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Abstract

We propose Singlet Stabilized Minimal Gauge Mediation as a simple ISS-based
model of Direct Gauge Mediation which avoids both light gauginos and Landau poles.
The hidden sector is a massive s-confining SQCD that is distinguished by a minimal
SU(5) flavor group. The uplifted vacuum is stabilized by coupling the meson to an
additional singlet sector with its own U(1) gauge symmetry via non-renormalizable
interactions suppressed by a higher scale ΛUV in the electric theory. This generates a
nonzero VEV for the singlet meson via the inverted hierarchy mechanism, but requires
tuning to a precision ∼ (Λ/ΛUV )2, which is ∼ 10−4. In the course of this analysis we
also outline some simple model-building rules for stabilizing uplifted ISS models, which
lead us to conclude that meson deformations are required (or at least heavily favored)
to stabilize the adjoint component of the magnetic meson.
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1 Introduction

Supersymmetry (SUSY) is an extremely elegant proposed solution to the hierarchy problem
in the Standard Model (SM). However, the question of how SUSY is broken and how this
breaking is communicated to the Supersymmetric Standard Model (SSM) is far from settled.
Over the years many approaches have been proposed, and one of the most promising avenues
is Gauge Mediation [1,2]. It automatically solves the SUSY flavor problem, since soft terms
are generated by flavor-blind SM gauge interactions, and has the additional advantage of
being calculable in many cases. The simplest GM models feature a single set of messengers
that are charged under the SM gauge groups and couple to a SUSY-breaking hidden sector,
generating the SSM soft masses through loop interactions (see [3] for a review). Many
generalizations of this minimal theme exist in the literature (see, for example, [1, 2, 4–11]).
For reasons of simplicity, models of Direct Gauge Mediation are particularly appealing since
they do not require a separate messenger sector; the SUSY-breaking sector talks directly
with the SSM [4, 5]. By defining General Gauge Mediation as any SUSY-breaking model
where the soft masses vanish as the SM gauge couplings are taken to zero, it is possible to
parametrize the effects of Gauge Mediation in a very model-independent fashion [10].

Gauge mediation does not answer the question of how SUSY is broken, and a large
variety of SUSY-breaking models can act as its hidden sector. The most desirable scenario
is a hidden sector which breaks supersymmetry dynamically.

Constructing models of dynamical SUSY breaking is extremely difficult, since the ab-
sence of any supersymmetric vacua imposes strong constraints on the theory [12]. Those
requirements can be relaxed if we allow for the possibility that our universe lives in a long-
lived meta-stable SUSY-breaking vacuum, and Intriligator, Seiberg and Shih (ISS) generated
enormous interest in 2006 when they demonstrated that such scenarios are fairly generic by
showing that simple SUSY QCD with light quark masses can have metastable SUSY-breaking
vacua near the origin of field space [9]. In the strict sense we speak of Dynamical SUSY
Breaking as scenarios where the small SUSY-breaking scale is generated dynamically, which
is not the case for ISS because the small electric quark mass has to be inserted by hand.
However, it does break SUSY non-perturbatively from the point of view of the UV theory
and is under full calculational control using the Seiberg Duality [13], which together with its
sheer simplicity makes it an extremely attractive model-building arena for exploring SUSY-
breaking and Direct Gauge Mediation, and several attempts were made to incorporate it
into phenomenologically realistic models [6, 14–17].

The meta-stable ground state of the unmodified ISS model has an unbroken (approx-
imate) R-symmetry that forbids gaugino masses. Breaking that symmetry spontaneously
generates gaugino masses that are at least a factor of ∼ 10 lighter than the sfermion masses.
This is actually a generic feature of many Direct Gauge Mediation models, and the resulting
split-SUSY-type spectrum is phenomenologically very undesirable since it exacerbates the
little hierarchy problem. Explicit breaking [14, 15] can generate larger masses but creates
new SUSY vacua and often creates a tension between reasonably large gaugino masses and
stability of the ISS vacuum.

Recent work by Komargodski and Shih [18] sheds light on the issue. It was shown that
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the leading-order gaugino mass vanishes if the SUSY-breaking vacuum is stable within the
renormalizable theory. This applies to unmodified ISS, where in the magnetic theory the
SUSY-vacua only show up far out in field space through non-perturbative effects. The
first example of a sufficiently destabilized ISS model was [14], and an existence-proof of an
‘uplifted’ model that is stabilized on a higher branch of the pseudomoduli space of massive
SQCD was presented in [19], with later variations by [20–23].

This brings us to the motivation for this paper. As is evident from the above discussion,
there exists a large variety of ISS-based models of direct gauge mediation, uplifted or not.
However, most of them share several shortcomings:

1. Landau pole in the SM gauge couplings below the GUT-scale due to (sometimes a very
large amount of) excess matter in the hidden sector.

2. The addition of nongeneric or seemingly contrived couplings and deformations, which
often break global symmetries. Often there is also an unexplained partial breaking of
the hidden sector flavor symmetry, both to stabilize the vacuum and to embed the SM
gauge group.

3. Often severe fine-tuning to stabilize the vacuum.

Putting aside the fine-tuning problem for the moment, we would like to address the first two
issues. We construct a Direct Gauge Mediation model with an absolutely minimal SQCD
sector which has no Landau Pole, no flavor symmetry breaking and (depending on one’s
judgement) no contrived deformations/couplings. The price we pay for this simplicity is the
addition of the singlet sector proposed by [24]. We call this model Singlet-Stabilized Minimal
Gauge Mediation. Our UV theory will be SU(4)C × SU(5)F s-confining SQCD [25] with a
single quark mass scale. The IR theory has trivial gauge group and the standard model
gauge group is identified with the SU(5)F . There are two pseudomoduli spaces, the ISS
branch with an SU(4) flavor symmetry and a single uplifted branch with unbroken SU(5).
The vacuum is stabilized on the uplifted branch by the singlet sector. The spectrum of soft
masses is precisely that of Minimal Gauge Mediation, the best possible solution from the
point of view of the gaugino mass problem.

We also address an issue that may have not been explicitly discussed in the past: stabi-
lizing an uplifted branch of massive SQCD requires two stabilization mechanisms: one each
for the adjoint and singlet components of the meson. This makes it extremely hard to avoid
some meson deformations.

This paper is laid out somewhat hierarchically. In Section 2 we outline the construction
of our model and summarize all of the important results. Each summary refers to one of the
later sections for details, but the essence of our work is contained in this short overview. The
later chapters are organized as follows. A self-contained review of the ISS framework and
related model building development is given in Section 3. Based on the need for two stabi-
lization mechanisms we derive some guidelines for building uplifted ISS models in Section 4.
We then move on to slightly more detailed discussions of the overall vacuum structure and
spectrum (Section 5), implementation of Direct Gauge Mediation to get ISS-based model of
Minimal Gauge Mediation (Section 6) and the mechanism of stabilizing the uplifted vacuum
(Section 7). We conclude with Section 8.
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2 Overview of the SSMGM Model

We would like to build a model of direct gauge mediation based on the ISS model [9] that
avoids both light gauginos and Landau Poles. A review of the ISS framework for metastable
SUSY braking and direct gauge mediation can be found in section Section 3. In this section
we summarize the highlights of our model and its main physical consequences, while the
details of the analysis are deferred to Sections 4 - 7.

In this paper, we construct the smallest possible ISS model stabilized on the highest
possible pseudomoduli space to ensure that all messengers contribute to the gaugino mass
(i.e. we get Minimal Gauge Mediation). This model has no Landau Pole due to minimal
excess matter and no flavor breaking. The uplifted vacuum is stabilized via a separate singlet
sector, so we call this setup Singlet-Stabilized Minimal Gauge Mediation (SSMGM).

Constructing the Magnetic Theory

We want a trivial low-energy gauge group and an SU(Nf ) = SU(5) flavor symmetry. This
means the electric theory must be s-confining [25], and strictly speaking it is inaccurate
to speak of a magnetic theory – at low energies we use a confined description, where the
fundamental degrees of freedom are just the baryons and mesons of the original theory.
However, s-confining SQCD displays similar metastable SUSY-breaking behavior as free
magnetic SQCD, so in the interest of using familiar ISS-terminology we shall refer to the
confined description as ‘magnetic’ and the baryons as ‘magnetic squarks’.

For this choice of electric theory, pseudomoduli space of the magnetic theory only has
two branches: the ISS vacuum corresponding to k = 1 (i.e. the magnetic squarks get a VEV)
and an uplifted branch corresponding to k = 0 (i.e. no squarks get a VEV). If we could
stabilize the uplifted branch we can identify the SM gauge group with the unbroken SU(5)
flavor group. The squarks would then act as a pair of Minimal Gauge Mediation messengers
and generate gaugino masses at leading order in SUSY-breaking. The authors of [19] have
shown that meson deformations alone cannot achieve this stabilizations for such a small
flavor group. Therefore, the price we pay for the pleasing minimality in the SQCD sector is
the addition of a singlet sector with its own U(1) gauge group, which spontaneously breaks
the U(1)R symmetry by the inverted hierarchy mechanism [26] and stabilizes the uplifted
vacuum.

In the magnetic description of the ISS model, the field content is

SQCD sector

singlet sector

SU(Nf ) U(1)B U(1)R U(1)S
φi 1 0 0
φ̄j −1 0 0
M Adj + 1 0 2 0
S 1 0 0 1
S 1 0 0 −1
Z 1 0 2 1
Z 1 0 2 −1

(2.1)
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where U(1)S is the gauge group of the singlet sector with coupling g. The complete super-
potential is

W = hφ̄iM
i
jφ

j + (−hf 2 + dSS̄)TrM +m′(ZS̄ + SZ̄)− a detM

|Λ|Nf−3
+madjTr(M ′2), (2.2)

where a, h are unknown positive O(1) numbers and f,m′ are mass scales (which can be
complex) much smaller than Λ. The instanton term breaks the approximate U(1)R symmetry
and restores SUSY for large meson VEVs. To explain the last term, decompose the meson
into singlet and adjoint components M = Msing+Madj. The M ′ denotes the traceless part of
the meson, meaning the deformation only gives a mass to Madj. This is necessary because the
singlet sector couples to Msing and stabilizes it away from the origin, but Madj is tachyonic
at the origin in the uplifted pseudomoduli space. Therefore, unfortunately, we must give it
a mass by hand – this is a general feature of uplifted ISS models. For the derivation of this
model-building requirement, please refer to Section 4.

