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I investigate the phenomenology of supersymmetric models with extra vector-

like supermultiplets that couple to the Standard Model gauge fields and trans-

form as the fundamental representation of a new confining non-Abelian gauge

interaction. If perturbative gauge coupling unification is to be maintained, the

new group can be SU(2), SU(3), or SO(3). The impact on the sparticle mass

spectrum is explored, with particular attention to the gaugino mass dominated

limit in which the supersymmetric flavor problem is naturally solved. The new

confinement length scale is astronomical for SO(3), so the new particles are

essentially free. For the SU(2) and SU(3) cases, the new vector-like fermions

are quirks; pair production at colliders yields quirk-antiquirk states bound by

stable flux tubes that are microscopic but long compared to the new confine-

ment scale. I study the reach of the Tevatron and LHC for the optimistic case

that in a significant fraction of events the quirk-antiquirk bound state will lose

most of its energy before annihilating as quirkonium.
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I. INTRODUCTION

Among the hurdles that must be cleared by any proposed extension of the Standard
Model (SM) are the stringent limits on quantum corrections to the electroweak vector boson
propagators due to new physics [1]-[6]. Low-energy supersymmetry [7] is generally safe in
this regard, because of the fact that all of the new particles it introduces get their masses
primarily from bare mass terms, not from their couplings to the Higgs vacuum expectation
values (VEVs). This includes the Higgs chiral supermultiplets Hu and Hd themselves, which
are vector-like, together forming a self-conjugate representation of the SM gauge group
GSM = SU(3)c × SU(2)L × U(1)Y . It is therefore interesting to consider non-minimal
supersymmetric models that maintain this feature by including more chiral supermultiplets
transforming as vector-like representations of the gauge group.

Another well-known and appealing feature of the minimal supersymmetric standard
model (MSSM) is the perturbative unification of running gauge couplings nearMU ≈ 2×1016

GeV. A sufficient (but not necessary) condition for extensions of the MSSM with extra
vector-like supermultiplets to maintain gauge coupling unification is that the new fields
come in complete multiplets of the SU(5) global symmetry group that contains GSM. This
paper studies the properties of models of this type that introduce a new non-Abelian gauge
group GX , under which the new chiral supermultiplets also transform but the MSSM fields
are neutral. Models of this type have already been introduced by Babu, Gogoladze, and
Kolda in [8], in the context of finding new large contributions to the lightest Higgs boson
mass.† I will assume that the new chiral supermultiplets have masses at the TeV scale or
below, and that the new gauge coupling gX unifies with the GSM couplings g1, g2, g3 at MU .
In order to avoid a strong disruption of the running of the GSM gauge couplings, it is neces-
sary that the corresponding confinement scale Λ for the GX interactions is below the masses
of the new fermions and scalars that are also charged under GSM. This in turn implies an
intriguing phenomenology studied first by Okun [15], later by Gupta and Quinn [16] and
by Strassler and Zurek [17], and more recently in considerable depth by Kang and Luty in
[18]. The new particles that transform non-trivially under the new gauge group (dubbed
“theta particle” by Okun, and renamed “quirks” by Kang and Luty) can form exotic bound
states with unusual signatures that depend strongly on the GX confinement scale. When a
heavy quirk-antiquirk pair is produced in a collider experiment, they fly apart but remain
connected by a stable flux tube, which cannot break due to the large energy cost to produce
an additional quirk-antiquirk pair. The maximum length of this flux tube is roughly of or-
der L ∼ ∆E/Λ2, where ∆E is the kinetic energy of the hard scattering production process.
This length can range from microscopic to literally astronomical, but in any case it is much
larger than the flux tube thickness ∼ Λ−1. The resulting collider signatures are potentially
distinctive but also possibly quite difficult [18]-[27].

In this paper, I will study the basic properties of models that maintain perturbative
unification of gauge couplings, and their renormalization group running, in Section II. The
sparticle mass spectra are studied in Section III, and Section IV considers the impact on the

† Models with the same motivation, but without the new non-Abelian gauge group, have been studied in

[9]-[13]. Other recent proposals for extra vector-like chiral supermultiplets are found in [14].
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supersymmetric little hierarchy problem. Some salient aspects of the collider phenomenology
of the quirks are discussed in Section V.

II. MSSM EXTENDED BY VECTOR-LIKE FIELDS COUPLED TO A NEW

CONFINING NON-ABELIAN GAUGE INTERACTION

In order to maintain perturbative gauge coupling unification, the number of new particles
transforming under the SM gauge group is limited to the equivalent of three copies of the
5+ 5 of the SU(5) group that contains GSM, if they are not much heavier than 1 TeV. This
assumes that αi = g2i /4π (i = 1, 2, 3) are required to be perturbative (less than 0.3 or so) at
and below the energy scale where they unify.‡ (One could consider unification with larger
couplings at and near the unification scale, but then both renormalization group (RG)
running and threshold corrections will be necessarily out of control, and the low-energy
manifestation of apparent unification must be considered merely accidental.) It follows
that the new gauge non-Abelian group must be GX = SU(2)X or SO(3)X or SU(3)X . In
the following, the new fields are taken to transform in the N = 2, 3, or 3 dimensional
representations respectively for these three cases. Thus the new quirk chiral supermultiplets
transform under SU(2)X ×GSM as:

D,D = (2, 3, 1,−1

3
) + (2, 3, 1,

1

3
) (2.1)

L, L = (2, 1, 2,
1

2
) + (2, 1, 2,−1

2
) (2.2)

S, S = (2, 1, 1, 0)× 2nS, (2.3)

or under SU(3)X ×GSM as:

D,D = (3, 3, 1,−1

3
) + (3, 3, 1,

1

3
) (2.4)

L, L = (3, 1, 2,
1

2
) + (3, 1, 2,−1

2
) (2.5)

S, S = [(3, 1, 1, 0) + (3, 1, 1, 0)]× nS, (2.6)

or under SO(3)X ×GSM as:

D,D = (3, 3, 1,−1

3
) + (3, 3, 1,

1

3
) (2.7)

L, L = (3, 1, 2,
1

2
) + (3, 1, 2,−1

2
) (2.8)

S ≡ S = (3, 1, 1, 0)× nS. (2.9)

These are the main model frameworks considered below. With these assignments, D,L
transform as a 5 and D,L transform as a 5 of the usual Georgi-Glashow SU(5), ensuring

‡ It is crucial to use two-loop (or higher) beta functions to correctly implement this perturbativity require-

ment. This paper uses three-loop beta functions for supersymmetric gauge couplings and gaugino masses

and two-loop beta functions for Yukawa couplings, scalar masses, and scalar cubic couplings. These can

be found straightforwardly from general results in refs. [28, 29], and so are not listed explicitly here.
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that the unification of GSM gauge couplings persists. Also included are nS GSM singlets in
the same representations of GX . Note that since SU(2)X and SO(3)X have the same Lie
algebra, the practical distinction between them is really whether the representations of the
chiral superfields are doublets or triplets.

[There are some variations on the above models that are consistent with gauge coupling
unification with the new fields at the TeV scale, which should be mentioned although they
are inconsistent with an assignment ofD,D,L, L into 5+5 of SU(5). First, for SU(3)X only,
there is another, inequivalent, embedding in which D,D have the same assignments, but
L, L = (3, 1, 2, 1

2
) + (3, 1, 2,−1

2
) instead. Also, for SU(3)X , one could put D,D into three

singlets if L, L are in a triplet, or vice versa. Likewise, for SU(2)X or SO(3)X, one could put
D,D into any combination of nD

1 singlets, nD
2 doublets, and nD

3 triplets, and similarly for
L, L, provided that nD

1 +2nD
2 +3nD

3 = nL
1 +2nL

2 +3nL
3 ≤ 3. Finally, it should be noted that

the number and type of GX representations of the SM singlets do not affect gauge coupling
unification for GSM, and so are more generally arbitrary as long as they are anomaly-free
under GX . However, to keep the discussion below bounded, I will limit the discussion below
to the models defined by eqs. (2.1)-(2.9).]

The supersymmetric mass parameters of the D,D,L, L fields are assumed to arise by the
same mechanism that gives the entirely analogous term µHuHd in the superpotential of the
MSSM. For example [30, 31], one may assume that the mass terms HuHd and DD and LL
and SS are forbidden at tree-level, and arise from non-renormalizable superpotential terms:

W =
1

M2
P

XX
(
λµHuHd + λDDD + λLLL+ λSi

SiSi

)
(2.10)

(with an implied sum over i = 1, . . . , nS if nS 6= 0) when the fields X,X get VEVs roughly of
order 1011 GeV. HereMP = 2.4×1018 GeV is the reduced Planck mass. These intermediate-
scale VEVs are natural, for example [31], if there is also a superpotential

W =
λX
4M2

P

X3X (2.11)

and soft terms

−Lsoft = m2
X |X|2 +m2

X
|X|2 +

(
aX
4M2

P

X3X + c.c.

