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It seems generic to have vacua with lower dimensionality than ours. We consider the

possibility that the observable universe originated in a transition from one of these vacua.

Such a universe has anisotropic spatial curvature. This may be directly observable through

its late-time effects on the CMB if the last period of slow-roll inflation was not too long.

These affect the entire sky, leading to correlations which persist up to the highest CMB mul-

tipoles, thus allowing a conclusive detection above cosmic variance. Further, this anisotropic

curvature causes different dimensions to expand at different rates. This leads to other po-

tentially observable signals including a quadrupolar anisotropy in the CMB which limits the

size of the curvature. Conversely, if isotropic curvature is observed it may be evidence that

our parent vacuum was at least 3+1 dimensional. Such signals could reveal our history of

decompactification, providing evidence for the existence of vastly different vacua.
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I. INTRODUCTION AND SUMMARY

Our current understanding of cosmology and high energy physics leaves many questions unanswered.

One of the most fundamental of these questions is why our universe has three large dimensions. This

may be tied to the more general question of the overall shape and structure of the universe. In fact, it is

possible that our universe was not always three dimensional or that other places outside of our observable

universe have a different dimensionality. There are surely long-lived vacua where one or more of our

three dimensions are compactified, since this does not even rely on the presence of extra-dimensions and

indeed happens in the Standard Model [1]. Eternal inflation can provide a means to populate these vacua,

and naturally leads to a highly inhomogeneous universe on very long length scales. Further, it seems

likely that these lower-dimensional vacua are at least as numerous as three dimensional ones since there

are generally more ways to compactify a greater number of spatial dimensions. If we do indeed have a

huge landscape of vacua (e.g. [2]) then it seems all the more reasonable that there should be vacua of all

different dimensionalities and transitions between them (see e.g. [3–7]). We will ignore the subtle issues of

the likelihood of populating those vacua (the “measure problem”). Instead we will focus on the possibility

of observing such regions of lower dimensionality since surely such a discovery would have a tremendous

effect on our understanding of cosmology and fundamental physics.

Our compact dimensions are generically unstable to decompactification [8]. Thus it seems possible

that the universe began with all the dimensions compact (the starting point in [9, 10] for example). In this

picture our current universe is one step in the chain towards decompactifying all dimensions. Of course,
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eternal inflation may lead to a very complicated history of populating different vacua, but in any case, it

seems reasonable to consider the possibility that we came from a lower dimensional “ancestor” vacuum.

We will assume that prior to our last period of slow-roll inflation our patch of the universe was born in a

transition from a lower dimensional vacuum.

Our universe then underwent the normal period of slow-roll inflation. For our signals to be observable

we will assume that there were not too many more than the minimal number of efolds of inflation necessary

to explain the CMB sky. This may be reasonable because this is very near a catastrophic boundary: large

scale structures such as galaxies would not form if inflation did not last long enough to dilute curvature

sufficiently [11–13]. Since achieving slow-roll inflation is difficult and the longer it lasts the more tuned

the potential often is, there may be a pressure to be close to this lower bound on the length of inflation.

We will actually use the energy density in curvature, Ωk, in place of the number of efolds of inflation.

The observational bound requires that Ωk . 10−2 today (this corresponds to ∼ 62 efolds for high scale

inflation). The existence of galaxies requires Ωk . 1 today (corresponding to ∼ 59.5 efolds if we use the

bound from [11]). Thus Ωk may be close to the observational bound today. Other, similar arguments have

also been made for a relatively large curvature today [14].

Most signals of the presence of other vacua, e.g. bubble collisions [15–17], also rely on this assumption.

These signals have also mostly been explored assuming that the other vacua are all 3+1 dimensional. While

an important first step, this seems like a serious oversimplification. We find interesting differences in the

case that our parent vacuum was lower dimensional. In particular, our universe can be anisotropic, with

different spatial curvatures in the different directions. This anisotropic curvature dilutes exponentially dur-

ing inflation, making the universe appear very isotropic at early times. However, this curvature (Ωk) grows

at late times, leading to several observable effects. This anisotropic curvature sources an anisotropy in the

Hubble expansion rate, since the different dimensions expand at different rates. The most interesting signal

is an anisotropy in the normal CMB curvature measurement. The angular size of a “standard ruler” now

appears to depend on the orientation of that ruler. In the CMB this shows up as unexpected correlations

between modes of all angular sizes. Unlike the normal curvature measurement, this anisotropic curvature

measurement is not degenerate with the scale factor expansion history and is thus easier to measure. This

anistropic curvature also leads to a significant quadrupolar anisotropy in the CMB which constrains the

size of Ωk. There are possibly other observables from 21 cm measurements, direct measurements of the

Hubble expansion (e.g. from supernovae), or from searches looking for nontrivial topology of the universe.
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II. THE ANISOTROPIC UNIVERSE

In this section we will compute the evolution of a universe that began with one or two of our three

spatial dimensions compactified.

