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1 Introduction

The CMS Tracker [1] is the largest silicon system of its kind ever built. The apparatus was as-
sembled and tested at the Tracker Integration Facility (TIF) at CERNbefore installation at the
experimental site. In addition to testing charge collection [2], track reconstruction [3], and align-
ment [4] performance with cosmic rays, a small slice of the CMS data acquisition (DAQ) hardware
was built at the TIF to provide the bandwidth capacity to allow testing at the high acquisition rates
expected in proton-proton collisions, of order 50-100 kHz,four orders of magnitude above the rate
in cosmic ray studies.

1.1 The CMS strip tracker

The CMS Tracking system is composed of an inner pixel detector as well as an outer tracker
based on silicon microstrips. The tracker is further divided up into subdetectors: the inner barrel
and inner disks (TIB/TID), the outer barrel (TOB), and the end caps (TEC), all together roughly
10 million strips. Each subdetector is composed of silicon sensors capacitively coupled to front-
end electronics in ”modules”. Modules are combined into TIB/TID ”strings”, TOB ”rods”, and
TEC ”petals”, which share the same power and readout services. The Tracker Technical Design
Report [5, 6] provides more descriptions.

A module measures ionization depositions from charged particles traversing the material. The
charge information from the microstrips is sampled every 25ns and stored in an analogue pipeline
by an on-detector ASIC, the APV25 [7]. The data are held pending a decision to read out a partic-
ular 25 ns sample, a “trigger”, following which the APV25 readout process starts, converting the
analog charge into an optical signal, adding header information, and transmitting the optical signal
to a FrontEnd Driver (FED), a VME board which digitizes the data, performs pedestal subtraction
and zero suppression, and then passes the data further downstream to the CMS DAQ.
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1.2 High rate test apparatus

The data acquisition hardware at the TIF [8] is a smaller scale version of the CMS DAQ installed
at the experiment, which handles data for all CMS subdetectors. There are two interfaces to the
CMS DAQ: the data path and control path. The data path starts with FED event fragments, which
are routed through a switch to a computer farm responsible for concatenating the fragments into
one event, unpacking the payload, and running filtering algorithms before writing the event to disk.
The control path is a fan-in monitoring buffers in the FEDs and APV25s to moderate the trigger
rate, preventing buffer overflow and subsequent loss of data. Testing at high rate necessitated the
implementation of both of these paths. In addition, a Local Trigger Controller VME module gener-
ated multi-kHz triggers with programmable time structure,including either Poisson distributed or
fixed-frequency triggers. The triggering scheme does not involve the presence of real signals; thus,
the data collected represents the noise behavior of the tracker at high rate.

Three different configurations of modules were utilized to study the tracker performance: the
“Slice Test”, a single-rod testbench, and a single-module testbench. The Slice Test [2–4] consisted
of approximately 15% of the full tracker, fully instrumented with power supplies and readout elec-
tronics, and operated with either scintillator-based cosmic ray triggers or programmable calibration
triggers. As the investigation indicated a systematic effect not related to the scale of system, a spare
TOB rod also at the TIF substituted in place of the actual detector, permitting high rate studies in
parallel with other programs during TIF operations. This rod was composed of 6 modules with
4 APV25s per module, connected to the DAQ in exactly the same manner as the Slice test. Fi-
nally, a second completely different DAQ system was used to probe the APV25 chip and sensor
behavior in a more controlled way on the benchtop. This system employed a programmable digital
pattern generator to provide the 40 MHz clock and trigger patterns to a single TEC module, and a
commercial ADC to digitize the output data streams.