)
. (2.12)

Non-trivial VEVs for X,X break a Peccei-Quinn symmetry, giving rise to an invisible axion
solution to the strong CP problem [30]. There will be a non-trivial local minimum of the
potential provided that |aX |2 − 6|λX |2(m2

X +m2
X
) > 0, and it will be a global minimum if

|aX |2 − 8|λX |2(m2
X +m2

X
) > 0 [32]. This will give rise to the vector-like mass terms in the

low-energy effective superpotential

W = µHuHd + µDDD + µLLL+ µSi
SiSi. (2.13)
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with µ, µD, µL, µS of order 100 GeV to 1 TeV, provided that the corresponding couplings
λµ, λD, λL, λS are not too small.

The S, S fields do not couple to GSM gauge fields, and so are not constrained by LEP2
or Tevatron or other direct production, nor do they affect the SM gauge couplings directly.
So, some number n of them (with 0 ≤ n ≤ nS) could actually have current masses µSi

that
are far below the electroweak scale. This would occur if the λSi

coupling(s) in eq. (2.10) are
absent (perhaps replaced by terms of even higher dimensionality), or just small. Note that
for n > 0, there will be no stable flux tubes for pair-produced particles charged under GX ,
because then as the particles produced in the hard collision fly apart, the gauge string will
break to form bound states with size of order Λ−1 just as in ordinary QCD. This is because
the energy cost to produce an additional pair of light S, S after the hard collision would
then be small.

The new fermion content of the theory consists of a color triplet charge ±1/3 Dirac
fermion (ψD, ψD) with mass µD; a charge ±1 Dirac fermion (ψ+

L
, ψ−

L ) with mass µL; and
charge 0 fermions ψ0

L
, ψ0

L, ψ
0
Si
, ψ0

Si

. The scalar partners of these particles will have soft-
supersymmetry breaking squared-mass terms:

−L = m2
D̃
|D|2 +m2

˜D
|D|2 +m2

L̃
|L|2 +m2

˜L
|L|2 + (m2

S̃
)ijS

∗
i Sj + (m2

˜S
)ijS

∗

iSj +

+(bDDD + bLLL+ (bS)ijSiSj + c.c.), (2.14)

where the scalar components are denoted by the same symbol as the chiral supermultiplets
of which they are members. In the case GX = SU(2) or SO(3), the fields Si and Si actually
have the same quantum numbers, and so can mix with further soft mass terms (m2

S̃
)ijS

∗
i Sj,

etc., but for simplicity I assume that mixing between Si and Sj chiral supermultiplets is
absent. Also for simplicity, I will assume that the above Si and Sj soft terms are diagonal
in the same basis that the superpotential masses µSi

are diagonal. This is natural if the soft
supersymmetry breaking arises in a flavor-blind framework such as gaugino mass dominance.

In the absence of Yukawa couplings involving the new chiral supermultiplets, the charge
0 fermions are unmixed, and form Dirac fermions with masses µL and µSi

. For nS > 0, the
new chiral supermultiplets can have Yukawa couplings in addition to their mass terms in
eq. (2.13):

W = kiHuLSi + k′iHdLSi. (2.15)

and corresponding soft scalar cubic terms,

− L = akiHuLSi + ak′
i
HdLSi + c.c. (2.16)

As mentioned above, HuLS and HdLS couplings for SU(2)X or SO(3)X are also possible,
but are omitted here for simplicity. The superpotential Yukawa couplings produce mixing

between the gauge eigenstate fermions, yielding Dirac fermions (ψ0
j , ψ

0

j) which are mixtures

of ψ0
L, ψ

0
Si

and of ψ0
L
, ψ0

Si

, respectively. For example, if only one pair S and S has couplings
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to the Higgs fields, then the new neutral fermion mass matrix becomes

−L =
(
ψL0 ψS

)

 µL kvu

k′vd µS





ψL

0

ψS


+ c.c. (2.17)

when the MSSM Higgs fields get their VEVs vu, vd with tanβ = vu/vd and v =
√
v2u + v2d ≈

175 GeV. The couplings k, k′ gives rise to 1-loop effects that can significantly raise the
lightest Higgs scalar boson mass due to a lack of complete cancellation between scalar and
fermion loops, especially for large k if tan β is not small. This was the motivation of [8],
but as noted in similar contexts in [10, 11] and remarked on further below, it is doubtful
whether this really ameliorates the supersymmetric little hierarchy problem.

In keeping with the idea that the apparent gauge coupling unification for GSM is telling us
something important about the underlying theory, I will assume that the new non-Abelian
gauge coupling gX unifies with g1, g2 and g3 at a scale MU ∼> 2 × 1016 GeV. In practice,
I use three-loop RG equations to run up from the electroweak scale, and declare the scale
where g1 = g′

√
5/3 and g2 meet to be MU , and require gX to be equal to them there. The

QCD coupling g3 typically misses this common value at MU by a small amount that can
be reasonably ascribed to threshold corrections. Now, RG running gX from this scale, I
require that it remains finite down to scales well below the masses of the quirks D,D,L, L.
Otherwise, two-loop effects would strongly affect the running of the SM gauge couplings,
rendering their apparent unification merely accidental. For SU(2)X and SO(3)X, this re-
quirement is automatically satisfied for all nS ≥ 0, but for SU(3)X it requires nS ≥ 3. I
therefore consider nS = 3 to be the minimal viable model for the SU(3)X case.

For illustration, the running of the gauge couplings is shown at three-loop order in Figure
1, for the three cases SU(2)X with nS = 0 and SO(3)X with nS = 0 and SU(3)X with
nS = 3. For simplicity, I have assumed vanishing Yukawa couplings and chosen a single scale
Mthresh = 1 TeV as the effective average mass of the new particles charged under GX and the
MSSM superpartners. The unification will have some dependence on the actual thresholds,
which one might imagine is roughly comparable to the unknown threshold dependence due
to high-scale particles. In the case of SU(2)X with nS = 0, the gauge coupling gX runs quite
slowly, and is somewhat weaker than the QCD coupling at the TeV scale. In contrast, for
the SO(3)X case with nS = 0, gX runs quickly to very small values in the infrared, due to
a large positive beta function coefficient. For the minimal viable SU(3)X case with nS = 3,
the gX beta function is even more negative than the QCD beta function, leading to a gauge
coupling at the TeV scale that is larger, but still perturbative and not running very fast.
For non-minimal models with nS larger than these values, the TeV-scale values of αX are
smaller, because the gX beta function is larger.

Below the masses of the quirks and their supersymmetric partners, the coupling gX has
a negative beta function, and diverges at some scale Λ when calculated at any particular
loop order in a specified scheme. Given the MS beta function for αX = g2X/4π up to 4-loop
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FIG. 1: Renormalization group running of the

inverses of the gauge couplings α1, α2, α3, and

αX , for the minimal viable cases GX = SU(2)

with nS = 0 (upper left), GX = SU(3) with

nS = 3 (upper right) and GX = SO(3) with

nS = 0 (lower left). The undiscovered MSSM

particles and the new particles charged under

GX are taken to have masses at a common

threshold Mthresh = 1 TeV.

order:

βαX
= Q

dαX

dQ
= −2

(
b0α

2
X + b1α

3
X + b2α

4
X + b3α

5
X + . . .

)
, (2.18)

the scale Λ can be defined,§ using any convenient αX(Q0) with Q0 ≤Mthresh as input, by an
expansion in inverse powers of t ≡ ln(Q2

0/Λ
2) [33]:

αX(Q0) =
1

b0t

(
1− [b1 ln t]/b

2
0t+ [b0b2 + b21(ln

2 t− ln t− 1)]/b40t
2

+[b20b3 − b31(2 ln
3 t− 5 ln2 t− 4 ln t + 1)− 6b0b1b2 ln t]/2b

6
0t

3 + . . .
)
. (2.19)

It is common in rough estimates to only use the one-loop-order estimate αX(Q0) = 1/b0t,
with b0 = (11CA − 2TF )/12π where (CA, TF ) = (N, n) for SU(N)X and (CA, TF ) = (2, 2n)
for SO(3)X, with n denoting the number of the nS SM singlet fields that have masses below

§ Note that the definition for Λ used here corresponds to Λ/4 in ref. [18].
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GX nS α−1
X (1 TeV) Λ(1) Λ(2) Λ(3) Λ(4)

