from assuming that the roughly geometric form of FOPT continues. Note that if
CIPT is used, the error from the renormalization group evolution (RGE) parametrized by the
unknown 5-loop β-function coefficient, β4, and part of the PQCD error are correlated. Effects
breaking the operator product expansion, OPE——, are estimated by assuming the instanton
motivated functional form [9], Aα−6

s exp[−2π/αs(s0)], and adjusting A to the difference
between the OPE and data curves in Fig. 22 of Ref. [10]. Our result is αs[ττ ] = 0.1174+0.0018

−0.0015.
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Event shapes have been widely used for extracting αs values from e+e−-collision data.
They measure the extent to which the energy flow in an event departs from that of a simple

2-body qq̄ configuration. As as example, the thrust T = max~nT

∑
i |~pi.~nT |
∑

i |~pi|
, is equal to 1 for

a perfect back-to-back two-parton event and 2/3 for a symmetric 3-parton event. Since the
distribution of thrust values is sensitive to gluon radiation, it can be used to extract a value
for αs. Various elements go into such an extraction: a perturbative fixed order calculation of
the distribution (up to NNLO [1]); optionally, a resummation to all orders of logarithmically
enhanced terms such as αn

s ln
2n−1(1−T ) (up to N3LL for thrust and heavy-jet mass [3], NLL

for other observables [2]); a model for non-perturbative corrections (either Monte-Carlo based
or analytical); a choice of the range of event-shape values to be fitted, generally taken to
ensure that the relation between αs and the prediction of the event-shape distribution can
be considered reliable; and the choice of observables to use.

A summary of extractions of αs is given fig. 1. Though they nearly all involve the
same NNLO perturbative calculation [1], there is a substantial spread in central values. The
associated uncertainties, nearly always dominated by theory and hadronisation uncertainties,
are also quite different from one extraction to another.

For the upper two results of fig. 1, the perturbative input is just the NNLO predic-
tion, supplemented with an estimate of hadronisation corrections derived from the difference
between parton-level and hadron-level Monte Carlo distributions. The larger theory uncer-
tainties for the JADE data reflect their lower centre of mass energies, where the larger value
of αs degrades the convergence of the perturbative series. The next two results, which still
use MC hadronisation, supplement the NNLO calculation with matching to a NLL resum-
mation, necessary in order to obtain a reliable perturbative prediction near the 2-jet limit.
The results with resummations tend to be lower than those without (and JADE lower than
ALEPH) but all remain consistent within total errors.

The use of hadronisation corrections from Monte Carlo generators brings with it the issue
that a MC “parton level” is not easily related to the parton level of NNLO or resummed
calculations. The systematic uncertainty associated with this difference of definitions is
particularly subtle, insofar as the perturbative calculations implicitly integrate over the non-
perturbative region. The 3 results that form the central block in fig. 1 attempt to work
around this issue by using analytical hadronisation models [4,5], which explicitly attempt
to remove the double counting between a parametrised hadronisation contribution and the
non-perturbative component of the NNLO/resummed calculation. Most striking is the SCET
result, both for its very small error and its apparent inconsistency with the world average.
In favour of the SCET result, is the finding that as the perturbative order is increased, the
result remains stable to within estimated uncertainties and the χ2 per d.o.f. decreases. On
the other hand, modest variations in the fit range lead to a change in αs of ±0.0015, 1.5
times the quoted theory uncertainty. This hints at missing contributions that are larger
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αs(MZ)

all ev.shp, JADE, NNLO/NLL [0810.1389]

thrust, all exp, NNLO/NLL/1/Q [0809.3326]
thrust, all exp, NNLO/N3LL/SCET [1006.3080]

ev.shp moments, JADE/OPAL, NNLO/1/Q [0911.2422]

3-jet, ALPEH, NNLO [0910.4283]
4-jet, JADE,  NLO/NLL [0707.0392]
5-jet, ALEPH,  NLO [1008.5313]

 0.11  0.115  0.12  0.125  0.13

all ev.shp, ALEPH, NNLO [0712.0327]

all ev.shp, JADE, NNLO [0810.1389]

all ev.shp, ALEPH, NNLO/NLL [0906.3436]

BETHKE
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Figure 1: Summary of αs extractions from e+e− event shape and jet-rate measurements.
Thick (red) error bars are experimental only (statistical and systematic), while the thinner
(blue) error bars additionally include the theoretical (and hadronisation) systematics.

than the estimated theory uncertainties. In this context, e.g., it is known that hadron-mass
effects (and, experimentally, whether or not π±, etc. are taken to have decayed) can have a
significant impact on αs extractions that use analytical hadronisation models [6]. Studies of
observables beyond the thrust will also provide valuable insight.

One possible workaround for the difficulties in treating hadronisation is simply not to
correct for it and, perhaps, take its whole estimated impact as a systematic error. This was
essentially the approach for the 5-jet rate extraction, and is potentially an option for jet rates
because hadronisation tends to be smaller than for event-shape type observables. It may be
of interest to investigate it also for the 3-jet rate, which seems to have a more convergent
perturbative series than other observables and has been studied so far with only a subset of
the e+e− data.

References

[1] A. Gehrmann-De Ridder et al., Phys. Rev. Lett. 99 (2007) 132002; S. Weinzierl, Phys.
Rev. Lett. 101 (2008) 162001.

[2] S. Catani et al., Nucl. Phys. B407 (1993) 3; Y. L. Dokshitzer et al., JHEP 9801 (1998)
011; A. Banfi et al., JHEP 0201 (2002) 018.

[3] T. Becher, M. D. Schwartz, JHEP 0807 (2008) 034; Y. -T. Chien, M. D. Schwartz
JHEP 1008 (2010) 058.

[4] Y. L. Dokshitzer, B. R. Webber, Phys. Lett. B404 (1997) 321-327.

[5] R. Abbate et al., arXiv:1006.3080 [hep-ph].

[6] G. P. Salam, D. Wicke, JHEP 0105 (2001) 061.

41
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Event shapes and jet cross sections in e+e− annihilation were measured to a high accuracy
at LEP and at previous colliders at lower energies. By comparing the data with the QCD
description of these observables, it is possible to extract αs. During LEP times, only the next-
to-leading order (NLO) QCD corrections (plus resummation of logarithmically enhanced
terms) were available, and the theoretical uncertainty from missing higher order corrections
was the dominant source of error on the αs extraction. With the recent calculation of
next-to-next-to-leading order (NNLO) corrections to three-jet production and related event
shapes [1], these data can be revisited in view of an improved determination of αs.

To compare with data, the perturbative NNLO prediction (or matched [2] to next-to-
leading logarithmic resummation, NNLO+NLLA) is supplemented by quark mass effects (to
NLO) and has to be corrected for hadronization effects. The standard procedure to estimate
hadronization effects is to compare parton-level and hadron-level predictions obtained with
multi-purpose (leading-order, leading-log) event generator programs for the observables. It
has to be kept in mind that the hadronization models in these generators have been tuned
extensively to precisely those LEP data sets that are analyzed now for the αs extraction.

With this procedure, αs(MZ) has been determined from ALEPH [3], JADE [5] and
OPAL [6] data, and the results are summarized in Table 1. Several important observations
were made in these studies. First and foremost, inclusion of the NNLO corrections improves
the mutual consistency of the αs extractions from the different shape variables. Compared to
previous NLO studies, the theory error is lowered by almost a factor two. It increases when
NLLA resummation is included, since this order of resummation is insufficient to match onto
NNLO. A systematic tension between the ALEPH and OPAL extractions can be observed,
which can be explained in part by different fit ranges and by the different treatment of quark
mass effects.

NNLO ALEPH [3] 0.1240±0.0008(stat)±0.0010(exp)±0.0011(had)±0.0029(th)

OPAL [6] 0.1201±0.0008(stat)±0.0013(exp)±0.0010(had)±0.0024(th)

NNLO ALEPH [4] 0.1224±0.0009(stat)±0.0009(exp)±0.0012(had)±0.0035(th)

+NLLA JADE [5] 0.1172±0.0006(stat)±0.0040(syst)±0.0030(th)

OPAL [6] 0.1189±0.0008(stat)±0.0016(exp)±0.0010(had)±0.0036(th)

Table 1: Determinations of αs(MZ) from event shape data based on NNLO and
NNLO+NLLA, combined with hadronization corrections from multi-purpose event gener-
ator programs.

Using hadronization corrections from more recent generators (HERWIG++, combined
with POWHEG or MC@NLO), results are obtained that are substantially different from
the PYTHIA values, and outside the band obtained from the different legacy generators. It
may thus be fair to conclude that the the hadronization models in the generators may be
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over-tuned in order to compensate the shortcomings of the perturbative description in these
programs and that the hadronization uncertainty on the αs extraction may be larger than
assumed previously, and could actually be a dominant source of error. In order to circumvent
this problem, one should either restrict to observables with small hadronization corrections
(as for example jet rates) or turn to analytic hadronization models which allow a better
order-by-order matching to the perturbative description of the event shape distributions. In
two different studies, we pursued both approaches.

From analytic approaches to hadronization (e.g. dispersive model), it is known that the
leading power corrections to most event shapes are of order 1/Q. Among the standard set
of shape variables, this power correction is absent only in Y3 (hadronization corrections to
this variable start at 1/Q2). The three-jet rate R3(ycut), which derives from Y3 is thus less
sensitive to hadronization than the event shape distributions. We analyzed the LEP1 data
on R3 and extracted αS from the measurement at ycut = 0.02 as [7]

αs(MZ) = 0.1175± 0.0020 (exp)± 0.0015 (theo).

Extractions at different jet resolution are highly correlated, and yield consistent results.
Hadronization corrections to the moments of event shape distributions are additive. The

moments are therefore very well suited to to disentangle perturbative contributions from
hadronization effects. After extending the dispersive model for hadronization corrections to
match onto the perturbative NNLO expression, we used data on event shape moments from
JADE and OPAL to determine αs(MZ) and the hadronization parameter in a combined
fit [8], yielding:

αs(MZ) = 0.1153± 0.0017 (exp)± 0.0023 (theo).

The hadronization corrections obtained in this approach are considerably larger than what
is predicted by the legacy generators. The proper matching of the hadronization corrections
onto the perturbative expression results in a considerable reduction of the theory uncertainty.
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Next-to-Next-to-Leading Order and “Classic” Power Corrections
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Here I report on an analysis of the thrust distribution in e+e− annihilation, performed
in collaboration with Richard Davison [1], in which the next-to-leading-logarithmic (NLL)
resummed prediction of [2] was matched to the next-to-next-to-leading (NNLO) fixed-order
results of [3], with non-perturbative effects included using the dispersive approach of [4].