2 Tests with the tracker at high rate

2.1 Discovery of the high rate Noise effect

With the high rate apparatus installed, tests of the noise performance were carried out. First, using
the TOB, noise and pedestals were sampled using so-called “Virgin Raw” (VR) mode, where the
FED applies no pedestal or common-mode subtraction nor any zero suppression of the data. The
noise and pedestal results are used for FED data processing in subsequent runs, so these tests
checked that there were no variations due to readout path or readout rate. With rate-independence
of the pedestals and noise established, zero-suppression (ZS) was enabled in the FEDs to achieve
smaller event size, required for higher rates. In ZS-mode, the FEDs subtract pedestals from the
raw ADC data in each event and calculate per-APV25 common-mode levels from the result [9].
After processing, the algorithm forms clusters by requiring either a single strip with an ADC count
above 5σ or two or more adjacent strips with ADC counts above 2σ whereσ indicates the RMS
of the pedestal for that strip. The FED outputs the correctedADC data of strips in such clusters,
and the cluster size and position. This information is used to calculate strip occupancy, defined as
the frequency at which a given strip is included in a FED cluster.
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(a) (b)

Figure 1. (a) Occupancy and (b) Cluster charge for a single TEC fiber versus L1A Rate. A clear increase
in occupancy with trigger rate is observed again on channelsnear 127 for both APV25s on the fiber. In
addition, the tail of the Cluster charge distribution growswith rate.

The ZS tests revealed an increase in occupancy of edge channels of the APV25 chips with
increasing trigger rate, which becomes evident at rates above ∼ 30 kHz, both with biased and
unbiased sensors. Tests with the TEC and TIB established this high-rate noise effect (HRN) as a
universal feature in the tracker. An example of the growth inoccupancy with increasing rate from
one TEC fiber, which carries data from two APV25s, is shown in figure1a. In addition to increased
occupancy, the edge channel cluster sizes and ADC values also increase with trigger rate, as seen in
figure1b for the same TEC fiber. For reference, a minimum ionizing particle is expected to deposit
charge clusters around 100 ADC counts.

Selecting events with large ADC counts in channel 127 in one APV25, and examining the
channel 127 output from other APV25s in the same event shows that large clusters comprised of
strips with high ADC count appearsimultaneously on every APV25when HRN occurs, indicating
the effect is independent of particular detector, and is triggered by some global signal or that this is
a systematic effect from the APV25 or FED which affects all detectors.

To obtain more information on HRN events, a modification was made to the FED firmware
to sample VR data while running at 100 kHz, recording ADC values on all strips during high rate
operation. Figure2 plots ADC values of channel 0 and 127 for events in which the channel 127
passes the cluster criteria. The mean of the channel 0 data is≈ −20, well below the chip average,
indicating a strong anti-correlation between the ADC counts of channels 0 and 127. To confirm
that anti-correlation, events where either channel has a high ADC count are selected. Figure2
shows the ADC correlation at different trigger rates, whichbecomes more pronounced as trigger
rate increases.

The HRN effect was uncovered using high-rate Poisson-distributed triggers which closely ap-
proximate the triggering scenario expected in CMS. Tests with a fixed-frequency 100 kHz trigger
did notreproduce the occupancy spikes observed with the Poisson trigger. Under these conditions,
the readout of each trigger, which requires 7µs, is complete before the next trigger is received. The
trigger generator was verified not to produce illegal trigger conditions and the time distribution was
verified to be Poissonian. It was concluded that the HRN originated in an unexplained interference
when data readout coincided with a subsequent trigger.
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Figure 2. (a) Common-mode subtracted ADC counts for channel 0 and 127when channel 127 has a cluster
over threshold. The offset from zero for channel 0 indicatesa strong anti-correlation between the HRN on
these two channels. (b) Average ADC count of channel 0 versusthat of channel 127, when one of them
is above threshold, at various different trigger rates, confirming the anti-correlation and its dependence on
trigger rate.

2.2 Investigation of the APV25

The observation that the effect is independent of module type indicates that the effect arises from
a common component, possibly the APV25 chip. To understand further, it is necessary to review
how the APV25 functions.