SU(2) 0 9.3 0.35 GeV 1.3 GeV 1.1 GeV 1.1 GeV

1 14.4 4.4 MeV 19 MeV 17 MeV 17 MeV

2 19.5 57 keV 280 keV 250 keV 250 keV

3 24.5 0.76 keV 4.1 keV 3.7 keV 3.7 keV

4 29.5 11 eV 60 eV 55 eV 55 eV

SU(3) 3 4.9 61 GeV 140 GeV 120 GeV 120 GeV

4 9.9 3.5 GeV 11 GeV 9.3 GeV 9.5 GeV

5 15.0 190 MeV 720 MeV 620 MeV 620 MeV

6 20.1 10 MeV 44 MeV 38 MeV 38 MeV

7 25.1 0.59 MeV 2.7 MeV 2.4 MeV 2.4 MeV

8 30.2 32 keV 160 keV 140 keV 140 keV

9 35.2 1.9 keV 9.7 keV 8.7 keV 8.8 keV

SO(3) 0 83 1.3×10−19 eV 1.1×10−18 eV 1.0×10−18 eV 1.0×10−18 eV

1 103 4.7×10−27 eV 4.4×10−26 eV 4.2×10−26 eV 4.2×10−26 eV

TABLE I: The GX confinement scale Λ
(ℓ)

MS
, computed at various loop orders ℓ by using eq. (2.19)

keeping terms of order 1/tℓ. The new particles charged under GX are taken to have an effective

average decoupling mass scale of Q0 = Mthresh = 1 TeV, with no SM singlet quirks with current

masses µSi
smaller than Λ.

Q0 and are treated as non-decoupled below Mthresh. However, it turns out that including
the higher loop effects (with coefficients b1,2,3 found in refs. [34]) are quite important for
obtaining a stable value of the GX confinement scale Λ. This is illustrated in Table I, which
shows the results obtained for Λ

(ℓ)

MS
at various loop orders ℓ, assuming again that the effective

decoupling scale for particles charged under GX is Mthresh = 1 TeV. The point of carrying
the calculation to 4-loop order is not because of the very slightly increased accuracy obtained
(since there are threshold uncertainties here that are not known), but rather to demonstrate
the stability of the results with respect to inclusion of higher-order terms. In fact, the 4-loop
order results for Λ hardly differ at all from the 3-loop order ones, and only at the 10% level
from the 2-loop order ones. However, they are notably larger than the 1-loop order estimate,
which is therefore judged to be deprecated as an estimate of the physical GX confinement
scale.

Table I shows that the confinement scale Λ for SO(3)X is very small in energy units. In
terms of length, the confinement scale for the minimal model nS = 0 is of the order 1011

meters, very roughly of order the radius of the Earth’s orbit around the Sun. For nS = 1,
the confinement length is of order 100 parsecs. Thus for all practical purposes, the quirks
are actually free. Adding other SM singlets charged under SO(3)X will only decrease Λ,
making the confinement length even larger.

For the minimal viable SU(2)X and SU(3)X models, the confinement energy scale is
much larger. Increasing nS leads to smaller Λ, as indicated in Table I. If n of the nS SM
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GX nS = n α−1
X (1 TeV) Λ(4)

SU(2) 1 14.4 5.0 MeV

2 19.5 6.3 keV

3 24.5 1.3 eV

4 29.5 2.0× 10−5 eV

SU(3) 3 4.9 68 GeV

4 9.9 1.5 GeV

5 15.0 13 MeV

6 20.1 38 keV

7 25.1 30 eV

8 30.2 0.0030 eV

9 35.2 2.1× 10−8 eV

TABLE II: As in Table I, but now taking all nS = n of the SM singlet fermions to have current

masses much less than Λ, and showing only the 4-loop order result (which is nearly identical to

the 3-loop order result in all cases).

singlets charged under GX have current masses µSi
less than Λ, the confinement scale will

be decreased. This is illustrated in Table II for the extreme case that all n = nS of the
new singlets are lighter than Λ. Both Tables I and II take the effective average decoupling
scale for the particles in the other new chiral supermultiplets (including both scalars and
fermions) to be 1 TeV. More generally one can estimate:

Λ = Λtab

(
Mthresh

TeV

)1−∆

, ∆ =
3CA − 5− nS

(11CA − 2n)/3
, (2.20)

where now Λtab is the value given in Table I for n = 0, or Table II for n = nS. Here, Mthresh

is defined to be the effective average decoupling scale for the new supermultiplets, at which
the threshold corrections to the gauge coupling gX are small. As seen in Figure 1, in the
minimal viable models the gX coupling runs fairly slowly in the non-decoupled theory above
Q = Mthresh. This means that in the minimal model for SU(2)X , Λ ≈ 0.001Mthresh, while
for the minimal viable SU(3)X model with nS = 3, Λ ≈ 0.12Mthresh, if n = 0.

If the Yukawa couplings k, k′ are present, there is a potentially important constraint
from precision electroweak observables. The new contributions to the Peskin-Takeuchi S, T
observables from the new fermions are:

∆T =
Nv4

480πs2WM
2
WM

2
F

[13(k̂4 + k̂′4) + 2(k̂3k̂′ + k̂k̂′3) + 18k̂2k̂′2], (2.21)

∆S =
Nv2

30πM2
F

[4k̂2 + 4k̂′2 − 7k̂k̂′]. (2.22)
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where k̂ = k sin β and k̂′ = k′ cos β and v ≈ 175 GeV, and for illustration purposes I have
chosen µL ≈ µS ≫ mZ and assumed that the corresponding scalars are much heavier. The
values of these Yukawa couplings are governed by infrared quasi-fixed points. For example,
if k′ is negligible, then the beta functions for k and the top Yukawa coupling are given at
one-loop order by:

Q
dyt
dQ

= βyt =
yt

16π2

[
6y2t + y2b +Nk2 − 16

3
g23 − 3g22 −

13

15
g21

]
, (2.23)

Q
dk

dQ
= βk =

k

16π2

[
(3 +N)k2 + 3y2t − 4Cg2X − 3g22 −

3

5
g21

]
, (2.24)

where N = 2, 3, or 3 and C = 3/4, 4/3, or 2 for GX = SU(2), SU(3), or SO(3) respectively.
The fixed points arise due to the balancing between the positive Yukawa and the negative
gauge contributions [35]. Including two-loop effects, I find for the minimal viable models
the infrared quasi-fixed-point values:

kfixed =





0.88 [SU(2)X , nS = 0]

0.76 [SO(3)X, nS = 0]

1.32 [SU(3)X , nS = 3].

(2.25)

at Q = 1 TeV. The resulting contributions to S, T can be used to put a lower bound on
µL. Requiring the results to be within the current 95% CL ellipse from experimental results
on mt, mW , and Z-peak observables using the same methodology as in [11], I estimate
µL > 210, 225, 380 GeV for the GX = SU(2), SO(3), SU(3) fixed point cases respectively.
However, GX confinement may play a significant role in modifying this estimate for SU(3),
because Λ in that case is larger than MZ . For smaller Yukawa couplings k ≪ kfixed, there is
no constraint as the vector-like particles decouple from precision electroweak observables.

III. SOFT SUSY-BREAKING MASSES AND THE SPARTICLE SPECTRUM

The presence of new vector-like supermultiplets has a profound effect on the spectrum of
superpartner masses. They cause the GSM gauge couplings to run to much larger values in
the ultraviolet as they approach unification, resulting in bigger one-loop contributions to soft
scalar squared masses from RG running, compared to the MSSM. The new supermultiplets
also allow the GX gaugino masses to contribute indirectly to MSSM gaugino and sfermion
masses, through two-loop order effects. In this section, the patterns of soft supersymmetry
breaking masses will be considered for these models. For simplicity, the discussion will be
mostly limited to the scenario in which a unified gaugino mass parameterm1/2 is much larger
than the scalar masses and other sources of supersymmetry breaking at the RG scale where
the gauge couplings unify. This gaugino mass dominated limit is motivated as a solution to
the supersymmetric flavor problem, since it automatically produces flavor-blind soft terms.

The modified running of the gaugino masses pushes them to be smaller near the TeV
scale than they would be in the MSSM. Given an input unified gaugino mass m1/2 at the
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unification scale, one finds for the running gaugino masses at Q = 1 TeV:

(M1, M2, M3) = m1/2 ×





(0.41, 0.77, 2.28) [MSSM],

(0.21, 0.39, 1.16) [SU(2), nS = 0],

(0.112, 0.20, 0.57) [SO(3), nS = 0],

(0.080, 0.135, 0.40) [SU(3), nS = 3].

