
 

 

DANCING BUNCHES AS VAN KAMPEN MODES 
A. Burov, FNAL*, Batavia, IL 60510, U.S.A.

Abstract  

Van Kampen modes are eigen-modes of Jeans-Vlasov 
equation [1-3]. Their spectrum consists of continuous and, 
possibly, discrete parts. Onset of a discrete van Kampen 
mode means emergence of a coherent mode without any 
Landau damping; thus, even a tiny couple-bunch wake is 
sufficient to drive instability. Longitudinal instabilities 
observed at Tevatron [4], RHIC [5] and SPS [6] can be 
explained as loss of Landau damping (LLD), which is 
shown here to happen at fairly low impedances. For 
repulsive wakes and single-harmonic RF, LLD is found to 
be extremely sensitive to steepness of the bunch 
distribution function at small amplitudes. Based on that, a 
method of beam stabilization is suggested.    

 

OIDE-YOKOYA EXPANSION 
For stability analysis, the steady state distribution 
function, or the phase space density F(I), can be treated as 
an input function, determined either by cooling-diffusion 
kinetics, or by injection. After the steady state problem 
being solved as in Ref. [7], the phase space density 
perturbation f(I,φ,t) is to be found from the Boltzmann-
Jeans-Vlasov (BJV) equation [8]:  
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Here I, φ and Ω(I) are the canonical action, phase, and 
incoherent frequency in the distorted potential well; 

 ( , ) ( , , ) ( )V z t f I t W z z dI dϕ ϕ′ ′ ′ ′ ′= − −∫  (2) 

is a perturbation of a single-particle Hamiltonian by wake 
fields induced by the beam perturbation f(I,φ,t) with the 
wake function W(z) [9]. Following Oide and Yokoya [10], 
the eigenfunctions of Eq. (1) may be expanded in Fourier 
series over the phase: 
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With ( , 0) min ( , )z I z Iϕϕ ϕ= = , this yields an equation for 
the amplitudes fm(I): 
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The matrix elements      
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can be expressed in terms of the impedance Z(q) [9]: 
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Note that bunch-to-bunch interaction is neglected here. 
Equation (4) reduces the integro-differential BJV 
equation (1) to a standard eigen-system problem of linear 
algebra. 

Hereafter, dimensionless units are used. Dimensionless 
action I is converged to conventional eV·s units with a 
factor of 2

0 0 rf/ ( ),E ηωΩ  where 2
0E mcγ=  is the beam 

energy, 2 2
tη γ γ− −= − – the slippage factor, γ – relativistic 

factor, ωrf – RF angular frequency, and Ω0 is zero-
amplitude incoherent synchrotron frequency in a bare RF 
potential. For single-harmonic RF, considered in this 
paper, bucket acceptance (maximal action) in the 
dimensionless units is 8/π≈2.54. Dimensionless 
synchrotron frequencies are measured in units of Ω0. The 
dimensionless impedance Z(q), Eq. (7), relates to the 
conventional Z||(q) as Z(q)=DZ||(q) with the intensity 
factor ( )2 2

0 rf 0/D Nr c Cη ω γ= Ω , where N is the bunch 

population, r0 - the classical radius and C – the machine 
circumference. The offset z is RF phase in radians. 

VAN KAMPEN MODES 
More than half a century ago, N. G. van Kampen found 

an eigensystem of Jeans-Vlasov equation for infinite 
plasma [1-3]. In general, a spectrum of these modes 
consists of continuous and discrete parts. The continuous 
spectrum essentially describes single-particle motion, 
accompanied with a proper plasma response. Frequency 
band of the continuous spectrum is one of the incoherent 
frequencies. Continuous modes are described by singular 
functions, underlying their primary relation to single-
particle motion. Landau damping of coherent motion can 
be treated as phase mixing of the continuous van Kampen 
modes. As opposed to the continuous spectrum, the 
discrete one not necessarily exists. Discrete modes are 
described by regular functions; some, if not all, of them 
do not decay with time. Indeed, since the original 
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equations (analogue of Eq. (4)) have real coefficients, the 
mode frequencies are either real or forming complex-
conjugate pairs. So, it is either a pure loss of Landau 
damping or instability. Infinite plasma with monotonic 
distribution density was shown to be always stable; 
discrete modes of the pure LLD type may only appear if 
the distribution function is of a finite width. Plasma 
instability was shown to be possible for non-monotonic 
distributions only [11].  