The Corresponding Electric Theory & Scales of the Model

The electric description is an augmented massive s-confining SQCD with gauge group SU(Nf−
1) = SU(4) and superpotential

W =

(
f̃ +

d̃

ΛUV

SS̄

)
TrQQ̄+m′(ZS̄ + SZ̄) +

ã

ΛUV

Tr
(
QQ̄
)′2
, (2.3)

where ã is assumed to be some O(1) number. We make no attempt at explaining the origin of
the small quark mass term (see [17] for example). ΛUV > Λ is the scale of some UV-physics
which generates the non-renormalizable SSQQ, QQQQ terms. The natural sizes of the IR
parameters are therefore

d ∼ Λ

ΛUV

, h ∼ 1 madj ∼
Λ2

ΛUV

∼ dΛ. (2.4)

To protect the Seiberg Duality transition from the physics at scale ΛUV , we conservatively
require ΛUV >∼ 100Λ. The masses f and m′ are free parameters as long as they are both
smaller than ∼ Λ/100.

A natural choice for ΛUV would be either the GUT-scale or the Planck-scale, with Λ
at least two orders of magnitude below that. In Section 7.2 we show that decreasing Λ
much below ∼ ΛUV /100 makes it increasingly harder to construct uplifted metastable vacua.
One can understand this quite simply as the coupling between the singlet sector and the
SQCD sector becoming too weak to stabilize the magnetic meson against the effect of the
instanton term, which wants to push the meson towards a supersymmetric vacuum far out
in field space. This favors making Λ as large as possible and justifies choosing two plausible
scenarios for us to consider:

Λ ΛUV

Scenario 1 1016 1018

Scenario 2 1014 1016
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(all masses in GeV), setting d ∼ 0.01.

The Uplifted Vacuum

Ignoring the instanton term near the origin, FM is given by

− F ∗M i
j

= hφ̄iφ
j − (hf 2 − dSS̄)δji . (2.5)

Since the first term has maximal rank 1 and the second term has maximal rank 5, some
F -terms must be nonzero, breaking SUSY by the rank condition. We want to live in the
uplifted vacuum, so we set 〈φφ〉 = 0. The singlets then obtain nonzero VEV whenever
r =

√
Nfhd f/m

′ > 1, in which case FZ , FZ 6= 0 so the singlets participate in the SUSY-

breaking. Some of the φ, φ are tachyonic for

〈|Msing|〉 <
m′√
hd
, (2.6)

but 1-loop corrections from the messengers and the singlet sector give the meson a VEV at

〈|Msing|〉 ∼
√
h

d
f, (2.7)

which is large enough to stabilize the messengers and give a viable uplifted vacuum. A
complete discussion of the vacuum structure and spectrum is given in Section 5.

Implementing Direct Gauge Mediation

If we identify the SU(5) flavor group with the SM GUT gauge group and live in the uplifted
vacuum, we obtain a model of direct gauge mediation with a single pair of (5+5) messengers
φ, φ. Since the messengers are tachyonic for small VEVs of the meson M they generate
gaugino masses at lowest order in SUSY-breaking – in fact, this is just an uplifted-ISS
implementation of standard Minimal Gauge Mediation. There is no Landau pole, and the
singlet degrees of freedom are all heavier than the messengers (except for the pseudomodulus,
goldstino and R-axion). See Section 6 for details.

Stabilizing the Uplifted Vacuum

The one-loop potential from the messengers tries to push the pseudomodulus (and hence
the meson) towards the origin where the messengers are tachyonic, while the singlet sector
contribution pushes it away from the origin. To cancel these competing contributions and
create a local minimum it is necessary to adjust the ratio m′/f to a precision of roughly

∆ ∼
(

Λ

ΛUV

)2

, (2.8)
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which is ∼ 10−4 in our two scenarios. The tuning could be significantly reduced if one were
less conservative about the separation of the two scales Λ,ΛUV .

In our scenarios the smallness of d compared to the other couplings raises the question
of whether a one-loop analysis can be trusted. We show that two-loop corrections involving
the larger couplings do not invalidate our analysis, because they neither influence the non-
trivial part of the effective potential which generates the minimum, nor make it impossible
to cancel the other smooth contributions to high enough precision so that this interesting
part survives. Therefore, the meson can always be stabilized away from the origin.

Finally one must check that decays of the uplifted vacuum to both the ISS and the SUSY
vacuum are suppressed enough to make the lifetime longer than the age of the universe. This
is indeed the case for our model, since the bounce actions for decay to the ISS and SUSY
vacua are enhanced by (ΛUV /Λ)2 and

√
Λ/f respectively.

See Section 7 for a detailed discussion on stabilization of the uplifted vacuum, the effect
of two-loop corrections and calculation of the vacuum lifetime.

3 Reviewing the ISS Framework

This section provides a brief summary of the ISS framework and related model building devel-
opments which form the basis of this paper. After outlining the general need for metastable
SUSY-breaking in gauge mediation we review the original ISS model as well as its more
recent uplifted incarnations.

3.1 The necessity of metastable SUSY-breaking

The reasons for pursuing theories of meta-stable SUSY-breaking go beyond the significant
model-building simplifications they potentially afford.

One possible argument goes as follows: A generic theory that breaks SUSY in its ground
state must have an R-symmetry (see e.g. [27] for a review). Since this forbids gaugino
masses the R-symmetry must be broken. If the R-symmetry is only spontaneously broken
one might think that the massless R-axion causes cosmological and astrophysical problems,
necessitating explicit R-breaking. By the Nelson-Seiberg theorem [28], this causes super-
symmetric vacua to come in from infinity, making the SUSY-breaking vacuum metastable.
However, [29] show that supergravity effects give the R-axion a mass, provided that the cos-
mological constant is tuned away, even if R-symmetry is merely spontaneously broken in the
global SUSY theory. Therefore, avoiding a massless R-axion is not a reason for metastable
SUSY-breaking. (It is still possible that the R-breaking effects of gravity do in fact desta-
bilize the SUSY-breaking vacuum, but it is not known whether the Nelson-Seiberg theorem
applies in this case.)1

Within the framework of Direct Gauge Mediation there is, however, another very good
reason for believing in meta-stable SUSY-breaking. As first noticed in [5], many models of
Direct Gauge Mediation suffer from very small gaugino masses compared to the sfermions.

1We thank Zohar Komargodski and Jesse Thaler for pointing this out to us.
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This resuls in a split-SUSY-type spectrum which reintroduces fine tuning into the Higgs
Sector. Komargodski and Shih [18] explored this issue in a relatively model-independent
way by examining generalized O’Raifeartaigh models (renormalizable Wess-Zumino models
which break supersymmetry and have canonical Kahler potentials)2. These theories form
the low-energy effective description for the hidden sector of many direct gauge mediation
scenarios.

Any generalized O’Raifeartaigh model features tree-level flat directions called pseudo-
moduli emanating from the SUSY-breaking vacuum. The pseudomodulus is the superpart-
ner of the Goldstino, and is stabilized somewhere on the pseudomoduli space by quantum
corrections. One can always write the model in the form

W = fX + (λX +m)ijψ
iψj +O(ψ3) (3.1)

where the scalar part of X is the pseudomodulus. If we take the ψ’s to come in 5 + 5̄ pairs
of SU(5) then this is an example of Extra-Ordinary Gauge Mediation [11]. To leading order
in the SUSY-breaking parameter F/X2, the gaugino mass is given by

mλ ∝ f
∂

∂X
log det(λX +m)messengers. (3.2)

One can show that if there are no tachyons for any choice of X (i.e. the pseudomoduli space is
locally stable everywhere), then det(λX+m) = detm. Therefore, if the pseudomoduli space
is stable everywhere, the gaugino masses vanish at leading order. Since sfermion masses are
created at leading order, we have a split-SUSY spectrum.

This shows that in models of Direct Gauge Mediation, the problem of the anomalously
small gaugino mass is related to the vacuum structure of the theory. In order to have a
gaugino mass at leading order in SUSY-breaking, it is necessary to live in a metastable
vacuum from which lower-lying vacua (SUSY-breaking or not) are accessible within the
renormalizable theory. SUSY-vacua created by non-perturbative effects far out in field space
do not generate a large gaugino mass. (Notice that Minimal Gauge Mediation corresponds
to m = 0 and a single messenger pair, so the messengers are tachyonic for X2 < F and large
gaugino masses are generated.)

Since the gaugino mass formula eq. (3.2) is only valid to lowest order in F/X2 one
might think that sizeable gaugino masses could be generated for large SUSY-breaking. We
conducted a small study within the framework of Extra-Ordinary Gauge Mediation using
both analytical and numerical techniques, and like many before us [3, 32], we conclude that
the gaugino-to-sfermion mass ratio mλ/mf̃ can not be tuned to be larger than ∼ 1/10 due
to a curious numerical suppression of the subleading terms.

2 [30] and [31] extend this discussion to semi-Direct Gauge Mediation and models with non-canonical
Kahler terms, respectively.
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3.2 The ISS Model

The authors of [9] considered UV-free SQCD with an SU(Nc) gauge group and Nf flavors
of electric quarks with a small mass term

W = mQiQ̄i (3.3)

where m � Λ, denoting Λ as the strong coupling scale of the theory. In the free magnetic
phase Nc < Nf <

3
2
Nc, the low-energy theory can be studied using Seiberg Duality [13] and

is simply IR-free SQCD with an SU(Nf − Nc) gauge group, a gauge singlet meson Φ and
Nf flavors of magnetic quarks q, q̄, as well as a Landau Pole at scale Λm.