To match the resummed and NNLO fixed-order predictions we use the log-R matching
scheme of [2]. The NLL resummed result is expressed as

R(t) ≡
∫ 1

1−t

dT
1

σtot

dσ

dT
= exp[Lg1(αSL) + g2(αSL)] = exp

[

∞
∑

n=1

n+1
∑

m=n

Gnm α
n
S
Lm

]

(1)

where the coefficients Gnm are known and L = ln(1/t − 1/tmax + 1), tmax = 0.42 being the
kinematic limit for 5 partons, the maximum at NNLO. The terms with n ≤ 3 are subtracted
and replaced by the full NNLO result for lnR(t).

To include non-perturbative effects we note that the NLL resummed distribution has the
form

1

σtot

dσ

dT
=
Q2

2πi

∫

C

dν e(1−T )νQ2
[

J̃q
ν (Q

2)
]2

(2)

where J̃q
ν (Q

2) is the Laplace transform of the jet mass distribution. The idea of [4] is to
subtract out the infrared contribution to this expression and substitute a non-perturbative
contribution based on the assumption of a universal low-scale effective strong coupling αeff.
The NNLO perturbative contribution from the infrared region q < µI is

δ ln J̃q
ν (Q

2)
∣

∣

∣

pert
= −2CF

π

µI

Q

{

αS (µR) + α2
s (µR)

β0
π

(

ln
µR

µI
+
K2

2β0
+ 1

)

+α3
s (µR)

(

β0
π

)2 [

ln2 µR

µI
+

(

ln
µR

µI
+ 1

)(

2 +
β1
2β2

0

+
K2

β0

)

+
K3

4β2
0

]

}

νQ2 (3)

where µR is the renormalization scale, K2 = CA(67/18− π2/6)− 5nf/9 is the two-loop and
K3 the three-loop cusp anomalous dimension [5]. At the time of [1] K3 was not known and
we assumed K3 = K2

2 , which is just equivalent to a change of renormalization scheme. This
turns out to be a good guess (K3 = 11.0 versus K2

2 = 11.9 for 5 flavours), although this term
anyway has a negligible effect.

Assuming a universal low-scale coupling αeff(q), the non-perturbative contribution from
the region q < µI, where µIνQ≪ 1, i.e. 1− T ≫ µI/Q, is

δ ln J̃q
ν (Q

2)
∣

∣

∣

n.p.
≃ −2CF

π

∫ µI

0

dq αeff(q) νQ ≡ −2CF

π

µI

Q
α0(µI) νQ

2 . (4)
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The change in the thrust distribution is given by the difference between (4) and (3), which
we see is equivalent to a shift by an amount δT that is a power correction proportional to
1/Q, modulo some logarithmic dependence if we take µR = Q. Notice that the perturbative
part (3) is the start of a divergent series in αS(µR), representing the presence of an infrared
renormalon. Thus universality of αeff implies that the power correction should decrease as
we include more terms in the perturbation series. In the fit of [1], the NNLO (order-α3

S
)

term does represent a significant decrease in the power correction, of 25% relative to NLO.
The resulting predictions have two free parameters, αS(µR) and α0(µI). They were fitted

to all the available e+e− thrust data in the c.m. energy range 14 ≤ Q ≤ 207 GeV. The
fitting range was max{µI/Q, 0.05} ≤ t < 0.33, giving a total of 430 data points. The best
fit was at αS(91.2GeV) = 0.1164, α0(2GeV) = 0.59, with χ2 = 466. In view of the large χ2

contributions from certain data sets, the combined experimental statistical and systematic
error was quoted in [1] for a ∆χ2 of 14.6. For ∆χ2 = 1 the experimental error is reduced by
a factor of 3.4. On the other hand, the theoretical uncertainty was assessed by varying the
renormalization scale µR by a factor of

√
2 instead of the more usual factor of 2, which would

double the theoretical error. With these revised error estimates, and taking into account
loop corrections which give the ‘Milan factor’ [6], α0 → 2Mα0/π = 0.95α0, the resulting
parameter determinations were

αS(91.2GeV) = 0.1164+0.0034
−0.0032 , α0(2GeV) = 0.62± 0.02 . (5)

It is a pleasure to thank the organizers for a very stimulating meeting and to acknowledge
the support of a Leverhulme Emeritus Fellowship.
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We perform a global fit of e+e− data for the thrust event shape at energies Q between 35
and 207GeV [1]. We will consider the results with six stages of theoretical improvements:

1. Matrix elements and fixed order nonsingular terms at order α3
s using results from [2].

This includes the non-logarithmic term in the hard function at three loops. (A fixed
order analysis at O(α3

s) was carried out in [3] using ALEPH data.)

2. Resummation of the most singular logs with N3LL accuracy using Soft-Collinear Ef-
fective Theory (SCET) [4]. (A purely perturbative N3LL+O(α3

s) fit to ALEPH and
OPAL data can be found in [4].)

3. Profile functions (τ -dependent scales µJ , µS, R, µns) that account for the multijet
boundary condition, which ensures fixed-order results are used in the far tail region.

4. Description of nonperturbative effects with field theory and a fit to a single nonpertur-
bative matrix element of Wilson lines Ω1. Ω1’s uncertainty dominates other OPE terms
in the tail region, and its Wilson coefficient is included with N3LL+O(α3

s) accuracy.

5. Switching from MS to an R-scheme to define Ω1. This ensures Ω1 and the perturbative
cross-section are free of O(ΛQCD) renormalon ambiguities. An RGE is used to sum
large logarithms in the perturbative renormalon subtractions. The fit gives Ω1 to 16%.

6. QED final state corrections at O(α) and NNLL (counting α ∼ α2
s); bottom mass

corrections are included using a factorization theorem with log resummation; O(α2
s)

axial-singlet terms arising from the large top-bottom mass splitting.

We fit simultaneously for αs(mZ) and Ω1 in the tail region of the thrust distributions (our
default 487 bin dataset has τ = 1 − T = 6GeV/Q to 0.33). For fixed Q there is a strong
degeneracy between αs(mZ) and Ω1. It is lifted by the global fit with different Q values.
To estimate perturbative uncertainties we performed a 500 point random scan over 12 pa-
rameters, refitting for each point. This accounts for theory uncertainty from higher orders
via varying scales, statistical theory errors, and three unknown perturbative coefficients. We
observe very good convergence when increasing the orders in perturbation theory [1], and
achieve χ2/dof = 0.91 at stage 6. The results are shown in Fig. 1, including a comparison
with [3] and [4] at the appropriate stages. For the global fit at stage 2 our random scan uses
the µi variations of [4]. Stage 3 yields a result midway between 1 and 2.

The most dramatic effect is the −7.5% decrease to αs(mZ) from adding the Ω1 nonper-
turbative fit parameter at stage 4. The size of this shift is consistent with a back of the
envelope estimate based on data [1]. The field theory treatment is in sharp contrast with
the traditional method of estimating nonperturbative effects employing Monte Carlo gener-
ators (MC) (used also in [3] and [4]). MC has less perturbative accuracy than level 1, and
its tune parameters unavoidable include both nonperturbative and higher order perturba-
tive effects, leading to a double counting in the MC estimate. At the Z-scale the Pythia
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Figure 1: Global fit results (solid error bars) at various theoretical stages from [1]. Ω1 is fit
at stages ≥ 4. Dashed error bars are ALEPH Q = mZ fits from [2] and ALEPH+OPAL
fits from [4] at stage 1, 2 respectively (hadronization corrections from Monte Carlo are quite
small and their inclusion therefore does not change the identification with these stages).

tune has a very small power correction, inconsistent with our determination, and hence
cannot be used for high precision αs determinations. In [5] a global fit was performed at
NLL respectively+O(α3

s) with the effective coupling model to treat nonperturbative effects.
They find αs(mZ) = 0.1164± 0.0022 exp ± 0.0017pert consistent with our stage 2, 4, 5, 6 fits.
This model agrees with the parametrics of the OPE in the tail region and has renormalon
subtractions. Advantage of our approach are that the power correction is defined as a field
theory matrix element, one can include subleading OPE terms, and sum large logs in the
subtractions. Our final result with all sources of uncertainty is shown in the box in Fig. 1.

Given the desired precision, an interesting issue is to assess the most appropriate way of
computing the binned theory distribution. Two approaches being used are:

(a) :

∫ τ2

τ1

dτ ′
1

σ

dσ

dτ
(τ ′, µi(τ

′)) , (b) : Σ(τ2, µi(τ2))− Σ(τ1, µi(τ1)) , (1)

where Σ(τ, µ) = (1/σ)
∫ τ

0
dτ ′ dσ/dτ(τ ′, µi(τ)) and µi are jet and soft scales depending on τ .

They are equivalent at a given order in resummed perturbation theory, but differ by notice-
able amounts from included higher order terms [1]. In particular, Σ gives an uncertainty
estimate that is designed for comparison to cumulant data, and (b) is sensitive to contribu-
tions from τ below the bin [τ1, τ2]. The uncertainties in dσ/dτ are designed for distributions
and hence (a) is best suited for the bins. (a) was used in [1], while (b) was used in classical
resummation analyses and [4]. At stage 2 this issue is small for thrust, and only becomes
noticeable at stage 3. For the Heavy Jet Mass (HJM) event shape it is already noticeable at
stage 2. The stage 2 thrust and HJM results in Refs. [4] use (b) and yield: 0.1172 vs 0.1220.
Using (a) yields consistent αs(mZ) values for thrust and HJM: 0.1169 vs 0.1175, resolving
the apparent discrepancy in central values.
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αs from five-jet observables at LEP

Giulia Zanderighi

Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, OX1 3PN, Oxford, UK

Jet observables represent powerful tools to measure the strength of the strong inter-
actions, encoded in αs. The more jets are present in the final state, the stronger is the
dependence of the relevant observables on αs. At LEP the highest exclusive multiplicity
measured is five. However, since five-jet events could be described only at leading order
(LO) in QCD, the theoretical uncertainty was too large to extract a competitive value for
αs. We recently computed the next-to-leading (NLO) QCD corrections to five-jet events [1]
using D-dimensional unitarity for the one-loop calculation [2] and Madgraph and MadFKS
for the real radiation, subtraction, and phase-space integration [3]. We consider two observ-
ables: the five-jet resolution parameter, y45, and the five-jet rate, R5. Their perturbative
distributions start at O(α3

s), and are therefore very sensitive to the value of αs. We find that,
once NLO corrections are included, ALEPH data is described well by perturbative QCD if
the world-average of αs is used as input of the theoretical prediction. Furthermore, theoreti-
cal uncertainties are reduced from [−30%,+45%] at LO to [−20%,+25%] at NLO. One can
then turn this around and use the NLO calculation for a novel extraction of αs using ALEPH
data. Before this can be done, one needs to address how non-perturbative hadronization cor-
rections can be accounted for. Traditionally, they are extracted using parton showers such
as Herwig of Pythia. We find however that, if this is done, the hadronization corrections
are very large (∼ 50%) and generator dependent. We therefore use the Sherpa event genera-
tor [4] with its default cluster model [5] to extract hadronization effects. Sherpa implements
the five-jet LO matrix element exactly, therefore hadronization corrections are less contam-
inated by missing perturbative effects. When this is done, we find smaller hadronization
corrections (. 20%). We also observe that while the hadronization corrections per se are
not negligible, they have a very small effect on the extraction of αs at LEP I, therefore we
neglect hadronization corrections at LEP II.