A. The Initial Transition

We will consider the possibility that our universe began in a lower-dimensional vacuum. In particular

we assume that just prior to our recent period of slow-roll inflation, the currently observable part of the

universe (our “pocket universe” in landscape terminology) was in a vacuum with only one or two large,

uncompactified spatial dimensions. The other dimensions, including the one or two that will eventually

become part of our three large spatial dimensions, are compactified and stable. The universe then tunnels,

nucleating a bubble of our vacuum in which three spatial dimensions are uncompactified and thus free to

grow with the cosmological expansion. We will consider starting from either a 1+1 or 2+1 dimensional

vacuum. We will not consider the 0+1 dimensional case in great detail, as it is significantly different [1].

However it is possible that it will have the same type of signatures as we discuss for the other two cases,

depending on the details of the compactification manifold.

Consider first the case that the universe is initially 2+1 dimensional, and in the tunneling event one

of the previously compactified spatial dimensions becomes decompactified, losing whatever forces were

constraining it and becoming free to grow (in the tunneling event it may also grow directly). We can

think of this as a radion for that dimension which is initially trapped in a local minimum, tunneling to a

section of its potential where it is free to roll. Of course, the tunneling event may actually be due to a

change in the fluxes wrapping the compact dimension, or in general to a change in whatever is stabilizing

that dimension. The exact nature of this tunneling will not concern us since the further evolution of the

universe is relatively insensitive to this. In all cases a bubble of the new vacuum is formed in the original

2+1 dimensional space. The bubble wall (which is topologically an S1 not an S2) expands outward. The

interior of this Coleman-De Luccia bubble [18] is an infinite, open universe with negative spatial curvature

(see e.g. [19] for this bubble in arbitrary dimensionality space-times). But this negative spatial curvature is

only in two dimensions. The third, previously small, dimension may be topologically an S1 or an interval,

but in any case will not have spatial curvature. Thus the metric after the tunneling inside the bubble is

ds2 = dt2 − a(t)2

(
dr2

1− kr2
+ r2dφ2

)
− b(t)2dz2 (1)
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where z is the coordinate of the previously compactified dimension and k = −1 for negative spatial

curvature in the r − φ plane. This is known as a Bianchi III spactime.

If instead the universe is initially 1+1 dimensional and two spatial dimensions decompactify in the

transition then the situation will be reversed. The single originally large dimension (now labelled with

coordinate z) will be flat but the other two dimensions may have curvature (either positive or negative).

For example, if they were compactified into an S2 they would have positive curvature and so would be

described by Eqn. (1) with k = +1, known as a Kantowski-Sachs spacetime. Or if those two dimensions

were a compact hyperbolic manifold, for example, they would be negatively curved with k = −1. In fact,

generically compactifications do have curvature in the extra dimensions (see for example [20]). Of course

it is also possible that the two compact dimensions had zero spatial curvature. We will not consider this

special case in great detail since it does not lead to most of our observable signals.

B. Evolution of the Anisotropic Universe

We will thus assume that our universe begins with anisotropic spatial curvature, with metric as in

Eqn. (1). Immediately after the tunneling event the universe is curvature dominated, though in this case

of course the curvature is only in the r − φ plane. We assume the universe then goes through the usual

period of slow-roll inflation, with a low number of efolds . 70 near the curvature bound.

The equations of motion (the “FRW equations”) are:

ȧ2

a2
+ 2

ȧ

a

ḃ

b
+

k

a2
= 8πGρ (2)

ä

a
+
b̈

b
+
ȧ

a

ḃ

b
= −8πGpr (3)

2
ä

a
+
ȧ2

a2
+

k

a2
= −8πGpz (4)

where the dot ˙ denotes d
dt , ρ is the energy density, and pr and pz are the pressures in the r and z direction,

i.e. the rr and zz components of the stress tensor Tµν . These can be rewritten in terms of the two Hubble

parameters Ha ≡ ȧ
a and Hb ≡ ḃ

b as

H2
a + 2HaHb +

k

a2
= 8πGρ (5)

Ḣa +H2
a + Ḣb +H2

b +HaHb = −8πGpr (6)

2Ḣa + 3H2
a +

k

a2
= −8πGpz (7)