Writing N = Nf −Nc <
1
3
Nf , the symmetries of the IR theory are [SU(N)]×SU(Nf )×

U(1)B×U(1)R (gauged symmetries in square brackets)3. The fields have charges Φ: (1,Adj+
1)0,2, q: (N, N̄f )1,0 and q̄: (N̄ ,Nf )−1,0. The Kahler terms of the low-energy effective degrees
of freedom are canonical and the superpotential is

W = hqai Φ
i
j q̄
j
a − hµ2Φi

i (3.4)

where a, b, . . . are gauge indices and i, j, . . . are flavor indices and µ ∼
√

Λm.
The Φ F-terms are

− F ∗Φij = hqai q̄
j
a − hµ2δij. (3.5)

They cannot all be zero, since the first term has rank at most N and the second term has
rank Nf ≥ 3N , so supersymmetry is broken by the rank condition. Expanding around the
vacuum, the fields can be written as

Φ =
N NF−N(
V Y
Y Z

)
N

NF−N

q =
N NF−N(
µ+ χ1 ρ1

)
N

q =
N(

µ+ χ1

ρ1

)
N

NF−N

(3.6)

with matrix dimensions indicated. (Writing the squark fields with a subscript 1 will be useful
for comparison to the uplifted ISS case.) The gauge symmetry is completely higgsed by the
squark VEVs, and the surviving global symmetry is SU(N)diag × SU(Nf − N) × U(1)B′ ×
U(1)R. The spectrum divides into distinct sectors. (We take µ to be real for simplicity, and
prime denotes traceless part.)

1. V and (χ1 + χ̄1) get mass ∼ |hµ| whereas (χ1 − χ̄1)′ gets eaten by the magnetic
gauge supermultiplet via the superHiggs mechanism. This part of the spectrum is
supersymmetric at tree-level.

2. Tr(χ1 − χ̄1): the fermion is massless at tree level and the real part of the scalar is a
classically flat direction (a pseudomodulus) which gets stabilized at zero. Both these
fields obtain a mass at loop-level. The imaginary part of the scalar is the Goldstone
boson of a broken U(1) symmetry (a mixture of U(1)B and a diagonal SU(Nf ) gener-
ator) and is massless to all orders. This part of the spectrum can be made massive by
gauging the U(1) symmetry.

3We emphasize that this U(1)R symmetry is anomalous under magnetic gauge interactions, which leads
to the non-perturbative restoration of supersymmetry discussed below.
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3. Z is another pseudomodulus which gets stabilized at the origin and obtains a loop-
suppressed mass.

4. Y, Ȳ , Im(ρ1 + ρ̄1),Re(ρ1− ρ̄1) get masses ∼ |hµ|. Re(ρ1 + ρ̄1), Im(ρ1− ρ̄1) are goldstone
bosons of the broken flavor symmetry and massless

In the original ISS model as it is defined above, both pseudomoduli are stabilized at the origin
by quantum corrections and get a loop-suppressed mass. This leaves the R-symmetry un-
broken and forbids gaugino masses, so for use in realistic scenarios of direct gauge mediation
the ISS model must be modified somehow to break R-symmetry.

In the magnetic theory supersymmetry is restored non-perturbatively: for large Φ the
squarks get a large mass and can be integrated out, leaving a pure SYM theory which
undergoes gaugino condensation and has SUSY-vacua at

〈q〉 = 0, 〈q̄〉 = 0, 〈Φ〉SUSY = Λm

(
µ

Λm

)2N/Nf−N

1. (3.7)

This makes the SUSY-breaking vacuum at the orgin meta-stable, but the smallness of the
ratio µ/Λm guarantees that the false vacuum is parametrically long-lived.

We can understand this metastability in terms of the connection between R-symmetry
and SUSY-breaking. The UV theory does not have an exact R-symmetry, but it emerges as
an accidental symmetry near the origin of the IR theory. That U(1)R is anomalous under
gauge interactions and hence SUSY is restored by non-perturbative operators far out in
field space. The ’smallness’ of the explicit R-breaking near the origin guarantees that the
SUSY-breaking vacuum is long-lived.

Since it will be of special interest to us later we should make a comment about the s-
confining case of Nf = Nc + 1 [25]. The magnetic gauge group is trivial, but SUSY is still
restored far out in field space. This is due to the slightly modified dual superpotential, which
includes what looks like an instanton term:

W = hTrqΦq̄ − hTrµ2Φ + c
1

ΛNf−3
det Φ. (3.8)

Modifying the ISS model for Direct Gauge Mediation

The ISS model looks like a promising framework for models of Direct Gauge Mediation.
For example, one could gauge the unbroken SU(Nf − N) flavor symmetry and embed the
SM gauge group, which would give gauge charges to the (anti-)fundamentals ρ1, ρ̄1, Y, Ȳ and
make them Extra-Ordinary Gauge Mediation [11] messengers, as well as the Adjoint+Singlet
Z. The main obstacle to such a construction is the unbroken R-symmetry in the original ISS
model. (Many variations which break U(1)R spontaneously or explicitly have been proposed,
and this discussion is not meant to be exhaustive.) Models with meson deformations [14,15]
add operators of the form ∼ 1

ΛUV
QQ̄QQ̄ in the UV theory which gives operators ∼ Φ2 in the

IR theory with suppressed coefficients. This explicitly breaks the R-symmetry and gives the
singlet component of the meson a VEV, generating a gaugino mass. These deformations also
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make the (shifted) ISS-vacuum more unstable because new SUSY-vacua are introduced. This
is per se desirable, since a nonzero gaugino mass at leading order in SUSY-breaking requires
the existence of lower-lying vacua within the renormalizable theory, however there is a strong
tension between making the gaugino mass somewhat comparable to the sfermion mass and
making the vacuum too unstable. Another possibility is adding a baryon deformation to the
superpotential, which in the example of [16] involves adding a Λ2

UV -suppressed operator in
the UV theory and breaking R-symmetry spontaneously, generating a very small gaugino
mass. A third possibility is the addition of a singlet-sector with its own U(1) gauge symmetry
to break R-symmetry spontaneously [17,24] via the Inverted Hierarchy Mechanism [26]. This
again gives a small gaugino mass, and the parameters have to be fine-tuned to stabilize the
vacuum.

A common problem with these embeddings is the existence of a Landau Pole, primarily
due to the existence of the SM-charged adjoint meson, and some of them also feature non-
generic couplings or deformations with somewhat non-trivial flavor contractions.

3.3 Uplifting the ISS Model

It would be desirable to obtain a large gaugino mass in a direct gauge mediation model
derived from massive SQCD (mSQCD). Adding meson deformations introduces new vacua
and generates a gaugino mass at leading order, but the strong tension between stability and
sizeable gaugino masses motivates the search for a different kind of metastability: finding a
new stable vacuum in a higher branch of the pseudomoduli space of mSQCD (‘uplifting’ the
vacuum). This possibility was first realized by Giveon, Katz and Komargodski [19], and we
will sketch out their results below.

We start with the same UV theory as the standard ISS model eq. (3.3). In the ISS
vacuum, the squark VEV matrix has rank〈qq̄〉 = N . However, there are higher, unstable
pseudomoduli spaces with rank〈qq̄〉 = k, with k = 0, 1, 2, . . . N − 1. If we assume the squark
VEV matrix has rank k < N the surviving symmetry is [SU(N − k)]× SU(k)D × SU(Nf −
k) × U(1)B′ × U(1)B′′ . (As we will see we must assume that the meson is stabilized at a
nonzero value, breaking the U(1)R symmetry.) We expand around the squark VEV and split
the fields into representations of the unbroken symmetries:

Φ =
k NF−k(
V Y
Y Z

)
k

NF−k

q =
k NF−k(

µ+ χ1 ρ1

χ2 ρ2

)
k

N−k

q =
k N−k(

µ+ χ1 χ2

ρ1 ρ2

)
k

NF−k

(3.9)
The spectrum can again be described in terms of a few separate sectors:

1. (χ2 ± χ̄2), (χ1 − χ̄1) get eaten by the massive gauge supermultiplets. Notice how
Tr(χ1 − χ̄1) is no longer massless at tree-level because the broken U(1) is a mixture
between a gauged diagonal generator and the U(1)B.

2. V , (χ1 + χ̄1) get F -term mass ∼ |hµ|

10



3. The Y, ρ, Z-type fields can be analyzed separately. The (Y, Ȳ , ρ1, ρ̄1) fields obtain Z-
dependent masses and contain 2k(Nf − k) flavor goldstone bosons. In a scenario of
Extra-Ordinary Gauge Mediation, these fields constitute messengers that are stable
for all Z and hence do not contribute to the gaugino mass. The (ρ2, ρ̄2) scalars are
tachyonic for |Z| < |µ|, as we would expect from living on an uplifted pseudomoduli
space, but if Z can be stabilized at a large-enough value they too are stable and act
as messengers which do contribute to the gaugino mass at leading order.

The model-building quest is now to break R-symmetry and stabilize the Z at a large enough
value to ensure that all scalars are non-tachyonic. The authors of [19] show that in a
renormalizable Wess-Zumino model, no stable SUSY-breaking minimum exists for VEVs
much above the highest mass scale of the theory. Hence stabilizing Z > µ is not feasible
in the original model. They circumvent this problem by introducing a mass hierarchy into
the quark masses, with the first k flavors having mass µ1 and the remaining Nf − k flavors
having a much smaller mass µ2. This means that the ρ2, ρ̄2 fields are tachyonic for Z <
µ2 � µ1, so stabilizing the meson VEV in the region µ2 < Z < µ1 is possible. They achieve
this stabilization for large flavor groups and k close to N by adding finely-tuned meson
deformations Tr(Z2), (TrZ)2. This model is a very important proof-of-principle and it does
achieve sizeable gaugino masses as desired, but its drawbacks (Landau pole & non-minimal
hidden sector, imposed flavor-breaking mass hierarchies and meson deformations) motivated
further research into stabilizing an uplifted ISS model.