In order to extract αs we consider each bin of y45 and R5 at a given energy as an observable
Oi = [Xi, σ

stat
i , σsyst

i ] that can be used to measure αs by solving the equation TiHi = Ei,
where Ti is the perturbative theoretical prediction, Hi is the hadronization correction and
Ei is the experimental measurement. From each bin i we obtain a central value of ᾱs with
corresponding errors

αi
s = αi

s ± δαi,stat
s ± δαi,syst

s ± δαi,scale
s ± δαi,hadr

s . (1)

The systematic and statistical errors are obtained by solving the same equation with Ei =
Xi ± σ

stat/syst
i , the perturbative error is obtained by varying the default scale (µR = 0.3MZ)

by a factor two up and down, and the hadronization error is obtained by solving the same
equation using the Lund hadronization model [6]. We take the fit range as large as possible,
where our computation is reliable and data are good enough. We then vary the range
to estimate a fit range error. Full details about the fit ranges and the fitting procedure
are given in [1]. The result of this procedure it a set of values of αs that need to be
combined. To do this we define a covariance matrix as the sum of individual covariance
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Figure 1: Breakdown of the errors on αs at LEP I and LEP II.

matrices V = V stat + V syst + V scale + V hadr with

Vij = δij
(

δαi
s

)2
+ (1− δij) min

{

(δαi
s)

2, (δαj
s)

2
}

, (2)

where Cij describes the correlation. We assumed that statistical errors are uncorrelated
at different energies. At a given energy we take y45 bins as uncorrelated, R5 bins as fully
correlated and y45 and R5(ycut) to be correlated for ycut < y45. Systematic errors are taken
as fully correlated at fixed energy, but uncorrelated at different energies. Perturbative errors
are taken to be fully correlated for all observables and energies, except for the LEP I/LEP II
correlation that we neglect. Finally, hadronization errors are assumed to be fully correlated.
We then compute the weights wi and use them to obtain the estimate of the average of the
strong coupling constant and of its error

wi =
N
∑

j=1

(V −1)ij

/

N
∑

k,l=1

(V −1)kl, αs =
N
∑

i=1

wiᾱ
i
s , σ2(αs) =

N
∑

i,j=1

wiVijwj . (3)

We obtain the value of αs from five-jets (a breakdown of the errors is displayed in Fig. 1)

αs(MZ) = 0.1156+0.0041
−0.0034. (4)

This value is compatible with the current world average, but on its lower side.
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Jet and Event Shape Observables at LHC

Klaus Rabbertz
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During the first, very successful year 2010 of LHC operation, which saw an increase
in instantaneous luminosity by a factor of ≈ 10000, an excellent performance of the LHC
experiments ATLAS and CMS has been observed. The achieved understanding in detector
operation and behaviour has lead to uncertainties of the order of 11% on the luminosity,
3–5% on the jet energy scale and about 5–20% on the jet energy resolution depending
on experiment and phase space. With respect to their impact on QCD measurements three
general analysis strategies can be differentiated: Absolute measurements like the inclusive jet
pT , shape measurements like jet angular variables and event shapes, or ratios of cross sections.
The latter two exhibit much smaller experimental uncertainties due to cancellation effects
and are, at least in the beginning, better suited for precise QCD studies in order to constrain
parton distribution functions (PDFs) and/or determine the strong coupling constant αs. The
total experimental uncertainties on the jet cross sections currently are of the order of 20 to
40% for transverse momenta larger than ≈ 50GeV while theoretical uncertainties from the
PDFs, the renormalization and factorization scales, and non-perturbative corrections amount
to 8 to 15%. With further improvements and much more data to come the jet cross sections
are very promising for the future. In the following, some aspects of a shape measurement,
the azimuthal decorrelation ∆Φjj, and the 3-jet ratio R32 will be discussed.

Azimuthal decorrelations ∆Φjj , recently published for LHC data by CMS and ATLAS [1],
are normalized to the total dijet cross section eliminating luminosity uncertainties. They are
a direct measure of additional activity like a radiated third jet in comparison to a normal dijet
event perfectly balanced in transverse momentum. Restricting the observation to differences
in azimuthal angle between the leading two jets reduces significantly uncertainties due to
the jet energy scale and resolutions. In case of balanced dijet events the azimuthal angles
between the leading jets are completely correlated to give distances of ∆Φjj = π. Additional
radiation of any of the two jets decrease this distance where the extent to which this is
possible depends on the jet multiplicity as demonstrated e.g. in Fig. 1 of the ATLAS analysis
in [1]. Comparisons to pQCD at NLO are possible in the range 2π/3 < ∆Φjj < π with
NLOJet++ [4] providing the required 3-parton and 4-parton final states. Below 2π/3 mostly
final states with four or more partons contribute such that the result of NLOJet++ effectively
becomes LO only. This can also be seen by an associated increase of the scale uncertainties.
At ∆Φjj = π the 3- and 4-parton final states need to be complemented by the 2-parton
ones requiring 2-loop corrections for a complete NNLO result which is not available as of
today. This demonstrates that azimuthal decorrelations are a precisely measurable QCD
observable providing a lot of information on multijet production. Redefining the azimuthal
distance to ∆Φ′

jj = ∆Φjj −π such that balanced dijets have ∆Φ′
jj = 0 this quantity can also

be considered an event shape for which resummed predictions are conceivable [2]. Azimuthal
decorrelations can also be investigated for leading particles.

Following a publication of D0, preliminary results by ATLAS and CMS [3] are reported for
the inclusive 3- to 2-jet ratio R32 versus the scalar sum of all transverse jet momenta HT . The
suggested study, however, is far from optimal with respect to comparisons to pQCD. First
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Figure 1: LO (red) and NLO (blue) predictions including scale uncertainties for an analysis
similar as in [3] (left) in comparison to the one suggested here (right) requiring a minimal
pT of 25% of the leading dijet average < pT1,2 >.

of all, the LO prediction including the scale uncertainty as shown in Fig. 1 left as upper red
hatched band is unreliable and gives unphysical values larger than one. The NLO presented
in blue looks more reasonable and is not far off the CMS data, but the associated scale
uncertainties are not much smaller with respect to LO. This points to a bad convergence of
the perturbative series. In fact, ratios R32 of ≈ 0.8 where jets with pT > 50GeV are counted
even for leading jet momenta of pT,max ≈ 1TeV are not representative for hard processes with
probabilities related to αs at high scales. For that purpose it would be better to require a
minimal hardness of third jets of e.g. a certain percentage like 25% of the average transverse
momentum of the two leading jets. An example calculation performed with NLOJet++ in
the fastNLO framework [5] for such an event selection is presented in Fig. 1 right leading
to reasonable predictions already at LO and larger reductions of the scale uncertainties at
NLO at least at high pT . The abundant production of jets at highest transverse momenta
at the LHC will enable many new precision tests of perturbative QCD in the near future.
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MC tuning with Professor
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Monte Carlo simulations of high energy physics (and particularly QCD) processes rely
on phenomenological assumptions for regimes where perturbation theory does not apply.
Of particular interest for αS extractions from event-shape data are hadronisation-effects for
which two kind of models are available. On the one hand cluster based models, e.g. in the
codes of Herwig and Sherpa, and the Lund-string model as it is implemented in the Pythia
event generator.

Both types have in common that a large number of tunable phenomenological parameters
are necessary to achieve agreement with data and therefore predictive power. The task of
tuning such generator parameters can be cumbersome if done by hand due to the high
dimensionality of the parameter-space and the large number of observables that need to be
studied for changes due to parameter-shifts.

The Professor[1] tuning-tool which tries to address the aforementioned problems was
presented. It is based on the idea of calculating bin-wise parameterisations of the generator
response to shifts in a certain parameter space and a subsequent numerical minimisation of
a simple goodness-of-fit measure defined between the parameterisation and corresponding
experimental data.

Furthermore, special applications of Professor have been introduced that exploit the
statistical nature of the tool such as the quantification of tuning uncertainties as well as the
calculation of so-called “Eigentunes”, a set of parameter points on the kσ-contour of the χ2

valley that are therefore representative for allowed tuning variations within data-uncertainty
(Fig. 1).

Further uses of the parameterisation like calculating the sensitivity of observables to shifts
in parameter space and an interactive Monte Carlo simulator (“prof-I”) have been presented
as well.

On request of the organisers, a quick study on a possible
√
s dependence of a hadro-

nisation tune, namely the Pythia6 tune pro-p⊥[1], has been performed. This most recent
hadronisation tuning was obtained from tuning the generator parameters to event shape
data on the Z-pole. This is in large parts due to the fact that the development of Professor
and tunings obtained with it are closely linked to the development of Rivet[2], an application
designed for generator independent validation by means of built-in analyses that mimic pub-
lished studies of collider experiments. By the time of the workshop only event shape data
from the LEP I and II experiments was available in Rivet. An outcome of the workshop was
the implementation of event shape studies of the PETRA experiments JADE and TASSO
at energies between 14 and 44 GeV[3,4] which allowed to study the low-energy behaviour of
the tune after the workshop.

Equipped with event shape data and corresponding Rivet analyses at energies between
14 and 209 GeV[3,4,5], the per-bin goodness-of-fit of the tune pro-p⊥ and data could be
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Figure 1: Left: Idea of “EigenTunes” — calculating principal directions of diagonalised
covariance matrix of a tuning and determination of intersection with kσ contour. Middle:
The 1+ and 1- lines correspond to 1σ Eigentune variations in the positive and negative
direction of one out of six principal axes. The corresponding parameter points are on the
1σ contour of the χ2 valley in the vicinity of the central tune point. Right: Goodness-
of-fit of the Professor hadronisation tune of Pythia6, pro-p⊥, with data as function of the
center-of-momentum energy,

√
s, indicating a non-universality of the hadronisation tune.

studied for the Thrust, C-Parameter and 2-jet-resolution parameter, yDurham
23 , as a function

of
√
s. The result is given in Fig. 1.
The data seems to suggest that Pythia6’s hadronisation model or at least the selected

tuning is not capable of describing the data at all, especially low energies. Further studies
should include more data, preferably at low energies. It may be fruitful to attempt a retuning
to all available event shape data simultaneously to check if the available hadronisation models
are in fact not universal.