For bunch longitudinal motion, eigenproblem of Jeans-
Vlasov equation was first considered by A. N. Lebedev 
[12]. Although the suggested formalism was not 
numerically tractable, an important result was analytically 
obtained: it was proved that for the space charge 
impedance above transition, all the eigen-frequencies are 
always real. 

For pure parabolic RF potential, van Kampen modes 
were analyzed for various wake functions [10, 13-15]. For 
that model RF, rigid bunch oscillations at the unperturbed 
synchrotron frequency is always a solution of equation of 
motion [13]. Indeed, single-particle equations of motion 
can be written as  

 ( ) ; , 1,...,i i i j
j

z z W z z i j N′+ = − =∑ . 

The solution can be presented as a sum of a steady-state-
related part ˆiz and a small perturbation iz . It is clear that 
rigid-bunch motion const cosiz t= ⋅  satisfies this 
equation. While that rigid-bunch frequency is intensity-
independent, all the incoherent frequencies are typically 
either suppressed or elevated by the potential well 
distortion; thus, normally this mode stays outside the 
incoherent band, so it is a discrete LLD type mode. This 
normally expected behavior is not necessarily though. As 
it was shown in Ref [13], for broad band impedance 
model, core and tail incoherent frequencies may go with 
intensity in opposite directions, so the rigid-bunch mode 
may be covered by incoherent frequencies; thus, it should 
be Landau-damped in this case. In Ref. [16], loss of 
Landau damping was analyzed for the space charge 
impedance and various RF shapes, assuming it is the 
rigid-bunch mode which is losing its Landau damping. 
That assumption is not correct when the RF frequency 
spread is taken into account: action dependence of the 
emerging discrete mode is normally very different from 
the rigid-bunch one [7]. Because of that, rigid bunch 
approximation overestimates the threshold intensity. For 
the space charge and the Hofmann-Pedersen distribution, 
this overestimation is ~3 times below transition and ~5 
times above it. However, above transition the LLD is not 
radical [7], so it is very sensitive to tiny tails of the 
distribution.      

The analysis is limited hereafter by the weak head-tail 
approximation for the dipole azimuthal mode: only 
m=n=1 matrix elements are left in Eq.(4).      

INDUCTIVE IMPEDANCE 
Hadron machines are normally dominated by the resistive 
wall or inductive impedances. In the dimensionless units, 
inductive wake function and impedance are written as 
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where Z0=4π/c=377 Ohm, and n is the revolution 
harmonic number.  
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Figure 1: Threshold LLD intensity parameter kth versus 
the bunch emittance for 3 denoted distributions F(I), 
where lim/x I I= . Lines are fits with 5/2

th limk I∝ . 
Tevatron data for protons (crosses) and pbars (stars) are 
shown at injection (right) and top energy (left symbols).  
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Figure 2: Same thresholds as above, in terms of the zero-
amplitude relative incoherent frequency shifts found as in 
Ref. [7]. Lines are linear fits.  
 
LLD threshold lines, kth versus Ilim , are presented in Fig. 
(1) for k>0 (repulsive wake: inductance above, or space 
charge below transition) and three distribution functions, 
with 

lim/ 1x I I≡ ≤ : 1/2( ) (1 )F I x∝ −  (most stable), 
2( ) (1 )F I x∝ −  (medium stable), and 

( )2( ) ~ (1 ) 1 cos(8 )F I x xπ− +  (least stable).  The last 
distribution simulates a coalesced proton bunch in the 
Tevatron. It takes about an hour for memory of the 



 

 

constituent 7 bunches to get smeared in the coalesced 
proton bunch in the Tevatron.  
Although the emergent discrete modes are far from being 
similar to the rigid-bunch motion ( )I F I′∝ , the power 
law 5/2

th limk I∝  agrees with the prediction of Ref. [4, 17]. 
According to that, LLD happens when the zero-amplitude 
synchrotron tune shift 

1 2 3/2
0 lim(0) Im ( ) / /Z l l k I−∆Ω = Ω − Ω ∝ ∝  exceeds the 

synchrotron tune spread in the nonlinear RF, 
limIδΩ ∝ . 