Further Developments in Stabilizing Uplifted ISS

There have since been other attempts at stabilizing the uplifted ISS model. [21] examined
the equivalent case for SO(10)-unified Direct Gauge Mediation, [20] considered stabilization
using SUGRA, and issues of cosmological vacuum selection were discussed in [22]. Stabiliza-
tion of an uplifted ISS model via baryon deformations was investigated in [23], and while a
stable vacuum can be achieved this way for much smaller flavor groups than the proof-of-
principle case discussed above, that model also features many non-renormalizable operators
with non-trivial flavor contractions and non-generic couplings, as well as an explicit breaking
of the hidden sector flavor symmetry. It is in this context that we are motivated to construct
an uplifted ISS model with a minimal hidden sector.

4 The Adjoint Instability

Before introducing our minimal uplifted ISS model in the next section we examine the general
requirements for stabilizing a higher pseudomoduli space of massive SQCD (mSQCD). We
emphasize a hitherto neglected point: there must actually be two stabilization mechanisms,
one for the singlet and one for the adjoint component of the SU(Nf − k) meson Z. This
in turn yields to some very general requirements on model building, which suggest that
single-trace meson deformations are very hard to avoid in uplifted ISS models.

11



4.1 The messenger contribution to Veff(Z)

Let us examine an uplifted pseudomoduli space in the unmodified ISS model. (We will later
add some structure to stabilize it.) The SU(Nf − k) meson Z is a pseudomodulus which is
flat at tree-level. The leading contribution to its potential arises from one-loop corrections
to the vacuum energy and can be computed using the Coleman-Weinberg formula

VCW =
1

64π2
STrM4 log

M2

Λ2
m

(4.1)

where Λm is the cutoff of the magnetic theory. Since the tree-level spectrum of the magnetic
gauge vector multiplet is supersymmetric it does not contribute at one-loop level, and by
inspecting the superpotential it is clear that the masses of V, (χ1 + χ̄1) do not depend on Z
at tree-level. Therefore, we only need to consider the dependence of the ρ, Y -type spectrum
on Z to determine its 1-loop potential. The relevant part of the superpotential is

1

h
WZ = −µ2

2Z
i
i + ρ2jZ

j
i ρ̄

i
2 + ρ1jZ

j
i ρ̄

i
1 + µ1(ρ1iȲ

i + Yiρ̄
i
1) (4.2)

where i, j are SU(Nf − k) flavor indices and we hide the trivial color contractions. We have
also implemented the flavor-breaking of [19] for generality.

Since VCW due to messengers is generated by single planar Z-loops, it can only depend
on single-trace combinations of the form Tr[(ZZ†)n]. Furthermore, even if 〈Z〉 breaks the
flavor symmetry, we can use broken SU(Nf − k) generators to diagonalize 〈Z〉. Therefore it
is justified to diagonalize Z and treat the diagonal components separately. It is then easy to
verify that V mess

CW slopes towards the region where ρ2, ρ̄2 become tachyonic.
It is instructive to phrase this familiar argument in a slightly different way. Decompose

the meson Z into adjoint and singlet components:

Zi
j = ZA

adjT
Ai

j + ZsingTS (4.3)

where TA are the usual SU(NF − k)-generators with a slightly modified canonical normal-
ization due to the Z being a complex scalar: TrTATB = δAB, TS = 1√

NF−k
1. Our basic

dynamical degrees of freedom are then the (Nf − k)2 − 1 complex fields ZA
adj and the flavor

singlet complex field Zsing.
We can do a flavor transformation and push all the VEV of the adjoint into one of the

diagonal generators. Call this generator T̃adj and the associated meson component Z̃adj.
Then

〈Z〉 = 〈Z̃adj〉T̃adj + 〈Zsing〉TS (4.4)

Replacing Z → Z̃adjT̃adj +ZsingTS in Tr[(ZZ†)n] we can see that the expression is symmetric
under exchange of Z̃adj and Zsing, since the generators satisfy TrTST̃adj = 0 and TrT 2 = 1.
The single-trace condition is therefore equivalent to saying that the adjoint and the singlet
components make identical contributions to VCW. Hence the behavior of V mess

CW is dictated by
its dependence on the singlet component.
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4.2 Model Building Requirements for Stabilizing Z

This reasoning shows that uplifted ISS models really need two stabilization mechanisms:
(i) Zsing must be stabilized at a nonzero VEV large enough to make the messengers non-
tachyonic, and (ii) Zadj must be stabilized at zero VEV. If the effective potential is a single-
trace object then both requirements are automatically satisfied. However, if only the singlet
is stabilized (separately from the adjoint) then the vacuum will be unstable along the Zadj
direction and the fields roll towards the lower-lying ISS vacuum. We call this phenomenon
the Adjoint Instability, and it has direct model building implications. Stabilizing the adjoint
in an uplifted vacuum can be done in two ways.

1. Add an additional flavor adjoint. This would allow us to give Zadj a mass (either at
tree-level or, more indirectly, at 1-loop).

2. Alternatively, to obtain an effective Z2
adj term we can do one of the following:

(a) Break R-symmetry explicitly by adding meson deformations like (TrZ)2,Tr(Z2).

(b) Break R-symmetry spontaneously, e.g. by introducing a field A with R-charge
−2 which somehow gets a VEV and gives a mass to the adjoint via the coupling
W ⊃ AMM .

Adding a flavor adjoint would greatly exacerbate the Landau Pole Problem, and Option 2 (b)
is not very attractive because the corresponding operators in the UV would be even more
non-renormalizable than meson deformations. (Not to mention the additional machinery
required to give A its VEV.) 2 (a) seems like the best solution.

This was also the path taken by the authors of [19]. They stabilize the vacuum by
effectively adding a single-trace deformation Tr(Z2). This deformation treats the singlet
and the adjoint equally, and therefore stabilizing the singlet also stabilizes the adjoint. To
lift the mass of Zadj and avoid a Landau Pole below Λm without destabilizing the nonzero
singlet VEV they must then add another single-trace deformation Tr(Z2

adj). [23] must also
include a single-trace meson deformation to stabilize the meson.

This leads us to conclude that meson deformations ∼ 1
ΛUV

QQ̄QQ̄ are extremely hard to
avoid in mSQCD models with meta-stable SUSY-breaking vacua on uplifted pseudomoduli
spaces.

5 Vacuum Structure & Spectrum

Near the origin of field space there are two branches of the pseudomoduli space for this
model. One is the ISS vacuum, where k = rank〈φ̄φ〉 = 1 and the flavor symmetry is broken
down to SU(Nf − 1). The other is the uplifted vacuum where k = rank〈φ̄φ〉 = 0, i.e. no
squark VEV. To solve the gaugino mass problem we must stabilize the uplifted vacuum.
Before we can analyze that stabilization, we must understand the structure of the vacuum
manifold at tree-level.
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5.1 The Uplifted Vacuum (k = 0)

We want to live in this uplifted vacuum without squark VEVs to solve the gaugino mass prob-
lem. With the meson decomposed into singlet and adjoint components, the superpotential
is

W = h φ̄ ·Madj · φ+madjTr(M2
adj)

+

[
hφ̄φ√
Nf

+
√
Nf

(
−hf 2 + dSS̄

)]
Msing +m′(ZS̄ + SZ̄)

− a

N
Nf/2

f

M
Nf
sing

|Λ|Nf−3
+ . . . (5.1)

where we have omitted Λ-suppressed interactions of Madj. For simplicity, let f , m′ and Λ as
well as a, h be real and positive throughout this analysis. For now we simply assume that the
singlet sector stabilizes Msing at large enough VEV to make the messengers non-tachyonic,
and we postpone the detailed discussion of stabilizing the uplifted vacuum to Section 7.

5.1.1 Tree-level VEVs near origin of field space

Close to the origin of field space we can ignore the instanton term in determining the VEVs
of the fields. For 〈Mad〉 = 0 and 〈φ̄φ〉 = 0 we then only need to analyze the second line of
eq. (5.1) and the tree-level potential for the singlet scalar VEVs becomes

Vtree →
1

2
g2
(
|S|2 + |Z|2 − |S̄|2 − |Z̄|2

)
+
∣∣∣d√NfMsingS +m′Z

∣∣∣2 +
∣∣∣d√NfMsingS̄ +m′Z̄

∣∣∣2
+Nf

∣∣dSS̄ − hf 2
∣∣2 + |m′S|2 +

∣∣m′S̄∣∣2 (5.2)

The first line is the D-term potential for the singlet U(1)S gauge group, and can be set to
zero by imposing |S| = |S̄|, |Z| = |Z̄|. The FS,S̄-terms in the second line vanish for

〈Z〉 = −d
√
Nf
〈MsingS〉

m′
, 〈Z̄〉 = −d

√
Nf
〈MsingS̄〉

m′
. (5.3)

This leaves the last line as the potential for S, S̄, which implies

〈SS̄〉 =
hf 2

d
− m′2

d2Nf

whenever r > 1 where r =
√
Nfhd

f

m′
. (5.4)

(Often it is convenient to parametrize f in terms of r, as we will see below.) We will assume
that this condition is satisfied so that the singlets get a VEV and break the U(1)S gauge
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symmetry, which in turn can lead to spontaneous R-symmetry breaking via the inverted
hierarchy mechanism. The only nonzero F-terms are

〈FMsing
〉 = − m′2

d
√
Nf

, 〈FZ,Z̄〉 =
m′2

d
√
Nf

√
hf 2dNf

m′2
− 1, (5.5)

and the total vacuum energy is

〈V k=0
0 〉 = 2hf 2m

′2

d
− m′4

d2Nf

(5.6)

To be precise we decompose all the complex scalar singlets into amplitudes and phases:

S = σSe
i
πS

〈σS〉 , Z = σZe
i
πZ

〈σZ〉 , Msing = σMsing
e
i
πMsing

〈σMsing 〉 , etc. (5.7)

This reveals that of the 5 phases, three are fixed at tree-level whereas the other two are the
U(1)S Nambu-Goldstone boson and the R-axion

πR =
1

Ftot

(
|FMsing

|πMsing
+ |FZ |πZ + |FZ̄ |πZ̄

)
∝ 〈σMsing

〉πMsing
+ 〈σZ〉πZ + 〈σZ̄〉πZ̄ (5.8)

respectively. Of the 5 amplitudes, one combination

σPM =
1

Ftot

(
|FMsing

|σMsing
+ |FZ |σZ + |FZ̄ |σZ̄

)
(5.9)

is undetermined at tree-level. This is the pseudomodulus, part of the scalar superpartner of
the Goldstino, and since its value affects the masses of the other particles this flat direction
is lifted at 1-loop, see eq. (4.1).