We would like to thank Stefan Kluth for the discussions that lead to the implementation
of the JADE analysis in Rivet.
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αS from event shapes in e+e−: Experimental issues and
combination of results

Stefan Kluth

MPI für Physik, Föhringer Ring 6, 80805 München

The experimental issues of event shape measurements are summarised in table 1 [1][2][3][4][5].

PETRA/JADE LEP1 LEP2

Rad. return cuts on 4-momentum balance n.a. cuts on 4-momentum balance,
cuts on s′

τ pairs Nch > 3, reject 1- vs. 3-prong
events

Nch > 6

2γ events cuts on 4-momentum sum

4-fermion
events

n.a. “4-jet event shape” cuts

Table 1: Summary of experimental effects in e+e− event shape analyses. Nch is the multiplic-
ity of charged particles, 4-fermion events are mainly W+W− pairs, s′ refers to the invariant
mass of the virtual gauge boson producing the hadronic final state.

Detector corrections take account of limited acceptance and resolution of the experiments,
and of QED initial state radiation (ISR) effects, and are performed using MC based unfold-
ing of the measured distributions. Table 2 gives an overview over the treatment of various
experimental effects by the LEP experiments, the selection efficients and final background
fractions, and the resulting experimental systematic uncertainties. The uncertainties are av-
erage values and can change significantly within a given distribution. The LEP1 experimental
systematics are still to be matched by theory while the LEP2 experimental systematics have
been reached by recent theory uncertainties. The JADE data have experimental systematics
varying between 0.7 and 4%.

Combinations of NLO+NLLA αS results from the analysis of event shape observables
were performed by the collaborations using procedures assuming normal distributions for all
uncertainties. Values of αS are always evolved to a common scale before combining them.
The observables are statistically correlated and have correlated systematic uncertainties.
ALEPH, DELPHI and OPAL use a common method while L3 calculates unweighted aver-
ages. In the common method experimental uncertainties are taken as partially correlated
(see below) within an experiment and as uncorrelated between experiments. Hadronisation
and theory systematics are taken as uncorrelated, and the combination procedures are re-
peated for different hadronisation models or theory parameters such as the renormalisation
scale. Statistical correlations within or between observable distributions are measured or
obtained from MC simulations. For correlations of systematic uncertainties models are em-
ployed: i) no correlation (ρ = 0), ii) partial correlation (ρ = min(σi, σj)

2/(σiσj) or iii) full
correlation (ρ = 1). In [6] a combination of all NLO+NLLA results from LEP and JADE
using the common method is shown. However, the recent analyses of LEP or JADE data
using NNLO(+NLLA) calculations have not yet been combined.
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ALEPH DELPHI L3 OPAL

Rad.
return

find EM
jets, force
remaining
event in 2
jets

kin. fit for jet
and possible
missing γ
energies along
beam

cuts on
Evis, Ncls,
Eγ ,
E||/Evis

find isolated γ, force
remaining event into 4 jets,
kin. fit for for jet and possible
missing γ energies along beam

4-fermion
bkg

force 4 jets,
cut on α34

and
|mjj −mW |

2d cut on Nch

vs. BN

force 4
jets, cuts
on y34,
Nch, Ncls,
Ejet

cut on likelihood from partial
NLO QCD and EW ME, y34,
Sphericity

LEP1
exp. syst.

< 1% (exp.
corr.)

1.6% 1.5% (exp.
corr.)

< 1% (exp. corr.)

LEP1 ǫ – 84.5% 98.5% · A 88.5%

LEP2
exp. syst.

∼ 1%
(non-rad.)

∼ 1.9% 1.0-2.5%
(non-rad
or 4-f)

0.8-4% (4-f cuts)

LEP2 ǫ – 85− 90% ·A 85−90%·A ∼ 80%

LEP2 fbkg – 5-14% 20% 2-6%

b-Quarks NLO
massive
ME, no
corr. syst.

udsc/udscb
had. corr., 20%
syst.

NLO
massive
ME

neglect, udsc had. corr. syst.

Table 2: Overview of treatment of experimental effects. Evis is the total measured energy,
Ncls is the number calorimeter clusters, Eγ is the energy of a cluster, E|| is the energy
component parallel to the beam direction, α34 is the angle between jets 3 and 4 after energy
ordering, BN is the narrow jet broadening, y34 is the jet resolution parameter where the
event changes from 3 to 4 jets, ǫ is the selection efficiency, fbkg is the background fraction
and A is the geometric acceptance.
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Lattice QCD Calculations and αs
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Lattice gauge theory provides a mathematically rigorous definition of quantum field the-
ories, such as QCD, encompassing the perturbative and nonperturbative regimes [1]. In
principle, it is ideally suited for the determination of αs and the quark masses, which are the
irreducible parameters of QCD. In practice, the most productive approach to lattice QCD
has been computational, evaluating the functional integrals of quantum field theory with
Monte Carlo methods and importance sampling.

The first such calculations were marred by the omission of sea quarks, often called the
“quenched approximation.” The sea quarks are the most computationally demanding part
of the calculations and, in the early days, a lack of computer power made the quenched
approximation a necessary compromise. Quenched QCD calculations are on a footing similar
to models of nonperturbative QCD. Consequently, the first lattice-QCD determinations of αs

required a model-dependent corrections for the omitted sea. In particular, potential models
could be used to patch up the mass splittings in charmonium and bottomonium [2].

Since the start of the new millenium, however, lattice QCD simulations with 2+1 flavors
of sea quarks have become routine [3]. The notation “2+1” implies one sea quark tuned to the
strange quark and two taken with masses as small as possible, for (degenerate) up and down.
The physical limit is reached by extrapolating numerical data, guided by chiral perturbation
theory. More recently, the first simulations obviating this extrapolation have been carried
out [4,5,6] (though not used for αs—yet). Furthermore, at least two collaborations have
begun wide-ranging programs of lattice-QCD calculations of 2+1+1 sea quarks—adding the
charmed sea to the rest [5,7]. Thanks to these developments, lattice QCD now plays an
increasingly important role in many areas, for example, flavor physics [8].

Dating back to Ref. [2], many summaries of perturbative QCD still identify αs from lattice
QCD with the quarkonium splittings. This is outdated. In fact, the possibilities are much
broader and share many features with determinations of αs from high-energy scattering or
the decays of heavy particles. To explain this perspective, let us list the ingredients needed
to determine αs. One needs

1. A dimensionless quantity, R, sensitive to QCD at a (range of) short distance(s), Q−1;
if R is not dimensionless, one can use Q to make it so; then asymptotic freedom implies
R = R (αs(Qs)) + o ((ΛQCD/Q)

r), where Qs is a specific scale choice for scheme s with
Qs ∝ Q, and the power r depends on the observable R.

2. A theoretical framework—or at least a notion—to separate short-distance scales from
ΛQCD and other long-distance scales.

3. A perturbative series for the short-distance contribution R (αs(Qs)), certainly to NLO
and preferably to higher order, and summing logarithms of scale ratios.

4. Measurements of R over a range of Q large enough to control the power-law effects,
denoted (ΛQCD/Q)

r in item 1.
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5. Control of non-QCD physics at scales probed by Q (e.g., electroweak or new physics).

6. A measurement of Q: usually a calibration, in contrast to event counting for R.

It is worth emphasizing that the whole procedure can be thought of as dimensionless until
the last step, where the energy calibration of the calorimeters (high-energy scattering) or
the τ -lepton mass (τ decays) is input.

In lattice QCD, an evaluation of a functional integral replaces the measurement of R.
One is assured that non-QCD physics does not enter, but, in practice, issues like unphysical
quark masses and nonzero lattice spacing play an analogous role. We know how to control
these effects, i.e., how to distill them into an error bar. Many choices of (R,Q) are possible,
each with strengths and weaknesses. The dimensionless suite of lattice calculations becomes
dimensionful when converting from lattice units to GeV—this precisely means deducing the
scale to which the αs corresponds (here s labels the scheme chosen in the lattice calculation).
Since lattice QCD with 2+1 sea quarks reproduces a wide variety of masses, mass splittings,
and decay constants, the quantity used to convert units is no longer crucial [3], and the error
on the conversion is subdominant when propagated to αs.

The table compiles several recent determinations of αs from lattice QCD with 2, 2+1,
or 2+1+1 flavors. Near-term global averages should consider using those set in bold, after
some dialogue with the authors to ensure a consensus between reviewers and authors of the
completeness and meaning of the error budgets. The others either are superseded [9,12], are
a re-analysis of a bold entry [11], omit the possibly large uncertainty from quenching the
strange sea [16], or are not yet complete [17]. Longer-term global averages of αs will have
more results from lattice QCD to choose from.

α
(nf=5)

MS
(MZ) R Q range R sea Ref.

0.1170(12) 3 [9]

0.1183(8) Wilson loops a−1 7 NNLO 2+1 4
√
staggered [10]

0.1192(11) 7 [11]

0.1174(12) quarkonium 2mc 1–2 NNLO 2+1 4
√
staggered [12]

0.1183(7) correlators 2mQ 3–6 NNLO 2+1 4
√
staggered [13]

0.1181(3)+14

−12 Adler function Q 5 NNLO⋆ 2+1 overlap [14]

0.1205(8)(5)+ 0

−17 “QCD in a can” 80 2+1 Wilson [15]

0.1000(16)† aka Schrödinger L−1 270 asymptotic 2 Wilson [16]

0.1 ( ) functional 1000 2+1+1 Wilson [17]
⋆ The Adler function’s R is known to N3LO, but Ref. [14]’s analysis is NNLO.
† This entry gives α

(nf=2)

MS
, obtained from Ref. [16]’s r0Λ

(nf=2)

MS
= 0.62(6) with

r0 = 0.46(1) fm and Eq. (9.5) of the 2006 PDG.
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HPQCD: αs from Lattice QCD
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The HPQCD collaboration has been using lattice QCD simulations for more than a
decade to determine the QCD coupling from experimental data for hadron masses. That
history, which has produced consistent results over time, is summarized in the following:

1996 1998 2000 2002 2004 2006 2008 2010
year

0.115

0.116

0.117

0.118

0.119

0.120

0.121

α
M
S
(M

Z
)

current-current

correlators

Wilson loops

0.1184(6)

0.1183(7)

HPQCD now uses two very different approaches (red and blue in the plot), with very different
systematic errors, for extracting the coupling [1]. These give almost identical results for the
coupling: αMS(MZ , nf =5) = 0.1184(6) and 0.1183(7).