APV25 operation. The APV25 contains a 192×128 cell pipeline that holds charges read from
each of 128 silicon microstrips. At the start of a data run, following a master reset the internal logic
is initialized and the digital pointers controlling pipeline access start to circulate. A write pointer
shifts through the pipeline controlling sampling of the front end amplifier output at 40 MHz. A
trigger pointer follows with a time delay equal to the programmed latency. When a trigger occurs
one (three) pipeline cells in peak (deconvolution) mode corresponding to the current trigger pointer
location are marked for subsequent readout, and are not overwritten until the readout process has
completed. The pipeline readout is governed by a separate cycle with a period of 1.75µs (70
clocks at 40 MHz), and a phase also determined by the master reset signal. The phase of this
pipeline readout cycle is reflected in the output data streamas tick marks, large amplitude signal
levels occupying one 25 ns clock. The tick marks allow external logic to synchronize to the APV25
output phase.

The APV25 has two modes of operation, peak and deconvolution. In peak mode one sample
per channel is read from the pipeline following a trigger, and then transferred to the output via the
multiplexer; the sample corresponds to the maximum amplitude from the CR-RC shaped front end
amplifier, which has a time constant of 50 ns. In deconvolution mode [10, 11] three samples are read
sequentially and a weighted sum formed. This results in an effective re-shaping of the analogue
pulse shape to peak at 25 ns and return to the baseline within one clock cycle. These operations
take 4 pipeline readout cycles, after which transmission ofthe output data frame commences. For
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Figure 3. The APSP circuit diagram. The switches labeled ro1,2,3 andri1,2,3 open and close during the
APSP readout cycle for sample processing.

each APV25, a 12-bit digital header precedes the 128 analogue channel samples, creating a data
frame of 7µs total length, the same duration as the 4 pipeline readout cycles. Chip readout is
simplified by matching the output data frame and pipeline readout durations, since at high rate
triggered data stored in the pipeline can be read out while data from the previous trigger are being
multiplexed out.

The Analogue Pulse Shape Processor (APSP) is the part of the APV25 chip which performs
the deconvolution operation. The circuit diagram for the APSP is shown in figure3. During
processing, a series of switches in the feedback network of ahigh gain amplifier are opened and
closed in sequence to apply the appropriate weight to each ofthe three samples, and make the
weighted sum. The cycle time of the APSP circuit is chosen to be 1.75µs so the total processing
time matches the 7µs readout time of the APV25.

APV25 behavior with controlled trigger spacing. To probe APV25 behavior, the programmable
trigger generator was used to read data stored in specific pipeline locations by specifying the inter-
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Figure 4. (a) The maximum occupancy divided by the average occupancywithin a fiber (2 APV25s) for all
fibers connected to the rod as a function of time separation between two consecutive triggers. Certain trigger
intervals show the HRN effect for all fibers simultaneously.(b) Second trigger pedestal data dependence
on first and second trigger separation, for channel 127 on thesingle-module test bench. Data were taken
in deconvolution mode for 3 values of latency, and averaged to remove random noise. An arbitrary vertical
offset has been applied to the data for clarity.

vals between a master reset (RST) command and trigger (T1). Aseries of runs scanning T1-RST
time separations was taken to assess the occupancy variation with pipeline cell, but no correlation
was observed. Similar analysis of occupancy as a function ofpipeline address rather than posi-
tion, as well as a function of readout phase relative to the trigger, and as a function of pipeline
cell occupancy, arranging use of adjacent pipeline cells for pairs of triggers, all eliminate these as
possible causes of HRN. However, to probe the dependence on few µs timescale trigger intervals,
a second trigger (T2) after T1 was added with a variable delaybetween the triggers. Figure4(a)
shows the maximum occupancy divided by the average occupancy for each fiber from the single-
rod test bench, as a function of T2-T1 separations. The plot suggests that several trigger intervals,
in particular, 100, 160, and especially 380 clocks, have significantly higher occupancies, for all
APV25s simultaneously, indicating that the HRN was caused by interference between two triggers
with very specific relative timing.