5.1.2 Tree-level spectrum

The Madj has mass madj. The messenger fermion and scalar masses are

mφ =
h√
Nf

Msing m2
φ̃

= m2
φ ±

h

dNf

m′
2
. (5.10)

Quantum corrections need to stabilize Msing in a region where the messengers are not tachy-
onic, hence we require

〈|Msing|〉 >
m′√
hd
. (5.11)

We define the singlet sector to mean the superfields S, S̄, Z, Z̄,Msing and the vector
superfield of the U(1)S. The singlet spectrum is complicated and we discuss it in detail
when analyzing the stabilization of the uplifted vacuum in Section 7. The vector multiplet
eats a chiral multiplet via the superHiggs mechanism and two (one) chiral multiplets get an
F -term (D-term) mass. One multiplet is massless at tree-level: it contains the Goldstino,
the pseudomodulus and the R-axion.
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5.1.3 Effect of instanton term

Turning on the instanton term creates SUSY-vacua far out in field space. The additional
terms in FMsing

are easily accounted for by replacing hf 2 → hf̃ 2 in eq. (5.2), where

hf̃ 2 = hf 2 − a

N
(Nf−1)/2

f

M
Nf−1
sing

ΛNf−3
. (5.12)

(Some of the previously undetermined phases now also get a non-zero VEV, but this does
not affect the one-loop stabilization of the pseudomodulus.) As Msing increases hf̃ 2 → 0 and
hence S, S̄, Z, Z̄ → 0. Hence

〈Msing〉SUSY ∼ f

(
Λ

f

)(Nf−3)/(Nf−1)
=

Nf→5

√
fΛ. (5.13)

The small value of f/Λ is crucial for guaranteeing longevity of the uplifted vacuum. The effect
of these R-breaking terms as well as the stabilization of the uplifted vacuum via quantum
corrections is illustrated in fig. 1.

Near the origin of field space we care about the changed behavior of the R-axion and the
pseudomodulus. The explicit breaking of the R-symmetry gives a small mass to the R-axion.
Note that even though the large adjoint mass represents a very large explicit R-breaking,
since the adjoint does not get a VEV it is not part of the axion. The pseudomodulus is no
longer a flat direction at tree-level, but is slightly tilted away from the origin.

5.1.4 Tree-level zero modes

The fermionic component of the tree-level zero mode multiplet is the Goldstino, which is
eaten by the Gravitino once SUSY is gauged and gets the familiar mass

mG̃ =
Ftot√
3M∗

pl

≈ 0.4
r

d

m′2

M∗
pl

+O(r−1) for Nf = 5 , (5.14)

where M∗
pl = (8πGN)−1/2 = 2.4 × 1018 GeV is the reduced Planck Mass. (Since r =√

hdNff/m
′ > 1 and d� 1, it is often instructive to expand for large r or large f/m′.) The

scalar components are the pseudomodulus and the R-axion (eqns 5.8, 5.9). To compute the
1-loop potential for the pseudoflat direction we set all their phases to their tree-level VEV
or zero and express 〈Z〉, 〈Z̄〉 in terms of Msing, which gives VCW(Msing). We emphasize that
|Msing| is not the pure pseudomodulus, but its value parametrizes where we are along the
pseudo-flat direction in field space.1 This gives Veff (Msing) = Vtree(Msing) + VCW(Msing).
As per the discussion above, the first term is nonzero if we include the instanton term.
Minimizing Veff gives 〈Msing〉 and hence 〈Z〉, 〈Z̄〉, 〈S〉, 〈S̄〉. To compute the derivative Veff

1To avoid clutter, we omit the absolute value signs around Msing from now on – they are understood
when we talk about Msing as parameterizing the pseudomodulus direction.
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(a) (b) (c)

Figure 1: (a) The tree-level potential without the instanton term as a function of |Msing|
and S, where we have enforced tree-level VEVs |S̄| = |S| and Z = Z̄ = −d

√
NfMsingS/m

′.
The valley marked with a green band is perfectly flat in the |Msing| direction and shows that

the potential has a SUSY-breaking minimum for S2 = hf2

d
− m′2

d2Nf
. Note that the messengers

are tachyonic for |Msing| < m′/
√
dh. (b) The same potential with the instanton term added.

The minimum along the S-direction is approximately unchanged close to the origin but is
significantly shifted as we move outwards along the |Msing| direction. As we walk along
the the valley in the |Msing| direction (which now tilts slightly away from the origin) we
eventually reach the SUSY-minimum at |Msing| ∼

√
Λf and S,Z = 0. (c) We compute

quantum corrections to the potential along the pseudomodulus direction, i.e. the green band
in (b), by setting all fields to their VEVs in terms of |Msing|. The vacuum is stabilized at

|Msing| ∼
√
h/d f −→ Z, Z̄ ∼

√
h/d f 2/m′. The parameters used for these plots in units

of m′ were Nf = 5, Λ = 3.8× 109, f = 63 and (g, d, h) = (0.02513, 0.02, 1).

along the flat direction we differentiate with respect to Msing and multiply by a scaling fac-
tor FMsing

/Ftot to account for the fact that moving by δ along the Msing axis moves us by

δ
√

(FZ/FMsing
)2 + (FZ̄/FMsing

)2 + 1 along the pseudo-flat direction. Hence we obtain the
pseudomodulus mass as

m2
PM =

(
FMsing

Ftot

)2
d2Veff

d(Msing)2
. (5.15)

A similar argument holds for the R-axion mass if we restore the undetermined phases in the
tree-level potential. To ensure that we move along the correct direction in field space we
impose πZ,Z̄ = FZ

FMsing
πMsing

, differentiate with respect to πMsing
and apply the same scaling

factor.
These masses can be readily estimated. As we will see in Section 7, Msing is stabilized at

∼
√
d/hf . Therefore it is is convenient to parametrize

〈Msing〉 = b

√
h

d
f, where b ∼ O(1). (5.16)

To obtain the R-axion mass we differentiate the tree-level potential with all VEVs subbed
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in. To lowest order in 1/r and 1/Λ we find that

FMsing

Ftot
≈ − 1√

2dhNf

m′

f
−→ mR ≈ 0.2 b

√
a

d3

m′2

Λ
for Nf = 5. (5.17)

To estimate the mass of the pseudomodulus we pre-empt another result from Section 7. The
rough scale of the second derivative of the 1-loop potential is∣∣∣∣ d2VCW

d(Msing)2

∣∣∣∣ ∼ 1

16π2

m′4

〈Msing〉2
(5.18)

(where Z, Z̄ → Z(Msing) = −d
√
NfMsing〈S〉/m′). To lowest order in 1/r this yields

mPM ∼
1√

32Nf π

m′

bh

(
m′

f

)2

≈ 0.1
d

b

m′

r2
for Nf = 5. (5.19)

Notice the m′/f suppression, simply due to the fact that if f � m′ then FMsing
� 〈Msing〉2

(similarly for Z, Z̄) and SUSY-breaking is weak. (Effectively this can also be seen as a
suppression for small d, since decreasing d increases the minimum size of f to ensure eq.
(5.4) is satisfied.)

5.2 The ISS Vacuum (k = 1)

Since this is very similar to a standard (N,Nf ) = (1, 5) ISS vacuum we will use the notation
of Section 3.2 (except for renaming the SU(Nf − N) meson Z → M̃ to avoid confusion
with the singlets Z̄, Z) and split up the meson according to eq. (4.3). The squark VEV
〈χ̄1χ1〉 = f 2 − d

h
SS̄ sets FV = 0, with all other SQCD-sector VEVs zero (except M̃sing).

