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ABSTRACT 

 

During the heat treatment of Nb3Sn coils the conductor material properties change 

significantly. These effects together with the changes of the conductor dimensions during 

heat treatment may introduce large strain in the coils for accelerator magnets. 

The US LHC Accelerator Research Program (LARP) has initiated a study aiming at 

understanding the thermal expansion and contraction of Nb3Sn strands, cables and coils 

during heat treatment. Several measurements on strands and cables were performed in 

order to have sufficient inputs for finite element simulation of the dimensional changes 

during heat treatment. In this paper the results of measurements of OST-RRP Nb3Sn 

conductor used in the LARP magnet program are discussed.  
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INTRODUCTION 

 

The US LHC Accelerator Research Program (LARP) has a primary goal to develop, 

assemble and test Nb3Sn quadrupole magnet models for a luminosity upgrade of the Large 

Hadron Collider (LHC) [1-3]. In order to produce magnets with high field uniformity a 

precise placement of the coil windings is required. Movement of the conductor and other 

components during coil heat treatment (HT) can alter magnet design from the ideal 

configuration.  

The strain state of the conductor is a critical parameter for the fabrication of Nb3Sn 

superconducting coils. During the heat treatment several intermetallic phases develop in the 

conductor before Nb3Sn formation. The changes of material properties and the interaction 

with pole parts and heat treatment fixtures may introduce significant strain in the coil.  

The highest critical current densities in long length (production) Nb3Sn strands, with 

high reproducibility, are presently achieved through the Restacked Rod Process (RRP) by 
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density (ρ), and the coefficient of thermal expansion (CTE) are needed. Another critical 

part of the simulation is phase transition modeling. The general simulation plan is 

presented inthe following steps: 

 

I. Prepare and perform 3D simulation of strand with ANSYS. 

II. Validate strand model with measurement results. Adjust the model parameters. 

III. Simplify strand model and use it to build cable model. 

IV. Validate cable model with measurement results. Adjust the model parameters. 

V. Simplify cable model and use it to build coil model. 

VI. Validate coil model with measurement results. Adjust the model parameters. 

EXPERIMENTAL SETUP 

 

Most strand and cable samples were heat treated together with LARP Long 

Quadrupole coils in a 6 m long oven at Fermilab. A few strand samples were heat treated in 

a small oven. During reaction, the oven temperature was monitored continuously by 

thermocouples placed around and within the reaction fixture. Gas tight reaction furnaces 

are used at Fermilab with 99.99% pure argon gas to perform the coil heat treatment. Two 

gas supplies are used, one for the furnace volume with a flow rate of 24 L/min (50 SCFH) 

and one for the reaction tooling using a gas flow rate of 12 L/min (25 SCFH). These flow 

rates maintain a small positive pressure within the reaction fixture and the furnace. Exhaust 

gas from the raction fixture is passed through a filter to capture residues of oil (used for 

strand manufacturing) and of palmitic acid(a binder used to strengthen  the cable 

insulation). Temperature uniformity within the furnace volume is maintained within ±3° C 

at all three temperature plateaus. The strand samples were placed in a barrel connected in 

series with the reaction fixture, so they were reacted in the same atmosphere of the reacted 

coil.  

The main goals were to measure length and diameter change during reaction, as well 

as strand twist change. The work was divided into several phases, namely: sample cut; 

sample ends preparation; precise length and diameter measurement before and after heat 

treatment.  

 

Samples preparation 
 

The object of this study were RRP 54/61 and RRP 108/127 strands, made by OST, 

used in the LARP magnet program. The strand sample length ranged from 50 to 1000 mm. 