6
At least in the case of tunneling from 2+1 to 3+1 dimensions, immediately after the tunneling event

the universe is curvature dominated. In this case Eqn. (4) can be solved for a directly. Since this is just the

usual isotropic FRW equation, the solution is as usual a(t) ∼ t, where t = 0 is the bubble wall. Actually,

since we will assume the universe transitions to a period of slow-roll inflation after curvature dominance, we

will assume there is a subdominant vacuum energy during the period of curvature dominance. This then

gives a perturbutive solution accurate up to linear order in the vacuum energy Λ of a(t) ≈ t
(
1 + 4π

9 GΛt2
)
.

Then we can solve Eqn. (2) perturbatively for b(t). There are several possible solutions but these are

reduced because we will assume that immediately after the tunneling event ḃ = 0. If we imagine the

transition as a radion field tunneling through a potential barrier then we know that the radion generically

starts from rest after the tunneling. With this boundary condition the solution to linear order in the

vacuum energy is b(t) ≈ bi
(
1 + 4π

3 GΛt2
)

where bi is the initial value of b. Since the period of curvature

dominance ends when t2GΛ ∼ 1, we see that roughly a expands linearly while b remains fixed during this

period. Thus the different expansion rates Ha and Hb remain very different during this period. Ha is large

while Hb ≈ 0. The flat dimension will not begin growing rapidly until inflation begins. At that point

though, it will be driven rapidly towards the same expansion rate as the other dimensions, Ha ≈ Hb, as

we will now show.

Since our observed universe is approximately isotropic, we will only need to solve these equations in

the limit of small ∆H ≡ Ha − Hb. We will always work to linear order in ∆H. Subtracting Eqn. (6) -

Eqn. (7) gives

d

dt
∆H + 3Ha ∆H +

k

a2
= 8πG (pr − pz) ≈ 0 (8)

Note that we have taken the pressure to be isotropic, pr = pz ≡ p, which is approximately true in all cases

of interest to us. This is clearly true during inflation. During radiation dominance (RD) the radiation

is in thermal equilibrium. Since the reactions keeping it in equilibrium have rates much higher than the

Hubble scales during this time, the pressure is kept locally isotropic. During matter dominance (MD)

the pressure is zero to leading order. The sub-leading order piece due to the photons will also remain

isotropic until after decoupling since the photons remain in equilibrium until this time. After decoupling

the energy density in radiation is quite small compared to the matter density. Further, this small pressure

only develops anisotropy due to the differential expansion (and hence redshifting) between the r and z

directions. Thus the anisotropy in pressure is proportional to both ∆H and the small overall size of the

pressure and is therefore negligible for us.
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The anisotropic spatial curvature in the metric (1) is the only effect breaking isotropy in this universe

and thus the only reason for a differential expansion rate ∆H. In fact, as we will see shortly, the differential

expansion ∆H is proportional to Ωk, the curvature energy density, defined to be

Ωk ≡
k
a2

H2
a

. (9)

Since Ωk grows during RD and MD and it is � 1 today, it was quite small during the entire history of

the universe after the period of curvature dominance (to which we will return later). So we will treat both

∆H and Ωk as our small parameters and work to linear order in each.

If we combine Eqns. (7) and (8) we find an equation for Hb which is true in the limit of small ∆H

2Ḣb + 3H2
b −

k

a2
= −8πGp. (10)

Notice that this is exactly the same as the equation for Ha (Eqn. (7)) but with the sign of the curvature

term flipped. Eqn. (7) for Ha is just the usual isotropic FRW equation. Thus a(t) behaves exactly as it

would in the normal isotropic universe with a subleading curvature component and b(t) behaves as if it

was the scale factor in a universe with an equal magnitude but opposite sign of curvature.

Eqn. (8) can be solved easily because we only need the leading order behavior of a and Ha which are

just the usual isotropic FRW solutions as can be seen easily since Eqns. (4) and (7) are just the usual

FRW equations. Solving Eqn. (8) during the eras of interest and keeping only the inhomogeneous solutions

yields

Inflation ∆H
Ha

= −Ωk (11)

RD ∆H
Ha

= −1

3
Ωk (12)

MD ∆H
Ha

= −2

5
Ωk (13)

As we will show later, the homogeneous solutions all die off as faster functions of time and are thus

negligible. Interestingly, this implies that ∆H is effectively independent of initial conditions. At every

transition some of the homogeneous solution for ∆H is sourced, for example to make up the missing

−2
3Ωk when transitioning from inflation to RD. But this homogeneous piece dies off faster, leaving only

the inhomogeneous piece which is independent of the initial value of ∆H.