This gives the same singlet potential as eq. (5.2) with Nf → Nf − 1. Therefore the VEVs at

tree-level close to the origin are 〈|S|〉 = 〈|S̄|〉, 〈|Z|〉 = 〈|Z̄|〉, 〈Z〉 = −
√
Nf − 1

〈M̃singS〉
m′ , and

〈SS̄〉 =
hf 2

d
− m′2

d2(Nf − 1)
whenever hf 2 >

m′2

(Nf − 1)d
. (5.20)

If this condition is not satisfied the singlets do not get a VEV and we have a standard ISS
vacuum. If we assume the condition holds (slightly stronger than eq. (5.4)), then 〈χ̄1χ1〉 =
m′2/(dhNf − 1), meaning the scale of the squark VEV is given by m′ instead of f . The total
vacuum energy is

〈V k=1
0 〉 = 2hf 2m

′2

d
− m′4

d2(Nf − 1)
(5.21)

The SQCD spectrum is the same as ISS with mass scale ∼ m′, and the singlet spectrum
looks very similar to the uplifted case. We will not dwell on analyzing this vacuum, we only
needed to know the potential difference

∆V0 ≡ 〈V k=0
0 〉 − 〈V k=1

0 〉 =
m′4

d2

1

Nf (Nf − 1)
(5.22)

to calculate the uplifted vacuum lifetime in Section 7.4.
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6 Direct Gauge Mediation

If we weakly gauge the SU(5) flavor group and identify it with the SM GUT gauge group,
this model realizes Minimal Gauge Mediation with a single 5⊕ 5̄ messenger pair:

Weff = Xφ̄iφ
i, (6.1)

where the SUSY-breaking spurions X = X + θ2F is given by

X =
h√
Nf

Msing → F =
h√
Nf

FMsing
= − h

dNf

m′
2
. (6.2)

Gaugino and sfermion masses are generated via the well-known 1- and 2-loop diagrams and
are parametrically the same size, solving the Gaugino Mass Problem. Using equations (2.4),
(5.16) and (5.4) we can see that SUSY-breaking is weak:∣∣∣∣X2

F

∣∣∣∣ =

(
f

m′

)2

h2b2 >
hb2

dNf

� 1, (6.3)

and therefore the soft masses are given by the usual simple expression

msoft ∼
α

4π

∣∣∣∣FX
∣∣∣∣ . (6.4)

Requiring TeV-scale soft masses sets |F/X| ∼ 100 TeV. This determines the scale of m′ (and
hence f):

m′ ∼
∣∣∣∣FX
∣∣∣∣ br, (6.5)

which sets the messenger mass at

X ∼ b2r2 h

dNf

∣∣∣∣FX
∣∣∣∣ ∼ r2 0.01

d
× (107 GeV) (6.6)

in the scenarios we are considering. The pseudomodulus, and Goldstino mass scales are

mPM ∼ 1

r

(
d

0.01

)
× (10 GeV) (6.7)

mG̃ ∼ b2 r3

(
0.01

d

)
× ( keV). (6.8)

The field theory contribution to the R-axion mass is

mR ∼ b3 r2

(
0.01

d

)3/2
ΛGUT

Λ
× (100 keV). (6.9)

Depending on the size of r and b as well as the choice of scenario, this can be smaller or
larger than the BPR contribution [29].
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Again using results from the next section for convenience, the mass of the singlet vector
multiplet is similar to the messenger mass whereas the other singlets (with the exception of
the tree-level zero modes) obtain a smaller mass ∼ r2|F/X|. Stabilizing the uplifted vacuum
in scenarios 1 and 2 requires r <∼ 102 and r <∼ 101 respectively, but saturating the former
bound gives a very heavy gravitino and reintroduces the SUSY flavor problem. Therefore
1 < r <∼ 101 is the relevant parameter range for our model.

Since the adjoint meson gets a mass that is only a few orders of magnitude below the
duality transition scale Λ, which itself is either at or close to the GUT-scale, there is no
Landau Pole in our model. (Scenario 2 is also an example of deflected unification [33].)
However, we emphasize that due to the minimality of this hidden sector such a heavy adjoint
is not required to solve the Landau Pole Problem – if the adjoint mass was generated by
some other mechanism it could be as low as ∼ 10− 100 TeV.

7 Stabilizing the Uplifted Vacuum

We now examine how the singlet sector originally proposed in [24] stabilizes the uplifted
vacuum. The stabilization is possible due to the singlet sector’s U(1)S gauge group [26],
which can supply a negative coefficient to the logarithmic dependence of VCW and push the
minimum away from the origin beyond the region where the messengers are tachyonic. We
perform this analysis to 1-loop order even though d� h and 2-loop effects from h might be
competitive. This will be justified in Section 7.3. For simplicity we set a = 1 throughout.

The effective potential is given by

Veff = Vtree + VCW, (7.1)

where all tree-level VEVs and masses are expressed as functions of Msing, which parametrizes
the pseudomodulus VEV. Vtree is easily obtained by combining equations (5.6) and (5.12).

Vtree =
2hf 2m′2

d
− m′4

d2Nf

− 2m′2

d

a

N
(Nf−1)/2

f

M
Nf−1
sing

ΛNf−3
. (7.2)

This slopes away from the origin due to the effect of the instanton term. VCW is computed by
obtaining the mass spectrum without the effects of the instanton term1 and using eq. (4.1).

7.1 Organizing the Spectrum & Contributions to VCW

All nonzero tree-level masses depend on the value of the pseudomodulus, parametrized by
the value of Msing by imposing Z = Z̄ = −d

√
NfSMsing/m

′. It is helpful to express all
masses in units of m′ and define the following set of parameters:

x = d
√
Nf
|Msing|
m′

, r =
√
hdNf

f

m′
, q =

4

Nf

g2

d2
(r2 − 1) , p =

h

dNf

. (7.3)

1If the instanton term is so large that its backreaction significantly affects the 1-loop potential, its tree-
contribution will be so large as to erase any minima created by VCW anyway.
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In this parametrization, h just rescales the other variables. r > 1 is required for singlet
VEVs. This parametrization has the advantage that the masses in every split supermultiplet
depend only on x and one of the r, q, p parameters. This allows us to study the different
VCW contributions independently as functions of just two variables each.

• The messenger masses can be written as m2
F = p2x2 and m2

S = p2x2±p, and are tachy-
onic for x < 1/

√
p (recall that we use m′ as our unit of mass in this parameterization).

In the leading-log approximation for large x their contribution to the 1-loop potential
is V mess

CW ≈ 1
64π2 8Nfp

2 log x. (We will ignore additive constants to the potential.)

• Two singlet chiral supermultiplets have F -term masses that depend only on r and x.
For large x their masses go as ∼ x and ∼ 1/x, so we denote them Rheavy and Rlight

respectively. The contribution V Rheavy
CW stands out because it is the only one that always

has a local minimum, located at x ≈ 1.3r − 1 to a very good approximation.

For most values of the parameters the other contributions to the 1-loop potential wash
out this minimum and the uplifted pseudomoduli space is not stabilized. However, if
the other components cancel to high enough precision then the minimum survives and
is located at 〈x〉 ∼ r > 1 (see eq. (5.4)). This justifies the parametrization

〈Msing〉 = b

√
h

d
f where b = O(1). (7.4)

For large x the light multiplet does not contribute to VCW, whereas V Rheavy
CW ≈ 1

64π2 4 log x.
Near the local minimum of the total 1-loop potential, their masses to lowest order in
1/r are m2

Rheavy
Rlight

≈ 1
2

(
4 + b2 ± b

√
8 + b2

)
r2.

• One chiral and one vector multiplet get masses from the U(1)S D-term, both ∼ x for
large x. Call them Qvector and Qchiral. In the leading-log approximation the contribu-
tions to the 1-loop potential are V Qvector

CW ≈ 1
64π2 (−8q) log x and V Qchiral

CW ≈ 1
64π2 4 log x.

Near the local minimum of VCW, their masses to lowest order in 1/r are
m2
Qvector ≈ 4b2g2r4/(d2Nf ) and m2

Qchiral ≈ b2r2.

Adding all the contributions together, we see that the total 1-loop potential in the leading
log approximation valid for ‘large’ field values of Msing corresponding to x >∼ O(1)� 1/

√
p

is

VCW ≈
1

8π2
(1− t) log x, (7.5)

where it will be convenient to define

t = q −Nfp
2. (7.6)

7.2 Conditions for local minimum

The leading-log approximation is excellent for V mess
CW and V Q

CW, even as close to the origin as
x ∼ 〈x〉. Hence we can understand the tuning required for stabilizing the uplifted vacuum as
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follows. Imagine starting out with a choice of parameters for which there is a local minimum
of VCW. If we then increase t, the coefficient of the logarithm in the potential decreases
until the minimum is wiped out and the potential just slopes towards the SUSY-minimum.
Conversely, if we decrease t the coefficient of the logarithm increases and the minimum gets
pushed towards the origin, eventually disappearing into the region where the messengers
are tachyonic. Therefore having a local minimum requires t ∈ (tmin, tmax), where tmin,max
are O(1) functions of the other parameters. Expressing the singlet-sector gauge coupling in
terms of t,

g(t)2 =
h2 + d2Nf t

4(r2 − 1)
, (7.7)

translates this condition into a required tuning for g. However, it is more instructive to
recast the stabilization requirement as a constraint on the mass ratio(

m′

f

)2

= 4g2Nf
d

h

(
1− d2

h2
Nf t

)
+O(g4) +O(d5). (7.8)

We can see immediately that even if t is allowed to take on an O(1)-range of values to
guarantee a local minimum, m′/f must actually be adjusted to a precision of

∆ ∼ d2

h2
∼
(

Λ

ΛUV

)2

. (7.9)

This is ∼ 10−4 in the two scenarios we are considering but could be significantly larger if
one were less conservative about the separation of scales for Λ,ΛUV . Tuning of this order of
severity is typical in uplifted models that are stabilized by 1-loop corrections, and we make
no attempt to explain it here. It would be very interesting to investigate whether such a
mass ratio might be generated by some kind of UV-completion, but it lies beyond the scope
of this paper.

What is the actual allowed range of t? If we switch off the instanton term then there
can be no minima of VCW if the coefficient of the logarithm is negative for large x. Hence
tapproxmax = 1. To find the smallest allowed value of t we numerically investigate the behavior
of VCW and we find that tapproxmin ≥ 1/2, with the inequality becoming saturated for r >∼ 10.
Switching on the instanton term has the effect of reducing tmax from the approximate value
of 1, since the Vtree contribution has negative slope and increasing t beyond tmin causes the
overall potential to have negative slope before we reach t = 1. This effect is more pronounced
for larger r, since increasing f/Λ increases the effect of the instanton term.

To understand this in more detail we studied the complete Veff numerically. By fixing
|F/X| in eq. (6.4) at 100 TeV one can find tmin, tmax as functions of r for various values of
d and h in scenarios 1 and 2, see fig. 2. As expected the instanton term does not have a
significant effect on tmin but decreases tmax from 1 with increasing severity for larger r. This
effectively defines a maximum value of r for which there can still be a local minimum of Veff ,
and rmax appears approximately ∝ d for fixed Λ, ΛUV .