The nominal strand diameter for measurements presented in this paper was 0.7 mm for 

twisted RRP 54/61 and RRP 108/127 samples, and 0.85 mm for “non-twisted” RRP 

108/127 samples. In all reaction campaigns only strand samples from the same billets for 

each type of strand were used in order to reduce variability. The samples were inserted into 

quartz tube to keep them straight and to reduce environment impact. Nonetheless 

environment impact was studied by reaction of some strand samples in larger mica tubes as 

well as in small and in large oven. Results show no dependence on the type of reaction tube 

and oven type. In order to select the correct sample ends preparation method for further 

measurements the impact of different ends preparation(crimped, fused and as cut) was 

studied. Finally samples with fused ends were chosen as default for further reactions. These 

types of end preparation were studied also for developing the best preparation for the 

samples to be measured with a dilatometer.  The procedure selected (fusing the ends, and 



subsequent filing) was chose in order to protected the sample against Sn leak from the 

stands (Figure 2 - Figure 4) and to provide a smooth surface for the length measurement  

 

   

Figure 2 Selected example of 

sample end after reaction. The 

photo shows strand end “as cut” 

with visible Sn leak during 

reaction. That is why “as cut” 

sample end preparation was 

rejected. 

Figure 3 Selected example of 

fused sample end. The photo show 

that after fusing majority of the 

samples have not regular end 

shape. In order to perform precise 

sample measurement a fine filling 

is necessary. 

Figure 4 Selected fused sample 

ends after filing.  Picture show that 

fine strand end preparation allows 

high precision measurement of 

sample length change. 

Samples measurement 

 

The measurements of strand sample length were performed with ATS-800 Video 

Measuring System (Figure 5 and Figure 6) with total measurement precision of 5 µm. The 

same measurements precision were obtain for strand diameter measurements performed 

with micrometer. The twist change with a dedicated tool was measured with 0.5 degree 

accuracy.  

 

  

Figure 5 ATS-800 Video Measuring System (VMS). 

This system allows measuring samples with 

precision of 5 µm assuming recurrent measurements.  

Figure 6 Micro-markers on the stand surface used 

for fractional strand length change measurement. The 

markers were made with scalpel by gentle touching 

of strand surface in order to avoid cut of strand 

subelement with Sn inside (avoiding Sn leak). The 

width of the markers is order of 80 µm. 

MEASUREMENT RESULTS 
 

The following measurements, before and after heat treatment, were performed:  strand 

diameter change, strand length change and strand twist change.  

The diameter change (∆D/D) measurements shown in Figure 7 were performed with 

OST RRP 54/61 strands. They demonstrate RRP 54/61 strand radial increase by average 

value of 2.15%. Each strand diameter measurement was taken 10 times over the sample 

length resulting in the error of the average of 0.2%. The majority of results plotted in 

Figure 7 are within this error range. These results are in good agreement with data 

published in [7], performed also with OST RRP 54/61 strands. The different marker shown 



in Figure 7 corresponds to independent measurements taken with samples from different 

reaction. These results confirm that the strand diameter change is independent of the 

reaction oven, and it remains constant over the sample length.  In TABLE 1 the results of 

∆D/D for RRP 108/127 (1.88% - twisted and 1.71% - non-twisted strand samples) are 

presented as well. The difference between RRP 54/61 and RRP 108/127 results from 

different copper to superconductor ratio (RRP 54/61: Cu/sc =0.85, RRP 108/127: 

Cu/sc=1.155). In the table also the minimal and maximal measured values are shown. 

 

 
 

Figure 7 OST RRP 54/61 strand diameter change after heat treatment. The different markers in figure 

correspond to independent reaction and measurements of strand diameter change. 
 

The first set of measurements of the strand length change gave some puzzling results  

(Figure 8) showing elongation and an apparent dependence of ∆L/L on sample length.  

Further measurements were performed in order to understand the possible impact of strand 

untwist and “end effects” on the sample length change.  By “end effect” we refer to a 

possible difference of ∆L/L in the region affected by the weld with respect to the ∆L/L in 

the section of the sample not affected by the weld. 

 

Figure 8 First set of measurements of strands length change after heat treatment. The different markers in 

figure correspond to different reaction and measurements of strand length change. 

 

The objective of subsequent sets of strand length measurements was to check the 

length change in different segments  of the samples with particular attention to strand ends. 