Additional tests with the single-module test bench (section 1.2) were performed to further
probe the observed behavior. The digital pattern generatorwas programmed to cycle repeatedly
through a sequence consisting of a reset, a fixed delay to allow the APV25 pipeline logic to ini-
tialize, then two triggers where the first trigger time was fixed relative to the reset, but the delay
between first and second triggers was varied. Figure4(b) shows the second trigger pedestal data
dependence on first and second trigger separation, for APV25edge channel 127. The data were
taken in deconvolution mode for different values of programmed latency, and averaged over many
triggers, removing the random noise component. Large pedestal disturbances well above noise
levels are evident. Most importantly, the excursions occurat trigger separations which depend on
the programmed latency, suggesting that they originate in on-chip activity.

Figure5 shows a similar picture to figure4(b), but for module strips 127 and 128, edge chan-
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nels on adjacent APV25s, for one value latency, in this case 130 clocks cycles. This demonstrates
an anti-correlation in the pedestal disturbances between edge channels, as seen in previous tests.
The pedestals associated with the feature at second triggerpositions 157 and 158 have been labeled
in the figure to illustrate this anti-correlation more clearly.

The APV25 output at actual trigger time represents the stateof the APV25 output at the instant
the second trigger was applied to the chip. The APV25 output data frame displayed results from
the first trigger. There are no obvious correlations betweenthe pedestal patterns arising from the
second trigger and the APV25 output sequence, but if the crosstalk is generated at the chip input,
as suspected, it is necessary to take the programmed latencyinto account. From the APSP circuit
schematic (figure3), the simultaneous operation of the switches will draw current from the power
supply rails, which is liable to generate significant, impulse-like, current fluctuations throughout
the system which may couple back into it and generate noise. This APSP transition switching
activity causes interference to couple into the APV25 inputs which will affect data written into the
pipeline at that instant, but the subsequent trigger that would sample that data arrives one latency
period later.

For example, at second trigger position 380 in figure5 there is a disturbance visible in the
output data retrieved from the pipeline by the second trigger. These data were written into the
pipeline 130 clock cycles earlier so should be compared withthe APV25 output state at second
trigger position∼250, when the APV25 output data frame resulting from the firsttrigger was just
beginning. TheAPV25 output offset by trigger latencyrepresented in figure5 is just theAPV25
output at actual trigger timeshifted by the 130 clock latency. It therefore represents the state
of the APV25 output when data corresponding to the second trigger were being written into the
pipeline. The repetitive patterns and spacing between similar features (often 70 clock cycles) imply
a connection with the internal APSP cycle of the APV25. For example there are small spikes at the
times of the tick marks, and the APV25 output frame header.

Although the tick marks correspond to features in the APV25 output data, the interference is
not produced by a coupling between the output data signals and the chip inputs, but by switching
activity within the chip, associated with the pipeline readout phase that is reflected in the tick-
marks. The amplitude of the “tick-mark disturbance” is relatively small and would normally be
lost in the random noise, averaged out in figures4(b) and5. The most prominent feature in the
APV25 output data is the effect in clock cycles 157 and 158. This feature corresponds to the
closing of switches in the APSP circuit during the period when the first data samples are retrieved
from the pipeline, as shown by simulation, discussed below.There are smaller effects 70 and 140
clock cycles later, which correspond to the retrieval of thesecond and third samples. The later
features which correspond to the APV25 header are associated with the APSP readout operation,
and the sample/hold stage that precedes the APV25 output multiplexer. Although the other features
in the output stream are evident after signal averaging, they do not represent significant additional
noise. However the feature in cycles 157-158 is significant and believed to be the main origin of
the high rate noise.