The only experimental inputs to a QCD simulation are the small number of well-measured
hadronic quantities (mπ, mK . . . ) used to tune the bare quark masses and bare QCD charge
in the action. Typically simulations are done for a variety of light-quark masses and lattice
spacings a (and volumes) in order to extrapolate away lattice artifacts. Extrapolated simula-
tion results should agree with continuum QCD to within simulation and extrapolation errors
(of order 1% in many, many tests); there are no free parameters after tuning. We determine
αs by “measuring” various short-distance quantities Y (nonperturbatively) in the simulation,
and comparing with the corresponding perturbative expansions: Y =

∑∞
n=1 cnα

n
s (q

∗
Y ), where

the cn are computed using Feynman perturbation theory.
Small Wilson loops are the easiest short-distance quantities to measure in a simulation.

Five-digit precision is routine and the loops are very ultraviolet, and therefore also highly
perturbative provided (lattice UV cutoff) π/a is large [2]. HPQCD used 22 different com-
binations of 8 small loops and the bare coupling, for each of 12 different combinations of
u-d quark mass and lattice spacing (π/a=3.5→ 14GeV), to extract 22 different values for
the coupling. Perturbation theory was calculated, through third order, using lattice QCD
perturbation theory, which includes lattice-spacing artifacts to all orders in the lattice spac-
ing. Fourth and higher orders were estimated by comparing results from different lattice
spacings (since q∗ ∝ 1/a). Nonperturbative effects, such as condensate contributions, were
included, and can vary by factors of 100 or more between different quantities. Nevertheless
all 22 quantities agree to within errors with αMS(MZ , nf =5)=0.1184(6) [1].
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To test HPQCD’s error estimates, we pretend that perturbation theory is known only to
first or second order but otherwise use the same analysis, including the estimation of higher-
order perturbation theory by comparing different lattice spacings. Values for αMS(MZ) from
each of the 22 quantities are shown in the following figure:

0.116 0.118 0.120

α
MS

(MZ , nf =5)

0.1186(4)

0.1184(4)

0.1184(5)

0.1183(5)

0.1183(6)

0.1184(7)

0.1182(7)

0.1180(8)

0.1188(7)

0.1186(8)

0.1184(7)

0.1186(7)

0.1170(9)

0.1173(9)

0.1184(5)

0.1183(8)

0.1184(7)

0.1183(6)

0.1188(6)

0.1185(6)

0.1178(7)

0.1188(3)

logW11

logW12

logWBR

logWCC

logW13

logW14

logW22

logW23

logW13/W22

logW11W22/W
2
12

logWCCWBR/W
3
11

logWCC/WBR

logW14/W23

logW11W23/W12W13

logW12/u
6
0

logWBR/u
6
0

logWCC/u
6
0

logW13/u
8
0

logW14/u
10
0

logW22/u
8
0

logW23/u
10
0

αlat/W11

1st Order 2nd Order 3rd Order

Avg: 0.1172(92) 0.1191(18) 0.1184(6)
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α
MS

(MZ , nf =5)

0.1194(12)

0.1192(13)

0.1193(14)

0.1192(15)

0.1191(16)

0.1195(19)

0.1194(19)

0.1196(23)

0.1194(26)

0.1196(27)

0.1180(40)

0.1188(25)

0.1187(28)

0.1189(29)

0.1185(17)

0.1161(62)

0.1184(33)

0.1184(18)

0.1186(20)

0.1190(22)

0.1187(24)

0.1193(12)

0.110 0.112 0.114 0.116 0.118 0.120 0.122

α
MS

(MZ , nf =5)

0.1053(133)

0.1085(126)

0.1093(131)

0.1107(132)

0.1109(131)

0.1124(145)

0.1120(127)

0.1144(141)

0.1189(103)

0.1190(98)

0.1192(61)

0.1200(117)

0.1203(124)

0.1209(122)

0.1146(93)

0.1183(38)

0.1198(76)

0.1216(102)

0.1211(130)

0.1165(102)

0.1173(119)

0.1228(195)

The gray bars show the final result, 0.1184(6), from the full analysis. The first, second
and third order analyses agree to within their errors of order 0.0092, 0.0018 and 0.0006,
respectively. Convergence is excellent and the error estimates robust.

The second approach for determining αs used by HPQCD is to measure moments of
current-current correlators of the form

∑

x(am0h)
2〈0|j5(x, t)j5(0)|0〉 where j5=ψhγ5ψh and

h is a heavy quark (c or b). Low-order moments are short-distance and therefore perturba-
tive. They also are renormalized quantities, unlike Wilson loops, and so should agree with
continuum QCD results when extrapolated to zero lattice spacing. HPQCD analyzed four
moments at approximately 8 different values of the heavy-quark mass between mc and mb

and 5 different lattice spacings. The analysis produced very accurate values for the coupling,
αMS(MZ , nf =5)=0.1183(7), and also for the c and b masses [1]. The masses agree with re-
sults from pure continuum analyses of moments to within about 0.5%—an important check
on the lattice analysis.

The agreement between HPQCD’s Wilson-loop and current-current correlator determi-
nations of the coupling is perhaps the most compelling check on each method since the
systematic errors are very different in the two cases. Many additional tests are discussed
in [1].
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αs from PACS-CS
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We evaluate the running coupling constant for 2+1 flavors in lattice QCD simulations[1].
The Schrödinger Functional(SF) scheme is employed as the intermediate scheme to carry
out non-perturbative running from the low energy region, where physical scale is introduced
as 1/Lmax, to deep in the higher energy perturbative region, where a conversion to the MS
scheme is safely performed: For 3 flavors we have

Λ
(3)

MS
= 2.61192Λ

(3)
SF, (1)

Λ
(Nf )
SF =

1

L
(b0g(L))

−
b1
2b2

0 exp

(

− 1

2b0g(L)

)

exp

(

−
∫ g(L)

0

d g

(

1

β(g)
+

1

b0g3
− b1
b20g

)

)

,(2)

where g(L) is the running coupling constant in the SF scheme at the box size L, and the
3-loop beta function β(g) = −g3(b0 + b1g

2 + b2g
4) in the SF scheme with

b2 =
1

(4π)3
(

0.483(7)− 0.275(5)Nf + 0.0361(5)N2
f − 0.00175(1)N3

f

)

. (3)

and the universal b0, b1. The SF scheme is the non-perturbative scheme whose scale is
determined solely by the box size without any other scales. The continuum(a → 0) limit
can be taken in this scheme where a is the lattice spacing.

To convert Λ
(3)

MS
to α

(5)

MS
(MZ), we first run down α

(3)

MS
(µ) at µ = mc(mc) using the 4-loop

beta function and then convert it to α
(4)

MS
(µ) at µ = mc using the 3-loop matching. Next

we run up α
(4)

MS
(µ) and convert it to α

(5)

MS
(µ) at µ = mb(mb). We finally run up α

(5)

MS
(µ) at

µ =MZ(MZ).
The low energy scale Lmax should be determined by other simulations. We use the scale

determination in Nf = 2+1 QCD simulations at three lattice spacings by CP-PACS/JLQCD
collaborations[2] whose up-down quark mass covers a rather heavy region corresponding to
mπ/mρ = 0.63− 0.78.

Our final results in the continuum limit are

αs(MZ) = 0.12047(81)(48)(+0
−173), (4)

Λ
(5)

MS
= 239(10)(6)(+0

−22), (5)

where the first error is statistical, the second one is systematic due to the perturbative
matching at µ = mc(mc), while the last is due to the continuum extrapolation.
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Alpha s from JLQCD
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Lattice determination of αs is performed using some perturbative (or short distance)
quantity calculated non-perturbatively on the lattice. Typical examples are the heavy quark
potential at short distances and small Wilson loops. One could also consider the vector cur-
rent correlator in the space-like region. Perturbative expansion for this quantity is available
to α4

s (!) in the continuum theory, and the long-distance contribution is theoretically well
understood using the Operator Product Expansion (OPE). We propose to use this quantity
for the determination of αs [1]. The correlator itself is ultraviolet divergent, but its derivative
in terms of Q2 is finite and unambiguously calculable also in lattice QCD.

There are potential sources of systematic errors due to (i) discretization effect that could
be significant at short distances, (ii) truncation error of the perturbative expansion, (iii)
uncertainty of lattice spacing. These are studied and found to be under good control. Our
result obtained using our lattices generated with 2+1-flavors of dynamical overlap fermion is
α
(5)
s (MZ) = 0.1181(3)(+14

−12) [2]. The error is dominated by the uncertainty of lattice spacing,
that is significant in our simulation on a relatively small and coarse lattice.
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αs from the ALPHA collaboration

Rainer Sommer for the collboration

NIC, DESY, Platanenallee 6, 15738 Zeuthen

The conflict in determining αMS(µ): We recall the obvious fact that αMS(µ) is only perturba-
tively defined and not directly measurable. The resulting inherent and practical uncertainty
vanishes as the renormalization scale becomes very large. In fact the Λ-parameter is well
defined from the asymptotic behaviour of αMS(µ → ∞) for QCD (in isolation). At low µ,
where typically the experimental error is small, there is a large theory error in the extraction
of αMS(µ) from observables due to the truncation of the divergent perturbative series with
its intrinsically limited precision.