Micro-markers were placed on the strand surface (Figure 6) and were used for fractional 

length change study. The results of these measurements are shown in Figure 9 and Figure 

10. Figure 9 shows the ∆L/L starting from the strand center up to the end of the sample. 

The results show homogenous behavior of ∆L/L except at the sample ends. Figure 10 

presents the ∆L/L of each segment (between two adjacent markers) along the whole 
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sample. The end effect is clearly shown in Figure 10 by the peaks at the ends of the 

samples. Since the end segments were 

measurements error of the end segments 

precision of measuring tool). However 

showed an increase of ∆L/L at the ends. 

average decreases to about 0.1% 

ours is to measure a short sample with 

effect during the sample preparation and measurement.

 

Figure 9 OST RRP 54/61 strand fractional length 

change. Several micro-markers were placed

strand surface in order to measure fractional length 

change. The different markers refer to 

measured samples. 

 

Measurement of twist change

11 and 12.  

Since the same samples were use for diameter, length and twist change study, t

measurements of twist change over the sample length

performed with RRP 54/61 strand type.
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Figure 10 OST RRP 54/61 strand fractional end 
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Figure 11 OST RRP 54/61 strand twist change. The 

different markers refer to different measured 

samples. 

Figure 12 Impact of the strand twist on sample 

elongation. Round markers show results of twisted 

samples and diamond results of non-twisted sample 
 

TABLE 1 summarizes the results of measurements performed with different types of 

strands. It shows that OST RRP 54/61 strands elongate whereas OST RRP 108/127 strands 

shrink after heat treatment (although by small amount in both cases).  “Non-twisted” RRP 

108/127 strands shrink significantly more than the same strands when twisted. The 

diameter change show correlation with Copper to superconductor ratio (RRP 54/61: Cu/sc 

=0.85, RRP 108/127: Cu/sc=1.155). Length and diameter changes in the table are shown 

together with the ranges of maximal and minimal measured results.  
 

TABLE 1 Results of Nb3Sn strands and cables measurements. The errors shown for length and diameter 

measurements show the spread of measured data. 

SAMPLE Length change [%] Diameter change [%] 
Twist change 

[deg/mm] 

STRAND RRP 108/127  

( billet 12521, twisted) 

025.0

015.0
045.0

+

−
−  

07.0

04.0
88.1

+

−
+  

∗
− 3.1  

STRAND RRP 108/127 

(billet 12521, non-twisted) 

02.0

03.0
12.0

+

−
−  

06.0

05.0
71.1

+

−
+  

∗∗

− 26.0  

STRAND RRP 54/61 

(billet 9532, twisted) 

025.0

035.0
035.0

+

−
+  

7.0

25.0
15.2

+

−
+  

∗

− 6.1  

 

*   
nominal twist is 28 deg/mm  

** 
nominal twist is 0.4 deg/mm  

 

CONCLUSIONS AND FUTURE PLANS 

 

A study of OST RRP Nb3Sn strands behavior during heat treatment was presented. 

Several measurements before and after HT were performed and compared in order to 

understand the strand dimensional changes during the heat treatment.  

The results show that unconstrained twisted strands untwist during the heat treatment 

by about 4%.  The untwisting causes the elongation not present in untwisted strands made 

from the same billet.  In Rutherford cable the strands are constrained by the layout of the 

cable, therefore we suggest measuring untwisted strands in order to predict the length 

change during HT of Rutherford cables and coils.   
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This study also showed that the ends of the strand samples, fused to prevent tin leaks 

during the HT, have a larger relative elongation during the HT.  This end effect should be 

taken into account when measuring short samples to predict the length change of longer 

strands, cables or coils.   

The measurement of diameter change of 1.9% and 2.15% for twisted RRP 108/127 

and RRP 54/61 strands respectively, confirmed the expected dependence on the copper to 

superconductor ratio. 

Presently on-line measurements of length change during the HT are in progress with a 

dilatometer at the NHMFL in Tallahassee (FL) on samples made by seven strands fused 

together. The short length of the samples will require a detailed analysis in order to extract 

the behavior of the central section by removing the end effects.  
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