Equating these two values, one gets the threshold scaling 
5/2

th limk I∝  for the inductive impedance, confirmed by 
Figs. (1,2). The plots show strong dependences of the 
threshold intensity on details of the distribution function. 
Qualitatively, this can be interpreted as a high sensitivity 
to the distribution steepness at small arguments. That high 
sensitivity should not be too surprising. While wakes are 
stronger for shorter bunches, the frequency spread is 
weaker for them. That is why a small central portion of a 
bunch is less stable than the entire bunch. Effective length 
of the oscillating bunch centre depends on the distribution 
function: the steeper is the distribution at small 
amplitudes, the shorter this part is. This prediction 
appears to be generally correct when the bare RF 
synchrotron frequency monotonically decreases with the 
amplitude, and for any effectively repulsive wake field, 
diminishing the incoherent synchrotron frequencies.  

At the Tevatron, long-living oscillations of proton 
bunches are seen both at the injection and top energy, if 
the damper is off; the oscillations are conventionally 
called as ‘dancing bunches’ [4]. For the antiprotons, 
similar phenomenon is observed at collisions only. For 
the Tevatron impedance model [18], the proton bunches 
at injection turn out to be ~2 times above the green line 
LLD threshold of Fig. (1). At the top energy, they are ~20 
times above that threshold, and slightly above the red line 
threshold. According to these calculations, the antiprotons 
stay at the green line threshold at injection, and they are 
10 times above it at the top energy. In reality, they are 
stable at injection, and unstable at collisions. To conclude, 
both proton and antiproton stability observations are in a 
reasonable agreement with the model described.  

Since LLD strongly depends on the small-argument 
steepness of the distribution function, its local flattening 
there should increase the threshold. This sort of flattening 
can be achieved by means of RF phase modulation at a 
narrow frequency band around zero-amplitude 
synchrotron frequency. This RF shaking should smear 
distribution for the low-action resonant particles and thus 
make the bunch more stable. Dedicated experiments with 
that RF shaking were performed at the Tevatron. 
Observations are confirming; their detailed description is 
presented in a special report [19].       

CONCLUSIONS 
Emergence of a discrete van Kampen mode means 

either loss of Landau damping or instability. Longitudinal 
bunch stability is analysed in weak head-tail 

approximation for inductive impedance and single-
harmonic RF.  

The LLD threshold intensities are found to be rather 
low: for cases under study all of them do not exceed a few 
percent of the zero-amplitude incoherent synchrotron 
frequency shift, strongly decreasing for shorter bunches. 
Because of that, LLD can explain longitudinal 
instabilities happened at fairly low impedances at 
Tevatron [4], and possibly for RHIC [5] and SPS [6], 
being in that sense an alternative to the soliton 
explanation [5, 20]. Although LLD itself results in many 
cases in emergence of a mode with zero growth rate, any 
couple-bunch (and sometimes multi-turn) wake would 
drive instability for that mode, however small this wake 
is. LLD is similar to a loss of immune system of a living 
cell, when any microbe becomes fatal for it.  

The emerging discrete mode is normally very different 
from the rigid-bunch motion; thus the rigid-mode model 
significantly overestimates the LLD threshold. The power 
low of LLD predicted in Ref. [17] agrees with results of 
this paper. However, the numerical factor in that scaling 
low strongly depends on the bunch distribution function. 
Particularly, for inductive impedance above transition and 
three examined distributions, the highest LLD threshold 
intensity exceeds the lowest one by a factor of ~100. 
Based on that observation, proper RF phase shaking as a 
method of beam stabilization is suggested.  

The author is thankful to V. Lebedev for stimulating 
discussions.    
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