Alternatively one would like to connect low and high energies non-perturbatively by
lattice methods as first suggested for a two-dimensional model [1]. Since on a finite lattice
that can be simulated, large scale ratios can not be accomodated, low and high energy
scales are bridged in several steps each changing scale by a factor of 2. This is possible
by identifying µ = 1/L, where L is the size of the box in which QCD is simulated and by
using an intermediate (Schrödinger functional) coupling, αSF, which is a non-perturbatively
defined quantity – a finite size effect.
The master formula of the ALPHA collaboration is

Λ
(5)

MS

FK
=

1

FKLmax
× Lmax

Lk
× Λ

(4)
SFLk ×

Λ
(4)

MS

Λ
(4)
SF

×
Λ

(5)

MS

Λ
(4)

MS

, (1)

where Λ
(4)

MS
/Λ

(4)
SF = 2.9065 and typically Lmax ≈ 0.5 fm, Lk = 2−kLmax. The first factor

is computed non-perturbatively and the last three perturbatively. The non-perturbative
connection of low and high energies yields the relation between αSF(1/Lmax) and αSF(1/Lk) =

αSF(2
k/Lmax) shown in the figure and we then use the perturbative formula giving Λ

(4)
SFLk as

a function of αSF(1/Lk) in terms of the three-loop β-function in the Schrödinger functional
scheme. Since perturbation theory is applied at αSF(1/Lk) ≈ 0.1 and this renormalization
scheme has been demonstrated to be well behaved, the perturbative error is negligible. The
last factor Λ

(5)

MS
/Λ

(4)

MS
will finally be taken from PT, where we can use the full 4-loop precision

of [7]. From the numerical results shown by M. Steinhauser at the meeting we estimate

an uncertainty of 2% on Λ
(5)

MS
/Λ

(4)

MS
from this step, which is equivalent to decoupling across

the b-threshold. In contrast, estimating the ratio Λ
(4)

MS
/Λ

(3)

MS
would require matching at the

charm threshold, which seems very difficult to control perturbatively. We therefore insist on
the whole strategy being followed with 4 flavours. The approximate decoupling of the charm
quark at low energy is then implemented non-perturbatively.

The strategy is transparent and based on minimal assumptions: asymptotic freedom, the
existence of the continuum limit of the lattice theory and the fact that non-perturbative
“corrections” vanish quickly as µ → ∞. Practical issues mainly concern discretization
effects. The Schrödinger functional is very efficient in rendering simulations with very light
quarks possible and to achieve the perturbative control (3-loop β-function). It does, however,
introduce unpleasant linear lattice spacing effects. For the desired precision, it is important
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that the improvement coefficient ct, which is dominant for removing these linear effects, is
known to 2-loops in our discretization and furthermore lattice spacing effects have been seen
to be small in PT and beyond[2].
Status and future: The strategy has been studied for Nf = 0 (pure gauge theory), and for
Nf = 2, 4 but for the interesting 4-flavour theory, the first factor in eq. (1) is not yet know.

Present results are Λ
(0)

MS
r0 = 0.60(5) [4], Λ

(2)

MS
r0 = 0.73(3)(5) [5][6] compared to Λ

(4)

MS
r0 =

0.71(3), Λ
(5)

MS
r0 = 0.52(2) from Bethke’s world average of 2009, where we use r0 = 0.475 fm.

For the world average numbers we have not propagated an error in r0 = 0.475 fm, since the
overall error is likely to be revised after this workshop.

In the near future we will repeat the computation of the scale dependence of αSF(µ) on
faster computers. Smaller lattice spacings and better statistical precision will mean an even
more precise continuum extrapolation. The future total error of Λ as we see it now, is given
in the table and appears to be achievable in a few years. It translates into an absolute error
of 0.0008 in αs(MZ).
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Nf = 4
2-loop β function
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Non-perturbative running of αSF(µ) from µ ≈ 1GeV to
µ ≈ 1TeV compared to perturbation theory[3].

source Nf δΛ/Λ Ref.

now running 4 0.07 [3]

future running 4 0.04

now LmaxFK 2 + 1 + 1 unknown

LmaxFK 0 0.02 [4]

LmaxFK 2 0.04 [5][6]

future LmaxFK 2 + 1 + 1 0.03

PT 4 → 5 0.02 [7]

O(αem) 0.01

future total 4 0.05

Error budget.
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Heavy quarkonium leptonic and non-leptonic inclusive decay rates have historically pro-
vided ways to extract αs. Ratio of these quantities are very sensitive to αs, if the data are
sufficiently precise. Determinations of αs at the quarkonium masses are important because
they are among the few ones at a relatively low energy scale. In PDG2006 the reported
determination of αs from Υ decays was lower than all the other determinations and about
two standard deviations away the αs(MZ) average at the time.

In [1] we have obtained a new extraction of αs(MΥ(1S)) from the decay ratio

Rγ ≡ Γ(Υ(1S) → γ X)/Γ(Υ(1S) → X) (1)

X being hadrons. Rγ is calculated in theory using the nonrelativistic QCD (NRQCD)
factorization for each of the two quarkonium decay amplitudes:

Γ =
∑

n

cn(αs(MΥ(1S)), mb)

mdn−4
b

〈Υ(1S)|O4fermions
n |Υ(1S)〉 (2)

where cn are process-dependent NRQCD Wilson coefficients, mb is the bottom mass and
〈Υ(1S)|O4fermions

n |Υ(1S)〉 are NRQCD matrix elements of four-fermions operators. They
contain color singlet contributions that can be calculated in terms of the Υ(1S) wave function
and color octet contributions. Adopting the NRQCD counting rules in v (v being the bottom
quark velocity in the bound state) and αs(MΥ(1S))/π ∼ v2 ∼ α2

s (mbv), we have included all
the radiative, relativistic and octet contributions in the expansion of eq.(1) up to order
v2. Higher-order corrections that were not considered are of order v3. We have assumed
v2 = 0.08 and mbv ≫ ΛQCD.

We have used the experimental value Rexp
γ = 0.0245 ± 0.0001 ± 0.0013, (where the first

error is statistical, the second one is systematical) corresponding to the Garcia-Soto (GS) [3]
parameterization of the Γ(Υ(1S) → γ X) data [2], which follows from a QCD calculation.

Our result is based on: new, precise data from CLEO [2]; a QCD calculation to extrap-
olate the photon spectrum at low z = 2Eγ

MΥ
[3], based on a combined use of the effective field

theories NRQCD, pNRQCD and SCET; accurate estimates of the NRQCD color octet ma-
trix elements in eq.(2) coming from lattice calculations [4] and from continuum calculations
[3].

By equating the experimental value of Rγ to the NRQCD O(v2) theoretical computation
we get

αs(MΥ(1S)) = 0.184+0.015
−0.014 , αs(MZ) = 0.119+0.006

−0.005 , (3)

very close to the central value of the PDG with competitive errors. Our result is rather
insensitive to the values of the octet matrix elements because they cancel in the ratio, apart
from one of them (O8(

3S1)) which, however, turns out to be small from the lattice calculation
and does not have a major impact in our results. The determination is valid at next-to-
leading order in αs(mb) and in v2. At this order, terms corresponding to new qualitative
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features appear (radiative, relativistic, octet corrections), each of them of natural size, but
whose sum is numerically of order one and hence large. Higher-order corrections O(v3) are
expected to be smaller by one order in v since they do not introduce new qualitative features.
We have used part of the available higher-order corrections to check that this is indeed the
case [1]. At present, the main uncertainty in our extraction of αs comes from the systematic
uncertainties in Rexp

γ .
Concerning the extraction of αs in [5], which due to the small error is dominating the

final value obtained from heavy quarkonium decays in the PDG2006, there are three main
differences: (i) On the theoretical side, the color octet NRQCD matrix elements are ignored
in Γ(Υ(1S) → γX), whereas we find that they contribute between 30% and 100%. (ii)
Older data are used, which are fully consistent with, but not as precise as, the more recent
ones, and an older analysis, which relies on the Field model for extrapolations to low z.
(iii) The extraction is actually done from Γ(Υ(1S) → γX)/Γ(Υ(1S) → l+l−). We believe,
contrary to a statement in [5], that the latter increases rather than decreases the theoretical
uncertainties associated to color octet operators. Indeed, whereas the ratio radiative/total
has the same color octet operators in the numerator and denominator except for one, the
ratio radiative/leptonic (total/leptonic) has two (three) different color octet operators in the
numerator and denominator. Furthermore, the leptonic width is known to suffer from large
higher-order corrections in αs, which introduce further uncertainties.

Concerning the extraction of the CLEO paper [2], there are two main differences: (i) On
the theoretical side an old formula was used there, in which the NRQCD color octet operators
were ignored. This introduces large theoretical uncertainties. In practice, however, we find
that numerically they are not so important for the final result. (ii) For the total radiative
width, two numbers are quoted depending on whether the so called Field model or the
GS parameterization, which is in fact a QCD calculation, are used for the extrapolation
of the photon spectrum at low z. The final number is given as the average of the two
procedures. We believe that the use of the Field model, which uses a parton shower Monte
Carlo technique to incorporate the effects of gluon radiation by the outgoing gluons in the
decay, introduces an unnecessary model dependence that moves the actual central value and
artificially increases the errors. Our final results are similar to the ones presented in [2] for
the GS parameterization.

References

[1] N. Brambilla, X. Garcia i Tormo, J. Soto, A. Vairo, Phys. Rev. D75 (2007) 074014.

[2] D. Besson et al. [CLEO Collaboration], Phys. Rev. D 74, 012003 (2006)

[3] X. Garcia i Tormo and J. Soto, Phys. Rev. D 72, 054014 (2005) X. Garcia i Tormo
and J. Soto, Phys. Rev. D 69, 114006 (2004)

[4] G. T. Bodwin, J. Lee and D. K. Sinclair, Phys. Rev. D 72, 014009 (2005)

[5] I. Hinchliffe and A. V. Manohar, Ann. Rev. Nucl. Part. Sci. 50, 643 (2000)

68



αs for New Physics
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Beyond its intrinsic importance for phenomenology and technological developments,
knowing the precise value of αs can provide important information on new physics beyond
the standard model. Here we discuss two such examples where αs may play a crucial role in
testing new physics scenarios: (1) Grand Unification and (2) the Multiverse.

Grand Unification in Higher Dimensions — Grand unification provides a beautiful
understanding of the gauge quantum numbers of the quarks and leptons. It also leads to a
prediction of αs through unification of the three gauge couplings at a high energy, allowing
us to test the idea. In fact, in supersymmetric grand unified theories, the predicted value
of αs agrees with the experimental value at the 10% level. However, because of unknown
threshold corrections at the unification scale, the prediction is somewhat model dependent;
and in typical models, it is around αs ≃ 0.130, so that the agreement is not perfect [1].
Moreover, theories often suffer from severe phenomenological problems, such as doublet-
triplet splitting, too fast dimension five proton decay, and unwanted mass relations between
light generation fermions.

Grand unification in higher dimensions elegantly solves these problems [2]. In this frame-
work, the unified gauge symmetry is broken due to a compact extra dimension(s) of order the
unification scale. The gauge and Higgs fields propagate in the bulk of higher dimensional
spacetime, leading to automatic mass splitting between the standard model and unified
gauge bosons, as well as between doublet and triplet Higgs fields. The structure of higher
dimensional mass terms automatically suppresses dangerous dimension five proton decay.
Matter fields may either propagate in the bulk or localized on one of the branes, i.e. the
“edge” of compact space, which can reproduce a complicated pattern of quark and lepton
masses and mixing without contradicting unification at high energies. A schematic picture
of this framework is depicted in Fig. 1.