(3.1)

Thus, in the extended models, to obtain the same physical gaugino masses, one must start
with larger m1/2 than one would in the MSSM. Since m1/2 is not directly observable, it is
also interesting to consider the ratios of these gaugino masses. They are also affected, but
more mildly (being due to 2-loop effects):

(M2/M1, M3/M2, M3/M1) =





(1.87, 2.96, 5.53) [MSSM],

(1.85, 2.95, 5.44) [SU(2), nS = 0],

(1.79, 2.84, 5.09) [SO(3), nS = 0],

(1.73, 2.85, 4.95) [SU(3), nS = 3],

(3.2)

where again unification of gaugino masses at the gauge coupling unification scale is assumed.
The effect of the additional fields is thus to somewhat compress the gaugino mass spectrum
compared to the MSSM case, with the ratio of gluino to bino masses decreased by about 10
per cent for GX = SO(3) and SU(3). To obtain the physical masses, one must also include
mixing with Higgsinos and the pole mass corrections, which are particularly important for
the gluino [36–38].

In the extended models the squark and slepton masses are also relatively smaller (com-
pared to m1/2) at the TeV scale than in the MSSM. Taking a gaugino-mass dominated
scenario (by assuming a vanishing common scalar squared mass m2

0 = 0 at the unification
scale), one finds for the first and second family squark and slepton masses at Q = 1 TeV:

(mq̃1 , m˜̄u1
, m˜̄d1

, mℓ̃1
, m˜̄e1) = m1/2×





(2.15, 2.08, 2.07, 0.67, 0.37) [MSSM],

(1.61, 1.55, 1.54, 0.57, 0.33) [SU(2), nS = 0],

(1.23, 1.18, 1.17, 0.48, 0.28) [SO(3), nS = 0],

(1.06, 1.02, 1.01, 0.43, 0.26) [SU(3), nS = 3].

(3.3)

This shows that there is also a compression within the sfermion mass spectrum, as the
ratio of the squarks to the slepton masses is decreased in the extended models compared
to the MSSM in the m2

0 = 0 limit, or more generally for any given value of m0. This is
because of the increased relative importance of the contribution to scalar masses from large
renormalization scales where all of the gauge couplings and gaugino masses are larger.

Despite these compressions in the gaugino and sfermion sectors considered separately, the
combined sparticle spectrum in the extended models is stretched rather than compressed
compared to the MSSM. Comparing eqs. (3.1) and (3.3), one observes that in each of the
extended models, the bino is much lighter than the lightest slepton, and so the lightest
supersymmetric particle (LSP) will be a neutralino. This is in contrast to the well-known
fact that the m2

0 = 0 scenario in the MSSM problematically predicts a stau as the LSP. The
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supersymmetry-breaking flavor problem thus can be naturally solved by taking m2
0 ≪ m2

1/2

in the extended models without running into the difficulties found in the gaugino mass
dominated MSSM.

Now consider the soft supersymmetry breaking masses for the new particles. Assuming
gaugino mass unification, the GX gaugino is heavier than all of the MSSM gauginos in
the minimal GX = SU(2) and SU(3) cases, but it is lighter than the MSSM gauginos if
GX = SO(3). In terms of the unified gaugino mass parameter m1/2, one finds at Q = 1
TeV:

MX̃ = m1/2×





1.30 [SU(2), nS = 0],

0.051 [SO(3), nS = 0],

0.65 [SU(3), nS = 3].

(3.4)

[Compare eq. (3.1).] The scalar members of the D,D and L, L multiplets get RG contribu-
tions to their soft masses from both GSM and GX gaugino loops. Therefore, they are heavier
than their MSSM counterparts with the same gauge quantum numbers. For the case where
m1/2 dominates, one finds approximately for the soft masses mD̃ = m˜D

and mL̃ = m˜L
, again

at Q = 1 TeV:

(mD̃, mL̃) = m1/2 ×





(1.97, 1.40) [SU(2), nS = 0],

(1.22, 0.65) [SO(3), nS = 0],

(1.68, 1.51) [SU(3), nS = 3].

(3.5)

Also, for the minimal SU(3) case with nS = 3, one finds that mS̃ = m˜S
= 1.48m1/2. This

is only slightly lower than mD̃ and mL̃, because most of the RG contribution to these soft

masses comes from X̃ loops in this case, which are the same for all of the new scalars.
The qualitative features of the above results are illustrated in Figure 2. The soft masses

for the gauginos, the first-family sfermions, and the new scalars are shown for Q = 1
TeV. For purposes of comparison, m1/2 is chosen so that the heaviest MSSM squark, q̃,
has the same mass in each of the four cases. The mass spectra in the extended models
are readily distinguishable from the usual “mSUGRA” case parameterized by m1/2, m0, A0.
This is because obtaining such a large ratio of scalar masses to gaugino masses in mSUGRA,
would require a large m0, which in turn would lead to a much more compressed scalar mass
spectrum. In contrast, the extended models are characterized by relatively heavy scalars
which nevertheless maintain a significant hierarchy between squarks, left-handed sleptons,
and right-handed sleptons, especially in the GX = SO(3) and SU(3) cases.

In order to keep the discussion bounded, I will not give detailed results on the extended
models with more singlets [nS > 0 for GX = SU(2) and SO(3), and nS > 3 for GX = SU(3)].
However, the following qualitative features are notable. First, at one loop order, the presence
of additional GSM singlets does not affect the RG running of MSSM-field soft terms, so the
effects are rather mild on the gluino, wino, bino, and MSSM squark and slepton masses.
Second, increasing nS will decrease both the gX gauge coupling and the GX gaugino soft
mass at lower RG scales. Therefore, the GX gaugino mass MX̃ will be smaller compared to
the MSSM gaugino masses M1, M2, and M3 than in the cases shown in Figure 2. Also, the
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MSSM SU(2), nS = 0 SO(3), nS = 0 SU(3), nS = 3
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FIG. 2: Comparison of the soft supersymmetry-breaking mass spectra following from a unified

input gaugino mass m1/2 that dominates at the unification scale, for the MSSM and the minimal

models with GX = SU(2), SO(3), and SU(3). The labels 1, 2, 3,X refer to running gauginos masses

for U(1)Y , SU(2)L, SU(3)c and GX , respectively. The labels q, ū, d̄, ℓ, ē refer to MSSM first family

squark and slepton soft masses, and the soft scalar masses for vectorlike supermultiplets are labeled

with symbols D, D, L, L, and (for the GX = SU(3) case with nS = 3), S, S. The value of m1/2 is

chosen so that the heaviest MSSM squark, q̃, has the same mass in each of the four cases.

soft masses mD̃ = m˜D
and mL̃ = m˜L

will become relatively smaller, tending towards the
MSSM squark and slepton massesm ˜̄d

andmℓ̃ respectively. The soft masses formS̃ = m˜S
will

also decrease for larger nS, although they are always heavier thanMX̃ , which decreases faster
for larger nS. For nS > 0, the Yukawa couplings k, k′ can also come into play, decreasing

the L̃, L̃, S̃, and S̃ soft supersymmetry breaking masses.

IV. THE µ PARAMETER AND THE LITTLE HIERARCHY PROBLEM

The supersymmetric little hierarchy problem is a subjective but inspirationally important
puzzle which questions the naturalness of viable model parameters. The essence of it is that
once one applies constraints from the non-observation of a Higgs boson and of superpartners
at both LEP2 and the Tevatron, the actual value of mZ might be considered surprisingly
low for generic soft supersymmetry breaking parameters.

The largest loop correction to the h0 mass in the MSSM is given by (in the decoupling
limit m2

A0 ≫ m2
h0):

m2
h0 = m2

Z cos2(2β) +
3

4π2
sin2β y2t

[
m2

t ln
(
mt̃1mt̃2/m

2
t

)
+ c2t̃ s

2
t̃ (m

2
t̃2
−m2

t̃1
) ln(m2

t̃2
/m2

t̃1
)
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+c4t̃s
4
t̃

{
(m2

t̃2
−m2

t̃1
)2 − 1

2
(m4

t̃2
−m4

t̃1
) ln(m2

t̃2
/m2

t̃1
)
}
/m2

t

]
, (4.1)

where mt̃1 and mt̃2 are the top squark masses, and ct̃ and st̃ are the cosine and sine of the
top squark mixing angle θt̃. Now in the models discussed in [8] and this paper, adding in
the effects of the Yukawa coupling k one finds the further estimated correction in the case
µL ≈ µS ≈MF with heavier scalars with masses of order MS [8]:

∆m2
h0 =

N

4π2
k4v2 sin4 β

[
f(x) +

X2
k

M2
S

(1− 1

3x
)− X4

k

12M4
S

]
. (4.2)

Here x = M2
S/M

2
F is the ratio of the average new scalar and new fermion masses in the

L, L, S, S sector, and Xk = ak/k−µ cotβ is a mixing parameter for the scalars. The largest
possible contributions come from the maximal (fixed-point) values of eq. (2.25). As was
pointed out in ref. [8], for GX = SU(3) eq. (4.2) is enough to raise the Higgs mass by tens
of GeV, depending on the details of the fermion and scalar masses in the new sector.