The fact that the single-module test bench does not employ the TIF DAQ hardware or software
confirms that the HRN is intrinsic to the front end module. A finer grain trigger separation scan was
performed with the single-rod apparatus, starting with theT2 arrival coinciding with the readout of
T1, achieved with a separation of 362 clocks. Figure6(a) shows the ZS occupancy calculated from
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Figure 5. Second trigger pedestal data dependence on first and secondtrigger separation, for strips 127
and 128 on a TEC module, corresponding to edge channels on neighboring APV25s. Data were taken in
deconvolution mode and averaged over many triggers to reduce random noise. The pedestals associated
with the feature at second trigger positions 157 and 158 havebeen labeled to illustrate this anti-correlation
more clearly. Two APV25 output data sequences are shown (seetext for explanation). An arbitrary vertical
offset has been applied to the data for clarity. On this scale, the first trigger was applied at second trigger
position -3.

a run taken with this trigger separation, where low-numbered channels are clearly most affected,
and figure 6(b) shows a clear anti-correlation in the common-mode subtracted ADC counts of
channels 0 and 127 from a VR run taken with the same trigger separation. The T2 position was
scanned in steps of 1 clock to produce trigger intervals between 362 clocks and 398 clocks. The
ZS data acquired in this procedure show that the peaks of figure 6(a) diminish and shift toward the
middle of the chip. The effect begins to reappear on the high-numbered channels starting with a
separation of 375 clocks, and is maximal with a 384 clock separation, shown in figure6(c), when
the sampling for T2 is close to the end of header readout. There is again a strong anti-correlation in
the pedestal and common-mode subtracted ADC counts for channels 0 and 127 for this separation,
but with channel 127 now at positive displacement.

APV25 simulation and coupling mechanism. The measurements with the single-rod test bench
were repeated with current probes monitoring the power lines of the APV25, but no obvious ex-
cursions were observed. However, detailed APV25 simulations motivated by the observation of
the HRN effect find a current change that is correlated with readout. Figure7 graphs the simulated
response of theGND, 1.25 and 2.5 V supply and analog output lines during the APV25 readout
sequence. The intermediate current spikes appearing on thesupply lines are correlated with the
falling edges of the three control signals for the APSP inputphase and the reset signal to the APSP
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(a) (b)

(c) (d)

Figure 6. Data for (a) and (b) 362 clock trigger separation and (c) and(d) 384 clock trigger separation
(a),(c): Occupancy spikes occur in the low-numbered/high-numbered channels when setting the trigger in-
terval to 362/384 clocks
(b),(d): Pedestal and common-mode subtracted ADC for channel 0 (red),and channel 127 (blue). Both chan-
nels show large displacements from zero and a per-event anti-correlation, but in opposite directions for 362
vs.384 clock separations

amplifiers,ri1,ri2,ri3, andAPSPRSTin figure3. The two largest spikes in each cycle come during
the output stage and are correlated with the three control signals (ro1/ro2/ro3) of the APSP output
phase. The positive-going spike on the +2.5V supply is caused by connecting the signal storage
capacitor to the APSP output. The negative-going spike occurs when the internal sampling capac-
itors are disconnected from the APSP. The magnitudes of the largest spikes are below the level of
sensitivity achievable with the current probes used in the measurements.

The supply-line current spikes that appear in the APV25 simulations are the likely origin of
the HRN; however, an important observation that the HRNdoes not occurwhen the module was
tested without a sensor (a readout hybrid alone) led to investigations of how the HRN couples to
the APV25 front-end.

Data was taken with the sensor connection to the APV25 intact, and with the connection
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Figure 7. Simulation of APV25 chip behavior, showing short current spikes correlated with APV25 read-
out activity.

interrupted at different points: the wire bond between the pitch adapter and sensor detached at the
sensor side, the bond between the pitch adapter and APV25 detached at the pitch adapter side,
and the same bond completely removed. Removing the bond between the pitch adapter and sensor
results in a sharp drop in HRN, likely due to a change in capacitance; however not large enough for
the effect seen with the connected chip to be entirely capacitive in nature. The disparity in ADC
counts between channel 127 on one chip and channel 0 on the next, which are connected to adjacent
strips, suggests that it is unlikely that noise is coupling through the silicon sensor itself. If this drop
is due to a smaller capacitance on the input, then the minimaldifference observed between the pitch
adapter connected and the chip with a wire bond alone indicates that most of the signal is picked
up by the wire bond. This in turn indicates that the coupling is between the power and ground wire
bonds and the adjacent channels.