We can explain this behavior of rmax analytically. For fixed other parameters, rmax is
approximately the value of r for which the scale of the gradient of VCW near the minimum
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(a) (b)

Figure 2: (a) For |F/X| = 100 TeV and d = 0.04 = 4×Λ/ΛUV in Scenario 1, Veff has a local
minimum in area of the r-t plane enclosed by the green curve. For Scenario 2 this area shrinks
down to the shaded region due to the increased effect of the instanton term. (b) Areas of the
r-t plane where Veff has a local minimum for d = 0.04, 0.02, 0.01 (green/light, blue/medium,
red/dark) in Scenario 1. rmax ∝ d5/6, so decreasing d from 0.04 to 0.01 decreases the area
where there is a minimum. These areas do not depend significantly on h.

becomes smaller than the scale of the gradient of Vtree (eq. (7.2)). Therefore, we can roughly
estimate rmax by equating the gradient of the leading log approximation to VCW (eq. (7.5))
to the gradient of Vtree for Msing ∼

√
h/df and t ∼ 0.5. This yields

rmax ∼ d5/6

(
Λ

|F/X|

)1/3

(7.10)

and explains the approximate linear dependence of rmax on d observed numerically. For
Scenarios 1 and 2 this gives rmax ∼ 102 and ∼ 101, depending on the exact value of d. This
agrees with our numerical results to ∼ 30%.

In Figure 3 we illustrate the range of allowed r-values by plotting the approximate rmax
from eq. (7.10) as a function of Λ and ΛUV . Since r > 1 is required for singlet VEVs, the
shrinking of rmax with decreasing Λ effectively defines a minimum allowed value of Λ/ΛUV ,
and for Λ <∼ ΛUV /1000 it becomes very difficult to find a metastable uplifted vacuum
because the allowed range of r shrinks to nothing. This means that Λ as large as possible is
favored in our model, and justifies considering only our two scenarios with Λ/ΛUV ∼ 1/100.

Finally, we can also use these ideas to get a rough estimate of the pseudomodulus mass
scale. Simply differentiating eq. (7.5) and setting t ∼ 0.5 yields eq. (5.18).

7.3 Validity of 1-loop calculation

The smallness of d ∼ 0.01 compared to h ∼ 1 and g (depending on the size of r) might cause
us to suspect that all these results would be invalidated by 2-loop corrections. Fortunately,
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d̃ = 1 d̃ = 4

(a) (b)

Figure 3: Estimate of log10 rmax for two possible values of d̃ = d
Λ/ΛUV

. The upper and lower

regions are excluded to satisfy Λ < ΛUV /100 and r > 1 respectively. This demonstrates that
the allowed range for r shrinks to nothing for Λ/ΛUV � 1/1000, making large Λ heavily
favored in our model.

this naive expectation is not realized due to the nature of contributions to the effective
potential. The leading-log approximation to the 1-loop potential eq. (7.5) is a very good ap-
proximation for the complete contributions from messengers (loops involving the h-coupling)
and singlets with D-term masses (involving the g-coupling), as well as the logarithmic con-
tributions from singlets with F -term masses. The only components not included are the
small-x contributions from singlets with F -term masses, and those are the contributions
with non-trivial features required to generate the minimum.

The tuning can be understood as canceling the smooth logarithmic contributions to the
effective potential to high enough precision so that the minimum created by the contributions
from singlets with F -term masses survives. Since d is so small, this local minimum is pushed
out to rather large field values Msing ∼

√
h/d f where the leading log approximation for the

‘uninteresting’ contributions is excellent. This makes the two-loop corrections involving two
h and g couplings (messengers and singlets with D-term masses, respectively) very smooth
as well, meaning they do not introduce any gross new features to the effective potential.
Therefore they just generate a smooth correction to eq. (7.5), which can be compensated for
by slightly adjusting the gauge coupling g (or the ratio m′/f) and should not significantly
affect the existence of local minima or the severity of tuning (though eq. (7.8) might have
to be slightly adjusted). Therefore the important features of our analysis are valid.
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7.4 Lifetime Constraints on Uplifted Vacuum Stabilization

We now check that the uplifted vacuum is stable enough to have not decayed in the lifetime
of the universe. For each decay path across the potential landscape we estimate the Bounce
Action B which exponentially suppresses the decay width [34]. We require B >∼ 103 [35].
For rough estimates of the bounce action we approximate the potential along the decay path
as a triangular barrier, which yields very simple analytical expressions for B [36].

There are two decay paths that are only forbidden by loop-sized effects. As illustrated
in fig. 1, Msing can either tunnel towards the origin, in which case the messengers become
tachyonic and the fields roll towards the ISS vacuum, or it can tunnel away from the origin
and roll towards the SUSY-minimum.

To estimate the bounce action for decay to the ISS vacuum along the pseudoflat direction
we take limit where the height of the potential barrier and the distance from the edge of the
barrier to the ISS vacuum goes to zero. This underestimates B and gives

BISS > 2π2Nf − 1

Nf

r4(2r2 − 1)2

(d/b2)2
∼ 8π2

5︸︷︷︸
∼15

(
ΛUV

Λ

)2

︸ ︷︷ ︸
>104

b4 r4
(
2r2 − 1

)2︸ ︷︷ ︸
>1

� 103 (7.11)

Turning to the bounce action for decay to the SUSY vacuum along the pseudoflat direction
we again take the height of the potential barrier to zero and neglect several unknown or
parametrically smaller contributions to the length of the decay path. Using ∆V 0 from eq.
(5.22) as the depth of the potential well on the other side of the barrier we obtain (neglecting
O(1) factors)

BSUSY >
32π2

3

√
Λ

f

1

d3/2
� 103 (7.12)

Both decays are sufficiently suppressed.

8 Conclusions

The ISS framework [9] is an extremely appealing model building arena for exploring non-
perturbative meta-stable SUSY-breaking. However, previous ISS-based models of Direct
Gauge Mediation are plagued by several problems, both aesthetic and phenomenological,
which include small gaugino masses (exacerbating the little hierarchy problem), Landau
Poles and non-renormalizable operators with somewhat contrived flavor contractions. Since
the issue of small gaugino masses has been understood to be related to the vacuum structure
of the theory [19], one model-building challenge is the formulation of plausible uplifted ISS
models.

We first outlined some simple but general model-building guidelines for stabilizing up-
lifted ISS models, which lead us to conclude that meson-deformations are required (or at
least heavily favored) to stabilize the adjoint component of the magnetic meson in the hidden
sector. However, the singlet can be stabilized by a variety of mechanisms, which makes it
possible that an uplifted hidden sector with minimal flavor group might be viable.
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This lead us to propose Singlet Stabilized Minimal Gauge Mediation as a simple ISS-based
model of Direct Gauge Mediation which avoids both light gauginos and Landau Poles. The
hidden sector has trivial magnetic gauge group and minimal unbroken SU(5) flavor group,
while the uplifted vacuum is stabilized by a singlet sector with its own U(1) gauge symmetry,
generating a nonzero VEV for the singlet meson via the inverted hierarchy mechanism.

The stabilization mechanism used in our model necessitates adjusting parameters to
a precision of ∼ (Λ/ΛUV )2 ∼ 10−4, a common problem with quantum-stabilized models.
While this tuning can be reduced by being less conservative about the separation of scales,
one might question the advantage of this tuning compared to the tuning in the MSSM
higgs-sector associated with a split-SUSY spectrum. Apart from the fact that a split-SUSY
spectrum might not be experimentally observed, the key is that a split-SUSY spectrum
cannot be avoided in most models of Direct Gauge Mediation that are in the ground state,
in particular standard ISS1. This paper shows that it is possible to stabilize an uplifted
ISS model with very small flavor group, a necessary condition for avoiding Landau Poles
of the SM gauge couplings, and while the current stabilization mechanism requires said
tuning it seems plausible that an alternative mechanism with generically stabilized uplifted
vacua exists. That makes our stabilization-tuning preferable to the ‘unavoidable’ higgs-sector
tuning from a split-SUSY spectrum.

Acknowledgements

We are extremely grateful to Csaba Csaki, Zohar Komargodski, Maxim Perelstein and Liam
McAllister for valuable insights and comments on the manuscript. We would also like to
thank Markus Luty, John Terning, Jesse Thaler, David Shih, Rouvan Essig, Nathan Seiberg,
Andrey Katz and Flip Tanedo for helpful discussion. The work of D.C. and Y.T. was
supported in part by the National Science Foundation under grant PHY-0355005. D.C.
was also supported by the John and David Boochever Prize Fellowship in Fundamental
Theoretical Physics 2010-11. Y.T. is also supported by a Fermilab Fellowship in Theoretical
Physics. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-
AC02-07CH11359 with the United States Department of Energy.

References

[1] M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B 189, 575 (1981); S. Dimopoulos
and S. Raby, Nucl. Phys. B 192, 353 (1981); M. Dine and W. Fischler, Phys. Lett. B
110, 227 (1982); M. Dine and M. Srednicki, Nucl. Phys. B 202, 238 (1982); L. Alvarez-
Gaume, M. Claudson and M. B. Wise, Nucl. Phys. B 207, 96 (1982); C. R. Nappi and
B. A. Ovrut, Phys. Lett. B 113, 175 (1982).

[2] M. Dine and A. E. Nelson, Phys. Rev. D 48, 1277 (1993) [arXiv:hep-ph/9303230];
M. Dine, A. E. Nelson and Y. Shirman, Phys. Rev. D 51, 1362 (1995) [arXiv:hep-

1One might have an independent suppression mechanism for the sfermion masses, see for example [37]

26

http://arxiv.org/abs/hep-ph/9303230
http://arxiv.org/abs/hep-ph/9408384
http://arxiv.org/abs/hep-ph/9408384
http://arxiv.org/abs/hep-ph/9408384


ph/9408384]; M. Dine, A. E. Nelson, Y. Nir and Y. Shirman, Phys. Rev. D 53, 2658
(1996) [arXiv:hep-ph/9507378].