From the point of view of the supersymmetric little hierarchy problem, even raising
the Higgs mass by a few GeV is potentially helpful. However, one must also consider the
effect of the new sector on the scalar potential. The minimization of the Higgs potential in
supersymmetry results in:

m2
Z = −2(|µ|2 +m2

Hu
)− 1

vu

∂

∂vu
∆V +O(1/ tan2 β), (4.3)

where ∆V is the radiative part of the effective potential, with tanβ = vu/vd = 〈H0
u〉/〈H0

d〉
and vu treated as a real variable in the partial differentiation. In general, without further
theoretical structure, µ and m2

Hu
have no reason to be related, since µ is a supersymmetry-

preserving parameter and m2
Hu

is supersymmetry-breaking. In the MSSM with generic
parameters, one finds that −m2

Hu
tends to be much larger than m2

Z , and eq. (4.3) seems to
imply a percent-level fine-tuning of the difference between |µ|2 and m2

Hu
.

It is not possible to rigorously quantify fine tuning, since there can be no such thing as
an objective measure on parameter space. Nevertheless, qualitative trends can be identified,
and an obvious approach is to consider models with smaller predicted values of −m2

Hu
at the

weak scale to be more likely than those with very large −m2
Hu

, because then the fractional
tuning required between it and |µ|2 will be less. This in turn means that smaller values of
|µ| are more likely than very large values, since this is determined by eq. (4.3).

With this in mind, it is interesting to consider how the MSSM and its extensions, and
variations of the most popular models of supersymmetry breaking, affect the weak-scale
predictions for −m2

Hu
. For example, in the MSSM with tan β = 10 and mt = 173.3 GeV,

one finds from RG running at Q = 1 TeV in terms of the GUT-scale input parameters m1/2,
A0 and m0:

−m2
Hu

= 1.65m2
1/2 − 0.40m1/2A0 + 0.11A2

0 − 0.022m2
0. (4.4)

This formula shows that −m2
Hu

, and therefore |µ|2, and therefore the level of fine-tuning
required, increase with the gaugino squared masses. In extended models the gaugino masses
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at the unification scale have a varying relationship with the gaugino masses at the weak
scale, which are more closely related to the physical masses, so it is useful to reformulate
this in terms of the running gluino mass parameter M3 also evaluated at Q = 1 TeV:

−m2
Hu

= 0.32M2
3 − 0.18M3A0 + 0.11A2

0 − 0.022m2
0, [MSSM]. (4.5)

In fact, most of the dependence on the gaugino masses comes from the gluino mass [39],
so this formula is approximately valid even for moderate deviations from gaugino mass
universality. One can note that for a gluino mass of order 500 GeV, and small |A0|, −m2

Hu
is

only of order (280 GeV)2, so that the tuning needed to getm2
Z in eq. (4.3) is of order 5%. The

problem is that (although there is still considerable variation among models, particularly
for large |A0|) lower values of M3 typically give a prediction for mh0 that is smaller than
114 GeV, and higher values of M3 require even more delicate cancellation between −m2

Hu

and |µ|2. The “focus point” region [40, 41] occurs due to the small negative coefficient of
m2

0 in eq. (4.5), which allows a cancellation between the M2
3 and m2

0 terms for very large
m2

0, leading to a small value of −m2
Hu

and therefore small |µ|2. However, this also can be
judged to be fine-tuned, as the large value of m2

0 has to be finely adjusted, given a value of
the ostensibly independent parameter M3.

We can now compare with the situation for the models in the present paper. In the
minimal SU(2)X model with nS = 0, one finds instead from the RG running:

−m2
Hu

= 1.07M2
3 − 0.44M3A0 + 0.12A2

0 − 0.16m2
0, [SU(2)X , nS = 0]. (4.6)

again for −m2
Hu

and M3 evaluated at Q = 1 TeV, assuming gaugino and scalar mass univer-
sality, tanβ = 10 and mt = 173.3 GeV. (The coefficients change, but not very radically, for
larger nS.) The larger coefficient of M2

3 indicates that this is naively even more fine-tuned
than the MSSM. However, this effect is not without compensation; as Figure 2 shows, one
does not need as large a gluino mass to get large squark masses, which in turn lead to
large positive contributions to m2

h0 from eq. (4.1). Also, the larger negative coefficient of m2
0

means that the analog of the MSSM focus point region occurs at much smaller values of m2
0

in this extended model. Since there is no such thing as an objective quantitative measure
of fine-tuning, I choose not to attempt to make a definitive statement beyond observing the
competing factors just mentioned.

For SO(3)X with nS = 0, the analogous formula becomes:

−m2
Hu

= 3.36M2
3 − 0.91M3A0 + 0.13A2

0 − 0.26m2
0, [SO(3)X, nS = 0]. (4.7)

Similarly, for the minimal viable SU(3)X model with nS = 3 and small Yukawa couplings
k, k′ ≈ 0, the analogous formula becomes:

−m2
Hu

= 5.97M2
3 − 1.28M3A0 + 0.13A2

0 − 0.28m2
0, [SU(3)X , nS = 3]. (4.8)

In both of these cases, the situation again seems subjectively worse with respect to fine-
tuning than the MSSM, due to the much larger coefficient ofM2

3 . As shown in Figure 2, one
does naturally get much larger squark masses for a givenM3, again leading to larger radiative
corrections to m2

h0 . However, with these large coefficients to M3, the direct (but model
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dependent) constraints on the gluino mass from Tevatron come into play in a significant way.
Again, there is a chance for more cancellation between the gaugino and scalar contributions
due to the negative coefficient of m2

0.
It is also interesting to consider the situation for nS ≥ 1 with large Yukawa couplings

near the fixed points of eq. (2.25). For SU(2)X with nS = 1 and the fixed-point value
k = kfixed = 0.88 at Q = 1 TeV, one finds:

−m2
Hu

= 1.28M2
3 − 0.15M3A0 + 0.04A2

0 + 0.72m2
0, [SU(2)X , nS = 1, k = kfixed].(4.9)

Here the coefficient of the gaugino mass squared is even larger than for k = 0 [compare
eq. (4.6)], and the coefficient of the scalar squared mass m2

0 is large and positive, eliminating
the possibility of cancellation to achieve a smaller −m2

Hu
. Similar results obtain for SO(3)X

with nS = 1 and k = kfixed = 0.76 at Q = 1 TeV:

−m2
Hu

= 3.46M2
3 − 0.27M3A0 + 0.05A2

0 + 0.89m2
0, [SO(3)X, nS = 1, k = kfixed], (4.10)

and for SU(3)X with nS = 3 and one k = kfixed = 1.32 at Q = 1 TeV:

−m2
Hu

= 17.0M2
3 − 0.27M3A0 + 0.02A2

0 + 0.71m2
0, [SU(3)X , nS = 3, k = kfixed].(4.11)

Therefore, even though the fixed-point Yukawa coupling can give large positive contributions
to m2

h0, there is a quite detrimental effect on the fine-tuning needed to obtain the observed
mZ in models that have heavy enough gluinos (and charginos) to have evaded discovery at
the Tevatron and LEP2. Similar effects have been noted before in the case of vector-like
fermions without an additional gauge group in refs. [10], [11], [13].

Qualitatively, the model with SU(2)X and no new Yukawa coupling seems to be the least
fine-tuned of the extended models. Adding new Yukawa couplings, despite increasing mh0,
does not clearly alleviate the little hierarchy problem, and arguably make it much worse,
especially in the cases of SO(3)X and SU(3)X .

V. COLLIDER PHENOMENOLOGY OF THE QUIRKS

In this section, I will consider some features of the phenomenology of the quirks in the
models discussed above, following for the most part general ideas and results from refs. [18],
[19], [20], and [21]. For simplicity, I will consider only the fermions from the D,D, L, L,
multiplets, and not their scalar partners. This is because supersymmetry breaking effects
provide for the scalars (“squirks”) and the GX gaugino to have much larger masses, making
them less immediately relevant for collider searches. (Even if they had the same masses,
squirks would have much smaller production cross-sections than fermionic quirks. The GX

gauginos will not be produced directly in tree-level processes at colliders at all.) When
produced, the squirks will decay promptly to quirks and MSSM gauginos. The GX gaugino
can undergo a three-body decay to a quirk, antiquirk and MSSM gaugino, if kinematically
allowed. In this section, I will use the same symbols for the fermions as for the chiral
supermultiplets to which they belong.
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I will also assume for simplicity, and motivated by the results of the previous section, that
the mixing of theGSM singlets S, S with the doublets L, L due to the Yukawa couplings k, k′ is
small in most of the following. This implies that S, S decouple from collider phenomenology.