An interesting aspect of the above framework is that threshold corrections at the unifi-
cation scale are fixed in terms of only a few parameters. In the minimal model of super-
symmetric SU(5) in 5 dimensions, it is only the size of the extra dimension M∗L (in units
of the cutoff/string scale) that we need to know to compute the threshold effects. Together
with the assumption of strong coupling at the cutoff scale, which fixes M∗L ≈ O(100), we
can predict αs without any free parameter. The value obtained is

αs(MZ) = 0.118± 0.004± 0.003, (1)

where the first and second errors represent uncertainties from the superpartner spectrum and
M∗L, respectively. The former can be reduced/eliminated if superpartners are discovered
at the LHC. It is interesting that the minimal model indeed improves the prediction over
conventional 4 dimensional supersymmetric grand unification.
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Figure 1: The basic framework of higher dimensional grand unification.

Precision Higgs Mass Prediction from the Multiverse — The origin of the elec-
troweak scale is one of the major mysteries in the standard model. While its smallness
(compared with the Planck scale) may be ensured by new physics at the TeV scale, it is
possible that it arises simply as a result of environmental selection in the multiverse (as does
the cosmological constant). The low energy theory may then be simply the standard model.
Is there any experimental handle on such a scenario?

While supersymmetry is no longer needed at the TeV scale in this scenario, it may still
exist at very high energies, e.g., as a consequence of string theory. Suppose supersymmetry
exists at some high energy scale m̃, i.e. superpartners have masses of order m̃. In this
case, the theory below m̃ is just the standard model, but with the Higgs quartic coupling
determined by the weak gauge couplings: λ = (g2 + g′2)/8 in the limit where the low energy
Higgs arises from one Higgs supermultiplet (large tanβ). This allows for predicting the Higgs
boson mass through renormalization group equation. The result is surprisingly precise:

MH = 141.0 GeV + 1.8 GeV

(

mt − 173.1 GeV

1.3 GeV

)

− 1.0 GeV

(

αs(MZ)− 0.1176

0.002

)

+ 0.14 GeV

(

log10
m̃

1014 GeV

)

+ 0.10 GeV

(

δ

0.01

)

± 0.5 GeV, (2)

where δ represents possible threshold corrections, typically of O(0.01). The uncertainty is
dominated by experimental errors on the top quark mass and αs, which can be reduced.
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The effect of αS on Higgs Production at the LHC
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Reliable quantitative predictions for cross sections at the LHC require control over uncer-
tainties arising from QCD. These errors take two primary forms: our inability to calculate
to high enough order in the QCD perturbative expansion, and the imprecise determination
of the non-perturbative input parameters of QCD such as the parton distribution functions
(PDFs) and the strong coupling constant. Impressive progress has been made recently in cal-
culating the perturbative cross sections needed in LHC analyses. Fixed-order cross sections
for high-multiplicity scattering processes are becoming available through next-to-leading or-
der (NLO) using powerful new calculational techniques [1]. Next-to-next-to-leading order
(NNLO) calculations of benchmark processes such as Higgs and electroweak gauge boson
production are available in the form of flexible numerical programs which are easy to incor-
porate into experimental analyses [2]. For several important LHC processes, the dominant
uncertainties now come from determinations of PDFs and αs.

The most striking such process is Higgs boson production through gluon fusion. This
process is famously sensitive to large perturbative QCD corrections. The theoretical commu-
nity has invested several decades into understanding the gluon-fusion mechanism. A simple
effective-theory framework for this process exists, and the NNLO QCD corrections, NLO
electroweak corrections, and the resummation of large threshold logarithms are available [3].
Recent predictions for the inclusive cross section used by the LHC collaborations have been
given in Ref. [4], from which the following Table of

√
s = 7 TeV results has been taken.

MH (GeV) σ (pb) Scale (%) PDF4LHC (%)

120 16.63 +7.2− 7.9 +7.6− 7.0

150 10.52 +6.6− 7.4 +7.6− 7.5

180 6.76 +6.2− 7.0 +7.5− 7.8

210 4.74 +6.0− 6.7 +7.5− 7.9

240 3.59 +5.9− 6.4 +7.7− 8.0

300 2.42 +5.8− 6.0 +8.0− 8.3

400 2.03 +5.9− 5.4 +8.8− 8.6

600 0.336 +6.1− 5.2 +10.1− 9.4

The uncertainties arising from PDFs and the strong coupling constant, denoted as ‘PDF4LHC’
in the Table (named for the procedure by which they are obtained, described in Ref. [4])
dominate for all Higgs masses over the estimated errors arising from unknown higher-order
QCD corrections denoted as ‘scale.’ The situation is potentially worse than indicated, as re-
cently emphasized [5]. As the Higgs cross section is proportional to σ ∼ α2

Sf
2
g , and receives

large O(α3
S) corrections, it is sensitive to the myriad assumptions that enter extractions

of αS and the PDFs. The current PDF4LHC error estimate neglects PDF extractions for
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which the Higgs production cross section is up to 25% lower than the sets utilized in the
Table above. These sets leading to a lower production cross section typically also obtain
lower values of αs(MZ) from their fit of the available data. For example, the ABKM set
which gives the lowest predictions has αS(MZ) = 0.1135 ± 0.0014 [6], while the HERA-
PDF set which gives the second lowest result has αS(MZ) = 0.1145. Both αS values ob-
tained in these PDF extractions are many standard deviations away from the current world
averageαS(MZ) = 0.1184 ± 0.0007 [7]. A proposal to add an additional ‘theoretical’ uncer-
tainty on the extraction of αS leads to an increased error that partially resolves the differences
between extractions at low-to-mid MH [5]. The differences at high MH are primarily due to
differing gluons in the various sets, and are not accounted for by this procedure. Neverthe-
less, further exploration of this issue by the community, and the consideration of whether a
‘theoretical’ error on αS should be added to the Higgs error budget at the LHC, would be
welcome.

One may also ask if αS may be constrained by measurements in other channels at the
LHC. Event shapes in jet production may eventually permit an extraction with a 3% uncer-
tainty, as discussed by Klaus Rabbertz in these proceedings. Studies of V + jet production
also appear promising. A conservative estimate of the theoretical error on the ratio ofW +1
or more jets over the inclusive W production cross section is already at the few-percent
level [8], with the prospect for further improvement once the NNLO corrections to theW +1
jet process are known. Luminosity and other systematic errors cancel in the ratio; the statis-
tical and remaining systematic errors will improve as more data is collected. Further study of
whether the strong coupling constant can be measured using these observables is warranted.
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αs from the ILC
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The International Linear Collider (ILC) [1] is a proposal for an electron positron col-
lider operating at a centre of mass energy of Q = 500 GeV (with an upgrade option to
1 TeV) and an luminosity of 2 · 1034/cms. We illustrate the precision gain of an αs mea-
surement at 500 GeV by the reanalysis of JADE [2] and OPAL [3] event shape measure-
ments, where αs is determined to next-to-next-to-leading order, with the results αs(mZ0) =
0.1210 ± 0.0061 (αs(mZ0) = 0.1172 ± 0.0051) in the JADE analysis without (with) inclu-
sion of resummed logarithms in the NLLA approximation, and αs(mZ0) = 0.1201 ± 0.0030
(αs(mZ0) = 0.1189 ± 0.0041) in the corresponding OPAL analyses. With a precision of
2.6%–5.0%, these are among the best measurements. In comparison to corresponding NLO
analyses, the renormalisation scale uncertainty and the scatter from different variables are
reduced.

We estimate the uncertainties of a corresponding αs(mZ0) measurement at 500 GeV as
follows. The cited luminosity is about an factor 1000 higher than at LEP 1, the hadronic
cross section is lower by this factor [5]. The selection efficiency is slightly lower than at
LEP 2 [6]. Therefore a statistical precision of 0.0001 can be expected after taking data for
a few years. The detector uncertainties in the JADE and OPAL analysis were of the order
of 0.001. The ILC detector will be very hermetic and supply good tracking and calorimetry,
and so this order of magnitude is expected to still hold [7]. The uncertainties induced by
residual background after the JADE or OPAL selection cuts are of the order of 0.001. The
effects from W and Z pairs rise with centre-of-mass energy. Above ∼350 GeV there will
be additional background from electroweakly decaying top-pairs. The W contribution can
be suppressed [8] by beam polarisation, and the properties of W and Z pairs have been
measured properly at LEP. Therefore an uncertainty can be expected which is still of the
same order [7]. The uncertainties of αs(Q) related to the hadronisation correction are of
the order of 10−2...10−3 for JADE and OPAL. They fall steeply with centre-of-mass energy
as can be understood from analytical power correction models. Their expected order in an
measurement at 500 GeV is 0.0001 after evolving the αs value back to 91 GeV. Estimates of
the scale uncertainties from an NLO and NNLO measurement are given in Tab. 1. Measuring

αs(91 GeV) αs(500 GeV) αs(91 GeV), evolved

measurement estimate from αs(500 GeV)

NLO, missing: α3
s 0.1192± 0.0047 0.0959± 0.0024 0.1192± 0.0038

NNLO, missing: α4
s 0.1205± 0.0027 0.0967± 0.0011 0.1205± 0.0017

Table 1: αs measurements at 91 GeV with the scale uncertainty [3][4], their evolution to
500 GeV and estimates of the scale uncertainty at 500 GeV.

αs at 500 GeV instead of 91 GeV reduces the scale uncertainty to 80% in the NLO case, and
to 60% in the NNLO case.

73



To study the measurement of thrust by the SiD detector at the ILC, we process u, d,
s, c, b - quark pairs, generated by whizard at 500 GeV with PYTHIA parton shower and
hadronization. The effects of initial state radiation and beamstrahlung are included and a
cut of m > 475 GeV is imposed on the reconstructed quark pair invariant mass. Comparing
the thrust distribution from truth particles (with mean 〈T 〉 = 0.953) and reconstruction
(〈T 〉 = 0.952), no systematic deformations are seen. Studying the reconstructed thrust
values versus the MC values, Fig. 1, the migrations in the range T > 0.7, which is measured
by OPAL [4], are small.

Figure 1: Thrust values of the reconstructed particles versus values of the MC input particles.