[3] G. F. Giudice and R. Rattazzi, Phys. Rept. 322, 419 (1999) [arXiv:hep-ph/9801271].

[4] I. Affleck, M. Dine and N. Seiberg, Nucl. Phys. B 256, 557 (1985); E. Poppitz
and S. P. Trivedi, Phys. Rev. D 55, 5508 (1997) [arXiv:hep-ph/9609529]; N. Arkani-
Hamed, J. March-Russell and H. Murayama, Nucl. Phys. B 509, 3 (1998) [arXiv:hep-
ph/9701286]; H. Murayama, Phys. Rev. Lett. 79, 18 (1997) [arXiv:hep-ph/9705271];
M. A. Luty, Phys. Lett. B 414, 71 (1997) [arXiv:hep-ph/9706554]; S. Dimopoulos,
G. R. Dvali and R. Rattazzi, Phys. Lett. B 413, 336 (1997) [arXiv:hep-ph/9707537];
Y. Shirman, Phys. Lett. B 417, 281 (1998) [arXiv:hep-ph/9709383]; K. Agashe, Phys.
Lett. B 435, 83 (1998) [arXiv:hep-ph/9804450].

[5] K. I. Izawa, Y. Nomura, K. Tobe and T. Yanagida, Phys. Rev. D 56, 2886 (1997)
[arXiv:hep-ph/9705228].

[6] M. Dine and J. D. Mason, Phys. Rev. D 78, 055013 (2008) [arXiv:0712.1355 [hep-ph]].

[7] M. Ibe, Y. Nakayama and T. T. Yanagida, Phys. Lett. B 649, 292 (2007) [arXiv:hep-
ph/0703110].

[8] N. Seiberg, T. Volansky and B. Wecht, JHEP 0811, 004 (2008) [arXiv:0809.4437 [hep-
ph]]; H. Elvang and B. Wecht, JHEP 0906, 026 (2009) [arXiv:0904.4431 [hep-ph]];
R. Argurio, M. Bertolini, G. Ferretti and A. Mariotti, arXiv:0912.0743 [hep-ph].

[9] K. Intriligator, N. Seiberg and D. Shih, JHEP 0604 (2006) 021 [arXiv:hep-th/0602239].

[10] P. Meade, N. Seiberg and D. Shih, Prog. Theor. Phys. Suppl. 177, 143 (2009)
[arXiv:0801.3278 [hep-ph]].

[11] C. Cheung, A. L. Fitzpatrick and D. Shih, JHEP 0807, 054 (2008) [arXiv:0710.3585
[hep-ph]].

[12] E. Witten, Nucl. Phys. B 202, 253 (1982).

[13] N. Seiberg, Nucl. Phys. B 435, 129 (1995) [arXiv:hep-th/9411149].

[14] R. Kitano, H. Ooguri and Y. Ookouchi, Phys. Rev. D 75, 045022 (2007) [arXiv:hep-
ph/0612139];

[15] N. Haba and N. Maru, Phys. Rev. D 76, 115019 (2007) [arXiv:0709.2945 [hep-ph]];
A. Giveon and D. Kutasov, JHEP 0802, 038 (2008) [arXiv:0710.1833 [hep-th]]; R. Es-
sig, J. F. Fortin, K. Sinha, G. Torroba and M. J. Strassler, JHEP 0903, 043 (2009)
[arXiv:0812.3213 [hep-th]].

[16] S. Abel, C. Durnford, J. Jaeckel and V. V. Khoze, Phys. Lett. B 661, 201 (2008)
[arXiv:0707.2958 [hep-ph]].

27

http://arxiv.org/abs/hep-ph/9408384
http://arxiv.org/abs/hep-ph/9408384
http://arxiv.org/abs/hep-ph/9507378
http://arxiv.org/abs/hep-ph/9801271
http://arxiv.org/abs/hep-ph/9609529
http://arxiv.org/abs/hep-ph/9701286
http://arxiv.org/abs/hep-ph/9701286
http://arxiv.org/abs/hep-ph/9705271
http://arxiv.org/abs/hep-ph/9706554
http://arxiv.org/abs/hep-ph/9707537
http://arxiv.org/abs/hep-ph/9709383
http://arxiv.org/abs/hep-ph/9804450
http://arxiv.org/abs/hep-ph/9705228
http://arxiv.org/abs/0712.1355
http://arxiv.org/abs/hep-ph/0703110
http://arxiv.org/abs/hep-ph/0703110
http://arxiv.org/abs/0809.4437
http://arxiv.org/abs/0904.4431
http://arxiv.org/abs/0912.0743
http://arxiv.org/abs/hep-th/0602239
http://arxiv.org/abs/0801.3278
http://arxiv.org/abs/0710.3585
http://arxiv.org/abs/hep-th/9411149
http://arxiv.org/abs/hep-ph/0612139
http://arxiv.org/abs/hep-ph/0612139
http://arxiv.org/abs/0709.2945
http://arxiv.org/abs/0710.1833
http://arxiv.org/abs/0812.3213
http://arxiv.org/abs/0707.2958


[17] C. Csaki, Y. Shirman and J. Terning, JHEP 0705, 099 (2007) [arXiv:hep-ph/0612241].

[18] Z. Komargodski and D. Shih, JHEP 0904, 093 (2009) [arXiv:0902.0030 [hep-th]].

[19] A. Giveon, A. Katz and Z. Komargodski, JHEP 0907, 099 (2009) [arXiv:0905.3387
[hep-th]].

[20] N. Maru, arXiv:1008.1440 [hep-ph].

[21] D. Koschade, M. McGarrie and S. Thomas, JHEP 1002, 100 (2010) [arXiv:0909.0233
[hep-ph]].

[22] R. Auzzi, S. Elitzur and A. Giveon, JHEP 1003, 094 (2010) [arXiv:1001.1234 [hep-th]].

[23] J. Barnard, JHEP 1002, 035 (2010) [arXiv:0910.4047 [hep-ph]].

[24] M. Dine and J. Mason, arXiv:hep-ph/0611312.

[25] N. Seiberg, Phys. Rev. D 49, 6857 (1994) [arXiv:hep-th/9402044]; K. A. Intriligator
and N. Seiberg, Nucl. Phys. Proc. Suppl. 45BC, 1 (1996) [arXiv:hep-th/9509066].

[26] E. Witten, Phys. Lett. B 105, 267 (1981).

[27] K. A. Intriligator and N. Seiberg, Class. Quant. Grav. 24, S741 (2007) [arXiv:hep-
ph/0702069].

[28] A. E. Nelson and N. Seiberg, Nucl. Phys. B 416, 46 (1994) [arXiv:hep-ph/9309299].

[29] J. Bagger, E. Poppitz and L. Randall, Nucl. Phys. B 426, 3 (1994) [arXiv:hep-
ph/9405345].

[30] S. Shirai, M. Yamazaki and K. Yonekura, JHEP 1006, 056 (2010) [arXiv:1003.3155
[hep-ph]].

[31] Y. Nakai and Y. Ookouchi, arXiv:1010.5540 [hep-th].

[32] D. Malyshev, Ph.D. Thesis (2008)

[33] S. Abel and V. V. Khoze, JHEP 0811, 024 (2008) [arXiv:0809.5262 [hep-ph]].

[34] S. R. Coleman, Phys. Rev. D 15, 2929 (1977) [Erratum-ibid. D 16, 1248 (1977)].

[35] A. H. Guth and E. J. Weinberg, Phys. Rev. D 23, 876 (1981); K. Blum, C. Delaunay
and Y. Hochberg, Phys. Rev. D 80, 075004 (2009) [arXiv:0905.1701 [hep-ph]].

[36] M. J. Duncan and L. G. Jensen, Phys. Lett. B 291, 109 (1992).

[37] D. Green, A. Katz and Z. Komargodski, arXiv:1008.2215 [hep-th].

28

http://arxiv.org/abs/hep-ph/0612241
http://arxiv.org/abs/0902.0030
http://arxiv.org/abs/0905.3387
http://arxiv.org/abs/1008.1440
http://arxiv.org/abs/0909.0233
http://arxiv.org/abs/1001.1234
http://arxiv.org/abs/0910.4047
http://arxiv.org/abs/hep-ph/0611312
http://arxiv.org/abs/hep-th/9402044
http://arxiv.org/abs/hep-th/9509066
http://arxiv.org/abs/hep-ph/0702069
http://arxiv.org/abs/hep-ph/0702069
http://arxiv.org/abs/hep-ph/9309299
http://arxiv.org/abs/hep-ph/9405345
http://arxiv.org/abs/hep-ph/9405345
http://arxiv.org/abs/1003.3155
http://arxiv.org/abs/1010.5540
http://arxiv.org/abs/0809.5262
http://arxiv.org/abs/0905.1701
http://arxiv.org/abs/1008.2215

	1 Introduction
	2 Overview of the SSMGM Model
	3 Reviewing the ISS Framework
	3.1 The necessity of metastable SUSY-breaking
	3.2 The ISS Model
	3.3 Uplifting the ISS Model

	4 The Adjoint Instability
	4.1 The messenger contribution to Veff(Z)
	4.2 Model Building Requirements for Stabilizing Z

	5 Vacuum Structure & Spectrum
	5.1 The Uplifted Vacuum (k = 0)
	5.1.1 Tree-level VEVs near origin of field space
	5.1.2 Tree-level spectrum
	5.1.3 Effect of instanton term
	5.1.4 Tree-level zero modes

	5.2 The ISS Vacuum (k = 1)

	6 Direct Gauge Mediation
	7 Stabilizing the Uplifted Vacuum
	7.1 Organizing the Spectrum & Contributions to VCW
	7.2 Conditions for local minimum
	7.3 Validity of 1-loop calculation
	7.4 Lifetime Constraints on Uplifted Vacuum Stabilization

	8 Conclusions