The charged (L−, L
+
) and neutral (L0, L

0
) fermions form two Dirac fermion-antifermion

pairs, each with tree-level mass µL. However, radiative corrections split the masses slightly,
with ∆m ≡ mL− −mL0 always positive. (If present, the Yukawa interactions k, k′ that cause
mixing with S, S would increase this splitting, so the lightest non-colored fermion is always
neutral.) One finds ∆m > 270 MeV for µL > 100 GeV, with ∆m approaching 355 MeV
asymptotically for large µL [42]. This means that the decays

L
+ → L

0
ℓ+νℓ, L

0
π+, (5.1)

L− → L0ℓ−νℓ, L
0π−, (5.2)

(and decays to more pions or other SM hadrons if non-zero k, k′ increase ∆m) mediated by
the W boson are always kinematically allowed, and will occur with decay lengths of order
centimeters [42] due to the small available kinematic phase space. Therefore, the lifetime of

L
+
, L− is large compared to other processes to be discussed below; in particular they will

form quirk-antiquirk bound states and annihilate before they decay. In the simplest scenario
(barring additional couplings to be described in the next paragraph), the neutral quirk Dirac

fermions L0, L
0
are completely stable, as are the colored quirks D,D with charges ±1/3.

Note that none of the quirks can mix with the Standard Model fermions because of GX

conservation, so the lightest quirk is always stable. Such stable fermions could present a
challenge for the standard cosmology with a high reheat temperature but need not be a
disaster [43],[44],[18].

If nS ≥ 1 and the pairs L, L and S, S have the opposite matter parity from each other,
then the Yukawa couplings k, k′ are forbidden, but the superpotential term

W = λℓSLℓ (5.3)

is allowed, with ℓ an MSSM SU(2)L doublet lepton. This provides additional possible decay

modes L
+ → Sℓ̃+L and L− → Sℓ̃−L , if |µL| > |µS|+mℓ̃L

so that these decays are kinematically
allowed, or alternatively with the sleptons off-shell. These decays are not automatically
kinematically suppressed, and so could happen promptly before quirk-antiquirk annihilation
occurs. The fermions D and D may also have additional decay modes, if the possible
superpotential terms

W = λqLDq + λdSDd, (5.4)

are present. The first of these terms is only allowed if GX is either SU(2) or SO(3), and
if L, L have the opposite matter parity of D,D (if matter parity is conserved). It permits
squark exchange to mediate the decays

D → L0d̃L, L−ũL, (5.5)

D → L
0
d̃∗L, L

+
ũ∗L, (5.6)
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with the MSSM squarks possibly off-shell due to kinematics. The second term in eq. (5.4)
is only allowed if nS ≥ 1 and S, S have the opposite matter parity of D,D. Then MSSM
squark exchange can mediate the decays

D → Sd̃R, D → Sd̃∗R, (5.7)

again with the squarks possibly off-shell. Whether these decays can be important depends
on the kinematics as well as the size of λℓ, λq, and λd. For simplicity, they will be assumed
to be absent or at least too small to make a difference below, except where noted otherwise.

The important direct pair-production processes for the new fermions are

pp → DD, (5.8)

pp → Z(∗), γ(∗) → L
+
L−, L

0
L0, (5.9)

pp → W+(∗) → L
+
L0, (5.10)

pp → W−(∗) → L
0
L−, (5.11)

for the LHC, with the obvious substitution of pp for the Tevatron. Pair-produced quirks with
masses much larger than Λ will move apart from each other with typically semi-relativistic
speeds, and as described in [18], will be connected by GX flux strings with tension σ. From
the lattice, there is an estimate (see Table 7 and eq. (11) of [45]):

√
σ = ΛMS ×

{
1.73 SU(2)X ,

1.86 SU(3)X ,
(5.12)

so that the maximum string length in a given hard scattering event with kinetic energy ∆E
in the center-of-momentum frame is

L =
∆E

σ
≈ 6mm

(
∆E

100 GeV

)(
keV

ΛMS

)2

. (5.13)

Therefore, the lengths of such strings, although much larger than Λ−1, will typically be less
than 1 mm for Λ greater than a few keV. From Table I, one finds that the quirky flux strings
will be microscopic for SU(2)X with nS ≤ 3 and for SU(3)X with nS ≤ 9, assuming that gX
is unified with the SM gauge couplings and all singlets charged under SU(N)X are heavier
than Λ.

For the case of GX = SO(3), the situation is quite different, because from Table I the
confinement distance scale Λ−1 is literally astronomical, at least of order the Earth’s orbit
around the Sun even in the minimal model. The quirks in this case are essentially free
particles with multiplicity 3 times larger than expected from their SM quantum numbers.
Note that even if one rejected the unification of gX with the SM gauge couplings in this
model to arrive at a much larger Λ, the fact that the supermultiplets are in the adjoint
representation of the Lie algebra means that they would not form stable flux tubes of the
type discussed in [18] when pair-produced, even if any S, S fields are heavier than Λ (so
n = 0). Instead, pair-produced particles charged under SO(3)X would each bind to a gauge



19

boson to form two stable GX -singlet states with size of order Λ−1, allowing the flux tube
to break. Although the new fermions behave like free stable particles when pair-produced
at colliders, the fact that they will come in three-fold exactly degenerate multiplets will in
principle allow a determination of their nature from their production cross-sections. In the

simplest case, D,D and L
0
, L0 will be absolutely stable, with L

+
, L− having decays to L

0
, L0

via soft pion or lepton emission as discussed above. The L
0
, L0 are only weakly interacting

and thus invisible, but known collider search strategies [46] for stable strongly interacting
particles apply for D,D. However, as noted above, D,D may be able to promptly decay
according to eqs. (5.5)-(5.7), depending on both kinematics and the allowed superpotential
terms. If so, then the signatures will always contain Emiss

T , and will resemble those for
ordinary MSSM squarks.

For the remainder of this section, consider the cases of SU(2)X and SU(3)X , with the
GX confinement scale less than the masses of the quirks that have SM gauge interactions,
and stable microscopic flux strings joining the quirk-antiquirk pairs. The quirk-antiquirk
pair will then form an exotic bound state with invariant mass given approximately by the
total center-of-momentum energy of the hard partonic scattering that produced them. This
quirk-antiquirk string state can lose energy either by GX -glueball emission, by radiation of
many soft photons, or in the case of the DD state by radiation of numerous soft pions, a
“hadronic fireball” [18]. The large multiplicity of soft pions or photons may be detectable
as anomalous “underlying events” [18, 21] that accompany the hard scattering production,
and may be used as an additional tag to dramatically reduce backgrounds.

If the quirk and antiquirk lose most of their initial relative kinetic energy before annihi-
lating, they will briefly form a “quirkonium” bound state which then decays to two or three
hard partons with invariant mass peaked at twice the mass of the quirk [18]. Alternatively,
however, the neutral and colorless quirk and antiquirk states might [18] have a prompt
annihilation before they can lose enough energy to form a low-lying quirkonium state. In
that case, the final states will have a broad distribution of annihilation products, which will
therefore be much harder to discern above hadron collider backgrounds. It is difficult to
estimate in advance what proportion of the events will fall into these two categories, due to
the non-perturbative nature of the energy loss mechanisms, which do not have direct analogs
in experimentally known hadronic physics.

For the weakly interacting quirks, and for the strongly interacting quirks if Λ > ΛQCD, one
might suspect the non-perturbative interactions by which the quirk-antiquirk string state
loses energy to be dominated by GX-glueball emission. However, this is quite uncertain, and
can be suppressed or even eliminated by kinematics if Λ ≫ ΛQCD. The masses of the GX

glueballs have been estimated by lattice computations [47]-[49], [45], with the results for the
lightest two glueball states with JPC = 0++ and 2++:

m0++ = 6.7ΛMS, (5.14)

m2++ = 9.6ΛMS. (5.15)

There are other heavier glueball states 0++∗, 3++, 0−+, 2−+, 0−+∗, 2−+∗, and, for SU(3)X
only there are also states with odd C, 1+−, 3+−, 2+−, 0+−, 1−−, 2−− 3−−, with masses
ranging up to about 3m0++ . As can be seen from Tables I and II, in the case of SU(3)X
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these glueballs should have masses in the hundreds of GeV range for the minimal case of
nS = 3 and so could be comparable in mass or even heavier than the lighter quirks, and
should be in the tens of GeV range for nS = 4. This would prohibit energy loss of the quirk-
antiquirk flux string states into GX -glueballs. For the other cases listed in Table I, decays
of the flux strings to GX-glueballs should be allowed, but perhaps kinematically suppressed,
leading to considerable uncertainty in the number of GX-glueball states emitted and the
likelihood of the quirk-antiquirk string state to lose most of its energy before annihilating.
It is also possible that a few GX -glueballs will be produced in the original hard scattering
production.