We would like to thank Norman Graf for help with the SiD Monte Carlo samples.
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The Principle of Maximum Conformality

Stanley J. Brodsky and Leonardo Di Giustino

SLAC National Accelerator Laboratory, Stanford University

A key problem in making precise perturbative QCD predictions is the uncertainty in de-
termining the renormalization scale of the running coupling αs(µ

2). It is common practice to
guess a physical scale µ = Q which is of order of a typical momentum transfer Q in the pro-
cess, and then vary the scale over a range Q/2 and 2Q. This procedure is clearly problematic
since the resulting fixed-order pQCD prediction will depend on the renormalization scheme,
and it can even predict negative QCD cross sections at next-to-leading-order [1]. Other
heuristic methods to set the renormalization scale, such as the “principle of minimal sensi-
tivity” [2], give unphysical results [3] for jet physics, sum physics into the running coupling
not associated with renormalization, and violate the transitivity property of the renormaliza-
tion group [4]. Such scale-setting methods also give incorrect results when applied to Abelian
QED. Note that the factorization scale in QCD is introduced to match nonperturbative and
perturbative aspects of the parton distributions in hadrons; it is present even in conformal
theory and thus is a completely separate issue from renormalization scale setting.

Scales in QED: There is no ambiguity in setting the renormalization scale in quantum
electrodynamics: In the standard Gell-Mann–Low scheme for QED, the renormalization scale
is simply the virtuality of the virtual photon. For example, in electron-muon elastic scatter-
ing, the renormalization scale is the momentum transfer t; i.e., α(t) = α(t0)/(1 − Π(t, t0))
where Π(t, t0) = (Π(t) − Π(t0))/(1 − Π(t0)) sums all vacuum contributions in the dressed
photon propagator, proper and improper. Although the initial choice of renormalization
scale t0 is arbitrary, the final scale t is not. In the case of muonic atoms, the modified
muon-nucleus Coulomb potential is precisely α(~q 2)/~q 2. One can use other renormalization
schemes in QED, such as MS scheme, but the physical result will be the same after allowing
for the displacement of scales. For example, if Q2 >> m2

ℓ , αMS(e
−5/3t) = αGM−L(t). The

same underlying principle for scale setting must hold in QCD since the nF terms in the QCD
β function have the same role as the lepton Nℓ vacuum polarization contributions in QED.

PMC and BLM: The purpose of the running coupling in gauge theory is to sum
all terms involving the β function; when the renormalization scale µ is set properly, all
nonconformal β 6= 0 terms in a perturbative expansion arising from renormalization are
summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent
“renormalon” series of order αn

sβ
nn! does not appear in the conformal series. Thus as in

QED, the renormalization scale µ is determined unambiguously by the “Principle of Maximal
Conformality (PMC)”. This is the principle underlying BLM scale setting [5] An important
feature of PMC is that its QCD predictions are independent of the choice of renormalization
scheme. The PMC procedure also agrees with QED in the NC → 0 limit. In the case of
e+e− annihilation to three jets, the BLM/PMC scale is set by the gluon jet virtuality.

Global PMC Scale: Ideally, as in the BLM method, one should allow for separate
scales for each skeleton graph; e.g., for to electron-electron scattering, one takes α(t) and
α(u) for the t-channel and u-channel amplitudes, respectively. Setting separate scales can
be a challenging task for complicated processes in QCD where there are many final-state
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particles and thus many possible Lorentz scalars q2i . However, one can obtain a useful first
approximation to the full BLM-PMC scale-setting procedure using a single global scale µ̂
which appropriately weights the individual BLM scales. The global scale [6] can be deter-
mined by varying the subprocess amplitude with respect to each invariant, thus determining
the coefficients fi of log q

2
i /µ

2
0 in the amplitude; the global PMC scale is then µ̂2 = CΠi(q

2
i )

wi,
where the weight wi = fi/

∑

j fj. C is the scheme displacement; e.g., C = e−5/3 for MS.
Commensurate Scale Relations (CSR) [7]: Relations between observables must be

independent of the choice of scale and renormalization scheme. CSRs are thus fundamental
tests of theory, devoid of theoretical conventions. For example, the PMC relates the effective
charge αg1(Q

2) determined by measurements of the Bjorken sum rule, to the effective charge
αR(s) measured in the total e+e− annihilation cross section: [1−αg1(Q

2)/π]×[1+αR(s
∗)/π] =

1. Because all β 6= 0 nonconformal terms are absorbed into the running couplings using PMC,
one recovers the conformal prediction [8]; in this case, it is the Crewther relation [9]. The
ratio of PMC scales

√
s
∗
/Q ≃ 0.52 is set by physics; it guarantees that each observable

goes through each quark flavor threshold simultaneously as Q2 and s are raised . Thus by
applying PMC, the conformal commensurate scale relations between observables, such as
the Crewther relation, become valid for non-conformal QCD at leading twist.

Conclusions: The PMC provides a consistent method for determining the renormal-
ization scale in pQCD. The PMC scale-fixed prediction is independent of the choice of
renormalization scheme, a key requirement of renormalization group invariance. The results
avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC global scale can be derived efficiently at NLO from basic properties of the PQCD cross
section. The elimination of the renormalization scheme ambiguity using the PMC will not
only increases the precision of QCD tests, but it will also increase the sensitivity of colliders
to new physics beyond the Standard Model.
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Workshop on αs 2011: Summary
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At this workshop, a large number of recent and newest developments in the field of
precision measurements of αs have been presented, and many in-depth discussions about
specific topics which arose before and during this meeting were performed. At the end of
this workshop, the status can be briefly summarised as follows:

• A selection of the newest significant results, not included in the 2009 world sum-
mary (c.f. the Introduction to this workshop, these proceedings), with potential to be
included in a new world average 2011, gives:

1. R. Abbate et al., “Thrust at N3LL with power Corrections and a Precision Global
Fit for αs(MZ0)”, arXiv:1006.3080, Phys. Rev. D83, 074021 (2011): αs(MZ0) =
0.1135 ± 0.0011. Hadronization power corrections treated with field theoretic
matrix elements fit to experimental data.

2. G. Disssertori et al., “Precise determination of the strong coupling constant at
NNLO in QCD from the 3-jet rate in e+e− annihilation at LEP”, arXiv:0910.4283,
Phys.Rev.Lett 104(2010) 072002: αs(MZ0) = 0.1175± 0.0025.

3. D0 Collaboration, V.M. Abazov et al., “Determination of the strong coupling
constant from the inclusive jet cross section in pp collisions at

√
s = 1.96 GeV”,

arXiv:0911.2710, Phys.Rev.D80 (2009) 111107: αs(MZ0) = 0.1161±0.0045 (QCD
in NLO).

4. OPAL collaboration, G. Abbienti et al., “Determination of αs using OPAL hadronic
event shapes at

√
s = 91 − 209 GeV and resummed NNLO calculations”, subm.

to Eur.Phys.Jour.C: αs(MZ0) = 0.1189± 00041.

5. A. Pich, “αs Determination from τ Decays: Theoretical Status”, arXiv:1001.0389,
Acta Phys. Polon. Supp. 3, 165-170 (2010): αs(MZ0) = 0.1213± 0.0014.

• The most imminent problems remaining after all discussion are:

(a) The new method and result from e+e− Thrust distribution (result no. 1 above),
using full NNLO perturbative QCD plus N3LL power corrections from a field
theory ansatz provides a rather small value of αs(MZ0) and - moreover - a very
small overall error. This, if included in the 2009 world average (replacing the
standard e+e− results from event shapes; c.f. the “Welcome and Introduction”
article to this workshop), results in an average of αs(MZ0) = 0.1174±0.0006, with
a rather bad overall χ2 of 17 for 6 d.o.f. This single measurement then deviates
by more than 4 standard deviation from the exclusive mean (of 0.1185± 0.0007),
indicating that either this determination suffers from a large and so far unknown
systematic shift, and/or its assigned error is largely underestimated.

(b) The situation in the sector of αs from τ -decays is still unsolved. Even after inten-
sive discussion throughout this workshop, no agreement on a possible preference
for one of the different perturbative approaches (FOPT vs. CIPT) was achieved.
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(c) There was some scepticism on the various results from lattice gauge theory pre-
sented at this workshop, especially on the reliability of the very small quoted
uncertainties. It was suggested to include more than the one result which was
part of the 2009 summary.

(d) The reliability of the “standard” αs determinations from hadronic event shapes
and jet rates in e+e− annihilation final states, based on hadronisation corrections
derived from Monte-Carlo models, was also discussed and criticized.

(e) General concern was raised about continuously shrinking systematic (and theo-
retical) uncertainties assigned to some of the results. Defining theoretical uncer-
tainties by varying the QCD renormalisation scale within a factor of two, up and
down, of the canonical scale - often the c.m. energy of the collision, may be a
gross under-determination in some cases, especially in case of QCD in NLO only,
but also in NNLO, where a small dependence on the scale may be accidental, and
modifications of the renormalisation scheme would also be mandatory.

A new attempt to extract an updated world average value of αs(MZ0) will therefore
have to rely on a careful selection and treatment of the results to be included. As a very
preliminary first look into the new situation in 2011, the results listed in table 1 are selected
to calculate a new world average. Compared to the previous study in 2009, results no. 3 and
4 as listed above have been included, while results no. 1, 2 and 5 were not (yet) accounted
for due to the reasons given above. The weighted average is αs(MZ0) = 0.1183±0.0006 with
χ2 = 5.0/8 d.o.f . Assuming an overall correlation factor of 0.37 to adjust χ2 to 1/d.o.f. then
gives as very preliminary world average 2011:

αs(MZ0) = 0.1183± 0.0010 .

Process Q [GeV] αs(MZ0) excl. mean αs(MZ0) std. dev.

τ -decays 1.78 0.1197 ± 0.0016 0.11809 ± 0.00109 0.8

DIS [F2] 2 - 170 0.1142 ± 0.0023 0.11866 ± 0.00132 1.7

DIS [e-p → jets] 6 - 100 0.1198 ± 0.0032 0.11827 ± 0.00097 0.5

Lattice QCD 7.5 0.1183 ± 0.0008 0.11838 ± 0.00164 0.0

Υ decays 9.46 0.119+0.006
−0.005 0.11832 ± 0.00094 0.1

e+e− [jets & shps] 14 - 44 0.1172 ± 0.0051 0.11835 ± 0.00094 0.2

pp incl. jets 50 - 145 0.1161 ± 0.0045 0.11831 ± 0.00097 0.5

e+e− [ew prec. data] 91.2 0.1193 ± 0.0028 0.11829 ± 0.00095 0.3

e+e− [jets & shps] 91 - 208 0.1208 ± 0.0038 0.11826 ± 0.00099 0.7

Table 1: Preliminary summary of recent measurements of αs(MZ0) (Feb. 2011). The rightmost two
columns give the exclusive mean value of αs(MZ0) calculated without that particular measurement,
and the number of standard deviations between this measurement and its exclusive mean.
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