The leading hypothesis which emerges from these tests is that the HRN is a consequence of
inductive coupling to the current spikes produced during the APV25 readout cycle. The physical
coupling is between the power bonds and nearby signal bonds,thus affecting only a small subset
of channels. The susceptibility of the channel to this coupling is greatly enhanced by the increased
capacitance and therefore decreased impedance when the sensor is attached to the APV25, while
the pitch adapter and wire bond itself play a less important role. The anti-correlation between the
two channels observed is due to the direction of the current flow, which adds to the signal for one
channel and subtracts from it for the other.

– 10 –
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Figure 8. Occupancy of two APV25s in the single-rod testbench demonstrating the effect of the APVe-
based mitigation. The red graph has no triggers blocked, theblue has all triggers during the APSP cycle
blocked, and black only∼ 1% of the APSP cycle blocked.

3 Consequences and potential mitigation

The HRN effect generates strip occupancies of order∼ 1% at trigger rates of 100 kHz, similar to
the design maximum subdetector occupancies of∼ 3% for the tracker, posing a potential band-
width problem. However, the magnetic field that couples supply line noise to the APV25 front-end
falls off quickly and only a few channels are affected on average. The impact of HRN on track re-
construction is more serious. A simple simulation which fluctuated ADC values of edge channels
to emulate the addition of HRN into TIF cosmic data showed that the reconstruction of a single,
fluctuated event requires 15 minutes to reconstruct using default offline clusterization thresholds,
and identifies∼ 30,000 phantom track segments. Reasonable event processing times were only
achievable by increasing thresholds to unrealistic levels.

CMS will mitigate the consequences of HRN by preventing pathological trigger intervals using
an APVe [12], an online hardware emulator of the APV25 normally used to prevent buffer overflow.
The APVe receives both trigger and reset signals and can use these to determine the bunch crossings
in which data readout will occur. By programming the APVe to block triggers that occur at specific
times during the APSP cycle, but only when a previous triggerhas been applied, it is possible to
prevent triggers which would give rise to a high occupancy event.

The modified APVe functionality has been implemented and tested at the TIF on the single-
rod test bench. The possible disadvantage of this solution is the deadtime incurred due to the
blocked triggers. The consequent deadtime is very small: 0.25% for each vetoed interval at the
maximum 100 kHz trigger rate. Figure8 demonstrates the effectiveness of this solution, showing
the occupancy for one fiber running with 100 kHz Poisson triggers, with three different blocking
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conditions: no blocking at all (red), where the HRN is clearly visible; all 280 clocks of the APSP
cycle blocked (blue), which effectively removes the HRN effect but with 40% deadtime at 100
kHz; and only 3 of the 280 clocks blocked (black), which givesthe same occupancy profile as the
full blocking but with only∼ 1% deadtime at 100 kHz.

4 Conclusions

Tests of the CMS Tracker readout at high random trigger rate have identified an unexpected source
of noise which has been traced to short duration current variations in the APV25 front-end chip.
The noise enters the system via inductive coupling between wire bonds delivering power to the chip
and their neighbors and is greatly enhanced by the sensor capacitance. It is a consequence of certain
internal APV25 switching operations which cause short termfluctuations in the supply current.
Rate dependent noise is not visible except when a microstripsensor is connected to the chip.

The synchronous nature of the CMS Tracker readout means thatall channels in the system are
affected simultaneously which could have an impact on charged particle track identification and
reconstruction. As the effect occurs in specific clock cycles following a trigger and readout, it is
predictable and can be avoided by vetoing those cycles whichcoincide with a current spike, with a
small impact on the overall deadtime.
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