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 
Abstract— In hadron colliders such as the LHC, the energy 
deposited in the superconductors by the particles lost from the 
beams or coming from the collision debris may provoke quenches 
detrimental to the accelerator operation. In previous papers, a 
Network Model has been used to study the thermodynamic 
behavior of magnet coils and to calculate the quench levels in the 
LHC magnets for expected beam loss profiles. This model was 
subsequently used for thermal analysis and design optimization 
of Nb3Sn quadrupole magnets, which LARP (US LHC 
Accelerator Research Program) is developing for possible use in 
the LHC luminosity upgrade. For these new magnets, the heat 
transport efficiency from the coil to the helium bath needs to be 
determined and optimized. In this paper the study of helium 
cooling channels and the heat evacuation scheme are presented 
and discussed. 

 
Index Terms— LHC Inner Triplet Upgrade, Quadrupole 

Magnets, Nb3Sn coil, Superconducting Cable Insulation, Steady 
State Heat Deposits, Heat Transfer. 

I. INTRODUCTION 

HE proposed luminosity upgrade of the Large Hadron 
Collider (LHC) at CERN [1] requires replacement of the 

focusing superconducting (SC) quadrupole magnets, so called 
“inner triplet” (IT), located at either sides of the collider 
interaction regions. The LARP (US LHC Accelerator Research 
Program) is working on the development of Nb3Sn magnet 
technology for particle accelerators and possible use in the 
LHC luminosity upgrade that involves replacing the present 
Nb-Ti IT quadrupoles in the two high-luminosity Interaction 
Regions (IR) [2].  

A possible operation issue for these Nb3Sn quadrupoles is 
the energy deposited in the SC magnet coils by the particles 
coming from collision debris or lost from the beam [3]. The 
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power dissipation in the superconducting magnet components 
leads to a complex process of the heat conduction and 
evacuation. In order to cope with this problem the study of 
heat transfer from the coil cables to the helium bath is 
required. The Network Model (NM) was developed to study 
the thermodynamic behavior of the SC coils and to calculate 
the quench levels of the LHC magnets for expected beam loss 
profiles [4]-[6]. The NM uses a well-known method, where an 
electrical circuit is used to model the thermal quantities.  
The NM was subsequently used for thermal analysis and 
design optimization of Nb3Sn quadrupoles. In this paper the 
results of steady-state analysis of US LARP Nb3Sn quadrupole 
magnets are presented.  

II. NETWORK MODEL 

The Network Model was developed to study the 
thermodynamic behavior of the magnet coils and to calculate 
the quench levels of the superconducting magnets for typical 
beam loss profiles as well as to optimize heat flow paths in the 
new designs of superconducting magnets. The fundamental 
unit of the NM is the superconducting cable. The cable is 
subdivided in the thermal resistance elements to study the heat 
flow inside its structure [4]-[6]. The network model is 
constructed from the cable unit. In this paper a 2-dimensional 
Nb3Sn coil model is analyzed. The cable sample is normalized 
to 1 meter of cable length. Other network model elements (coil 
insulation, helium channels) are included in the model with a 
segmentation corresponding to the cable dimensions. The 
advantage of NM is that this model has no free tuning 
parameters. Only the heat conductivity of magnet components 
and magnet geometry is used to calculate the heat transfer in 
the magnet.  

The values of thermal conductivities for calculating the 
thermal resistances of each element are taken from a 
commercially available database and literature [7]-[9]. Fig. 1 
shows the thermal conductivity of insulation materials used in 
the Nb3Sn magnets analyses. The experimentally determined 
equation by Claudet et al. in [9] has been used for superfluid 
helium heat transfer calculation (1). 
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