If produced, the detection of GX -glueballs is problematic. Their decay widths can be
estimated for SU(3)X using eqs. (17), (23) and (30) of ref. [23] (see also ref. [26]) with
matrix elements from eqs. (38) and (62) of ref. [50]:

Γ(0++ → gg) = 360α2
SΛ

9/µ8
D, (5.16)

Γ(2++ → gg) = 0.12α2
SΛ

9/µ8
D, (5.17)

Γ(0−+ → gg) = 24α2
SΛ

9/µ8
D. (5.18)

The results for SU(2)X should be comparable and slightly smaller. This leads to proper
decay lengths for GX-glueballs of order

cτ =

(
0.2

αS

)2 ( µD

100 GeV

)8
(
GeV

Λ

)9

×





0.14 meters (for 0++),

400 meters (for 2++),

2 meters (for 0−+).

(5.19)

If Λ ≈ 1 GeV as expected for the minimal SU(2)X model, a sizable fraction of the 0++

decays might occur within the detector, but only if µD is less than roughly 150 GeV, which
may be ruled out already by Tevatron data (see below). For larger µD or smaller Λ, the
decays of the GX-glueball will occur outside of the detector and will be invisible. For much
larger Λ as occurs in the SU(3)X model with nS = 3 or 4, the decays may occur within
the detector for any µD, but then the production of GX glueballs in the flux-tube energy
loss processes is likely irrelevant anyway due to kinematic suppression or prohibition. Even
if the GX glueballs are produced and decay promptly, the main decay is likely to a pair of
gluons, and the resulting dijet mass peak signal from these decays will have to compete with
a huge background from QCD. To have a significant branching fraction to γγ, which has
much smaller backgrounds, one can take µL < µD, with a leading-order estimate [23, 26]:

BR(0++ → γγ)

BR(0++ → gg)
=

8α2

9α2
S

(
1

4
+

3µ4
D

4µ4
L

)2

. (5.20)

For example, with αS ≈ 0.2, this ratio is of order 0.001 for µL = µD, but it rises to about 0.18
if µL/µD = 0.5, and is greater than 1 if µL/µD is less than 0.4. The non-perturbative nature
of the GX glueball production mechanisms means that the diphoton signal strengths, if any,
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are extremely difficult to estimate even roughly, but to have even a hope of observation would
seem to require µL < µD and Λ of order a few GeV (not too small for cτ to be large, but not
too large for GX -glueball production to be kinematically suppressed). Nevertheless, given
the uncertainties involved, this possibility highlights the general importance of searching for
narrow diphoton peaks at large invariant masses at the LHC; this type of signal could also
arise not only for the classic diphoton signal for a low-mass Higgs scalar boson, but also for
stoponium [51, 52] or for Kaluza-Klein gravitons in theories with low-scale gravity [53].

Probably the most optimistic scenario for detecting the quirks occurs in the case that DD
are strongly produced at a hadron collider and manage to lose most of their initial relative
kinetic energy stored in the GX flux tube by radiating soft pions and/or GX glueballs,
arriving at a low-lying quirkonium state with mass ≈ 2µD before finally annihilating in a
color-singlet S-wave 2S+1LJ = 1S0 (η) or 3S1 (ψ) state. The most promising channel for
detecting the quirkonium peak is µ+µ−. The relevant annihilation decay widths for a 3S1

state can be inferred from refs. [54] and [20]:

Γ(ψ → ff) = 4α2e2DN
f
c βf

[
(1 + 2Rf)

(
ef −

gVf
c2W (1− RZ)

)2

+
( βfg

A
f

c2W (1−RZ)

)2
]
Γ0, (5.21)

Γ(ψ →W+W−) =
α2e2Dβ

3
W

4c4W

1 + 20RW + 12R2
W

(1−RZ)2
Γ0 (5.22)

Γ(ψ → ggg) =
40α3

S

81π
(π2 − 9)Γ0 (5.23)

Γ(ψ → XXX) =
α3
X

3π

(N2 − 1)(N2 − 4)

N3
(π2 − 9)Γ0 (5.24)

where ef = (2/3,−1/3,−1, 0) and Nf
c = (3, 3, 1, 1) and gAf = (1/4,−1/4,−1/4, 1/4) for

f = (u, d, e, ν) respectively, and gVf = gAf − efs
2
W , and sW and cW are the sine and cosine

of the weak mixing angle, and eD = −1/3, and Ri = m2
i /M

2, where M ≈ 2µD is the
quirkonium mass, and βi =

√
1− 4R2

i , and Γ0 is a common normalization proportional to
the square of the wavefunction at the origin. The GX gluon is represented by X . Note that
final states gg, ZZ, Zγ, γγ and XX do not occur in ψ decays. The final states Zgg, γXX ,
ZXX do occur, but with branching ratios that turn out to be very small. For N = 2, the
decay to three SU(2)X gauge bosons vanishes due to the N2−4 factor, and for SU(3)X with
N = 3 the XXX decay will be kinematically forbidden or at least highly suppressed by the
large masses of the GX glueballs that would have to be the final result of GX -hadronization.
Therefore final states involving GX glueballs should not play a significant role in quirkonium
decays.

For 1S0 states, the dominant decay is to gg or XX , and ff does not occur at all at leading
order. If we assume that the spin state is randomized by the non-perturbative processes that
lose the initial relative kinetic energy, so that ψ and η states are populated in the ratio of 3 to
1, then the branching ratio of quirkonium to leptons should be given by 3/4 of the branching
ratio indicated by eqs. (5.21)-(5.23). Numerically this yields† BR(DD → µ+µ−) = 0.093

† The estimate in section 5.6 of [18] is parametrically different, and numerically smaller by a factor ∼5.
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FIG. 3: The production cross-section for DD

in pp collisions at
√
s = 14, 12, 10, and 7

TeV, and in pp collisions at
√
s = 1.96 TeV,

obtained at leading order using CTEQ5LO

[57] parton distribution functions (PDFs) with

Q = µD.

very nearly independent of the mass. It should be noted that this branching ratio does
not apply to prompt annihilation of the quirks before they have settled into a color- and
GX-singlet quirkonium state; that branching ratio will be much smaller, and will not lead
to a sharp dimuon peak, and so leads to a more pessimistic case.

In the most optimistic case that most of the DD states annihilate after losing most of
their excess energy, there are good prospects for detection at hadron colliders, because the
signal production is strong and peaked in invariant mass, while the dominant background
is electroweak (Drell-Yan) and diffuse. The total production cross section at the Tevatron
and at various LHC energies is shown in Figure 3. The CDF collaboration has published
[55] a limit on cross-section times branching ratio for new states that decay to µ+µ−, based
on 2.3 fb−1 of pp collisions at the Tevatron. Comparing the relevant spin-0 limit from
Figure 3 in [55] to the results shown in Figure 3 of the present paper and using the estimate
BR(µ+µ−) = 0.093 from above, I obtain the lower mass bound µD > 375 GeV in this
optimistic case.

At the LHC, the invariant mass resolution for high-mass dimuons should be of the order
of 5% [56] for the CMS detector. Therefore, as a rough estimate of the discovery reach, I
consider a mass window from 0.9M to 1.1M where M ≈ 2µD is the quirkonium mass, and
require that S/

√
B exceeds 5 in that window, where S is the number of signal events (which

is also required to exceed 10) and B is the expected number of Drell-Yan background events.
The Drell-Yan background cross-section is shown in Figure 4. Trigger and detector efficien-
cies are not included, but these are expected to be very high for high-mass dimuon events,
and the QCD K-factor for the signal is not included. Dimuon backgrounds from sources
other than Drell-Yan can be suppressed by requiring no extra hard jets or missing energy. In
the following, I will again assume a spin-averaged BR(µ+µ−) = 0.093 for the signal. There
is also a potential confirming signal from annihilation to e+e−, with an invariant mass peak
that is similar but wider and smaller due to detector resolution and efficiency effects.

For a 1 fb−1 LHC run at
√
s = 7 TeV, the signal cross-section in Figure 3 yields 20

expected dimuon events for µD = 500 GeV, and as shown in Figure 4 there is about 1
background event expected in the corresponding mass window M(µ+µ−) = 1000±100 GeV.
Requiring 10 signal events, the discovery reach is up to about µD = 550 GeV.
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FIG. 4: The leading-order differential produc-

tion cross-section for the µ+µ− background,

through γ∗ and Z∗-mediated (Drell-Yan) pro-

cesses in pp collisions at
√
s = 14, 12, 10, and 7

TeV, and in pp collisions at
√
s = 1.96 TeV, as

a function of the invariant mass of the µ+µ−

pair. CTEQ5LO [57] PDFs were used with

Q =
√
ŝ.

For LHC pp collisions at
√
s = 14 TeV, the signal cross-section times dimuon branching

ratio for µD = 800 GeV is 15 fb, with a background level in the mass window M(µ+µ−) =
1600±160 GeV of 0.8 fb. Therefore, discovery may be possible in this case with 1 fb−1. The
mass reach is essentially determined by the number of signal events, since the background
levels in the high-mass windows are small. In the same way, with 10 fb−1, I estimate the
10-event discovery reach to be up to µD = 1200 GeV, and for 100 fb−1 up to about µD =
1600 GeV.

In a more pessimistic scenario, the quirk and antiquirk may usually annihilate before they
can settle into a low-lying color-singlet quirkonium state. The branching ratio to dileptons
will be severely reduced in that case because there are color octet as well as color singlet
decay states available, and the remaining dimuons will be distributed over larger invariant
masses. If one supposes that only 10% of the DD pairs that are produced will settle into a
low-lying color-singlet quirkonium state before annihilation, and uses only the dimuon events
from this quirkonium peak, then the signal cross-section before BR(µ+µ−) is effectively ten
times smaller than shown in Figure 3. The limit from comparing to the CDF bound on
cross-section times branching ratio (Figure 3 in [55], based on 2.3 fb−1) results in µD > 180
GeV. I estimate that the expected reach from a 1 fb−1 LHC run at

√
s = 7 TeV in this more

pessimistic case is roughly µD = 350 GeV, for which about 17 dimuon signal events and 6
background events would be expected in a mass window M(µ+µ−) = 700 ± 70 GeV. For
LHC runs at

√
s = 14 TeV with (1, 10, 100) fb−1, I similarly estimate that the discovery

reach for DD that annihilate at least 10% of the time from color-singlet S-wave quirkonium
would extend to about µD = (500, 800, 1100) GeV.

In the case of the non-colored quirks L
+
, L−, L

0
, L0, the production rates are electroweak,

and the energy loss rate for the quirk-antiquirk bound by the flux string is much lower
[18]. The most promising signal may come from the production of the quirk-antiquirk
states with a net ±1 charge, as in eqs. (5.10) and (5.11), because charge conservation then
prohibits the subsequent prompt annihilation to invisible GX glueballs that may occur in
the case of neutral bound states. The analogous case for fractionally charged squirks in
“folded supersymmetry” was proposed and studied in [19]. The excess energy from the hard
production will be radiated away in the form of GX glueballs or soft photons, hopefully
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allowing the quirk and antiquirk to finally annihilate when nearly at rest in a charged
quirkonium bound state. The annihilation is strongest in an S-wave state. I will again
assume that spins are randomized by the energy loss process, so that 3S1 and

1S0 states are
populated in the ratio of 3 to 1. The branching ratios for such states have been computed in
ref. [20], and are shown in Figure 5 for the present case of constituent quirks with charges ±1
and 0. The 1S0 state decays predominantly into Wγ, with an invariant mass of nearly 2µL,
and therefore a hard photon. (A somewhat smaller branching ratio to Wγ was obtained in
ref. [20] for a case with fractionally charged constituent quirks.) This state may therefore
be searched for in the ℓ±γ + Emiss

T channel at hadron colliders, as suggested in the similar
squirk case of ref. [19].

The combined‡ production cross-sections at the Tevatron and at various possible LHC
energies for the charged quirk-antiquirk combination are shown in Figure 6. These cross-
sections are about an order of magnitude larger than for fractionally-charged scalar quirks
(as studied in ref. [19]) of the same mass. Partly counteracting this, one might expect that
only about 1/4 of fermionic quirk-antiquirk production will end up in a 1S0 state that can
annihilate to Wγ, rather than a 3S1 state that decays mostly to jets or a single lepton plus
neutrino. Thus, the effective branching ratio of charged quirkonium should be about 0.2 for
Wγ, a factor of 3-4 smaller than used in [19]. The net effect is that the total production
cross-section times branching ratio for Wγ should be a factor of 2-3 times larger, for a given
quirkonium mass, than in the study of ref. [19].

The largest background is from Standard ModelWγ production, which features a rapidly
falling tail at high photon pT . In contrast, the signal from 1S0 quirkonium decaying to Wγ
should have a photon pT distribution that is approximately flat, with an endpoint near
µL−m2

W/4µL in the idealized case that the transverse kick to the quirkonium is small. The

‡ The charge +1 combination is produced more often than the charge −1 one at the LHC, as usual.
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cross-section for L
+
L0 and L

0
L− in pp colli-

sions at the LHC for
√
s = 14, 12, 10, and 7

TeV, and in pp collisions at the Tevatron with√
s = 1.96 TeV. CTEQ5LO [57] PDFs were

used with Q = µL.

relevant photon pT distribution has been studied at Tevatron by both CDF [58] and D∅ [59],
where it was found that the data is described well by the SM Wγ and other subdominant
backgrounds including Wj with the jet faking a photon and Zγ with one lepton from the Z
missed. At hadron colliders, aWγ mass peak can in principle be reconstructed if one assumes
that the observed Emiss

T in the event is due to the neutrino from the leptonic W decay, but
this is subject to the considerable uncertainty in how much missing energy is actually due
to missing GX-glueballs radiated from the initial state, as well as from the underlying event,
additional jets, or from mismeasurement. However, the discovery potential may be greatly
enhanced because one can also look for a large number of soft photons radiated as the quirk-
antiquirk flux string loses energy, forming an anomalous “underlying event” with distinctive
character. The resulting complications are beyond the scope of the present paper, but have
been discussed in the analogous case of fractionally charged colorless squirks in [19, 21].
The search for Wγ candidates a with large photon pT and a possible peak in invariant
mass or transverse mass, in combination with an anomalous underlying event used as a
background-reducing tag, may well be the best hope to detect the quirks in these models.

VI. CONCLUSIONS

Extensions of minimal supersymmetry with an extra non-Abelian gauge group and quirk
supermultiplets maintain two of the hallmark successes of the MSSM: compatibility with
perturbative gauge coupling unification and with constraints on precision electroweak ob-
servables. Natural mechanisms can put the quirk fermion masses at the TeV scale or below.
It follows that requiring the unified gauge couplings to be perturbative, so that low-scale pre-
dictivity is not lost and the apparent unification of gauge couplings is not just an accident,
the gauge group under which the new vector-like particles transform in the fundamental
representation must be either SU(2), SU(3), or SO(3). The presence of a new non-Abelian
gauge group has a dramatic effect on the superpartner mass spectrum, and allows the soft su-
persymmetry breaking parameters to be dominated by the gaugino masses at the unification
scale, while still having a neutralino LSP.
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In the SO(3) case, the confinement length scale is so large as to make the new particles
essentially free in collider experiments. In contrast, in the minimal versions of the SU(2) and
SU(3) cases, the quirk-antiquirk bound states produced at colliders will be microscopic. If a
significant fraction of the colored quirk-antiquirk pairs produced at hadron colliders will lose
most of their excess energy before annihilating as quirkonium, then there is significant reach
in the dilepton mass peak channel. Even if this fraction is only 10%, Tevatron data that has
already been analyzed should allow a limit of 180 GeV for the quirk mass to be set from the
search for a µ+µ− resonance. In the optimistic idealized case that all of the quirk-antiquirk
pairs annihilate from quirkonium, this limit should be about 375 GeV. In a 1 fb−1 LHC run
at

√
s = 7 TeV, the discovery reach could be as high as 550 GeV, and should extend well

above 1 TeV with 100 fb−1 at
√
s = 14 TeV. The color singlet quirks in these models can

also be searched for as quirkonium Wγ resonances. In all cases, the quirkonium peak can be
accompanied by an anomalous underlying event consisting of many soft pions or photons,
which can significantly aid in making a discovery [18, 21]. If low-energy supersymmetry is
realized in nature, then it will be important to test the possibility that it is not minimal by
searching for these events.
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