To find the solutions for the scale factors a(t) and b(t) up to linear (subleading) order in the curvature,

we solve Eqns. (2), (3), and (4) perturbatively in Ωk. The leading order behavior comes from the dominant
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energy density (vacuum energy, radiation, or matter in our three eras). We will only need the solution

during MD so we can assume pr = pz = 0 then. Eqn. (4) contains no b’s so it can be solved directly for

a(t). Once we have the solution for a(t) up to linear order in Ωk we then plug in to Eqn. (3) to find b(t)

also to linear order. The solutions during MD to linear order in Ωk are

a(t) = c0 t
2
3

(
1− 9k

20c2
0

t
2
3

)
≈ c0 t

2
3

(
1− Ωk

5

)
(14)

b(t) = c0 t
2
3

(
1 +

9k

20c2
0

t
2
3

)
≈ c0 t

2
3

(
1 +

Ωk

5

)
(15)

where c0 is an arbitrary, physically meaningless constant arising from the coordinate rescaling symmetry.

Thus this universe always has a differential expansion rate between the z direction and the r-φ directions

which is proportional to Ωk. The precise constant of proportionality depends only on the era (inflation, RD,

or MD) and not on initial conditions. Further, the r-φ plane expands as in the usual isotropic FRW universe,

while the z direction expands as if it was in that same universe except oppositely curved. During an initial

period of curvature dominance the z dimension remains constant while the other two dimensions expand,

diluting curvature. During this period the expansion rates Ha and Hb are maximally different. Then a

period of slow-roll inflation takes over. During this period the expansion rates are driven exponentially

close together. This difference in expansion rates is largest at the beginning of inflation, immediately after

curvature dominance, when Ωk is still large. During inflation curvature dilutes exponentially as Ωk ∝ a−2.

So at the end of inflation the differential expansion rate is completely negligible ∆H
H ∼ e−60. Then during

RD Ωk and hence also ∆H remain small, though growing as ∝ a2. During MD Ωk and ∆H continue to

grow ∝ a, finally reaching their maximal value when the universe transitioned to vacuum energy dominance

around redshift ∼ 2. Since this final transition was so recent (and the homogeneous solution for ∆H has

not even had much time to die off yet) we will approximate the universe as matter dominated until today.

III. OBSERVABLES

In this section, we discuss the late time observables of anisotropic curvature. We begin by computing

its effects on standard rulers. These effects emerge due to the warping of null geodesics in the anisotropic

background metric. Null geodesics along different directions are warped differently by the curvature,

leading to differences in the observed angular size of standard rulers in the sky. Following this discussion,

we compute the effect of anisotropic curvature on the CMB. The CMB is also affected by the warping of

the null geodesics that propagate from the surface of last scattering to the current epoch. This warping
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affects the relation between the angle at which a CMB photon is observed today and the point at which it

was emitted during recombination. In addition to this effect, the anisotropic metric discussed in Section

II also leads to differential Hubble expansion. This leads to an anisotropic red shift in the universe, which

causes a late time observer to see additional temperature anisotropies in the CMB. We conclude the section

with a discussion of additional measurements that could be performed in upcoming experiments.

A. Standard Rulers

In this Section we present a calculation of the effect on standard rulers. While this is not a directly

observable effect itself since we have no exact standard rulers in the sky, it does provide good intuition for

the following calculation of the actual CMB observables in Section III B. Further, many of the results of

this section are used directly in that calculation.

The spacetimes (1) considered in this paper are curved and anisotropic. A canonical method to

observe curvature is through the measurement of the angular sizes of standard rulers. Curvature modifies

the Euclidean relationship between the measured angle and the linear size of the ruler. In a universe

with anisotropic curvature, we expect this deviation from Euclidean geometry to change with the angular

position and orientation of the ruler.

Motivated by the use of baryon acoustic oscillations as cosmological standard rulers, we compute the

present day angular size of standard rulers located at the surface of last scattering. This calculation gives

intuition for the effects of anisotropic curvature on the CMB (studied in detail in section III B). To do so,

we first determine the null geodesics that connect the surface of last scattering to a present day observer.

The angle subtended between the two null geodesics that reach the end points of the standard ruler is then

the angular size of the ruler. For simplicity, we assume that the universe was matter dominated throughout

the period between recombination and the present epoch.

We work with the metric

ds2 = dt2 − a (t)2 (dr2 + sinh2 (r) dφ2
)
− b (t)2 dz2 (16)

which is produced when a 3 + 1 dimensional universe is produced by tunneling from a 2 + 1 dimensional

vacuum. We restrict our attention to this scenario in order to facilitate concrete computation. However,

our results can be applied to a wide class of scenarios that lead to anisotropic geometries. The metric

(16) describes a universe where two of the spatial dimensions (parameterized by the coordinates (r, φ)
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FIG. 1: A depiction of the motion of a photon (red curve) from a point P on the surface of last scattering Σ

(black ellipse) to an observer O. Without loss in generality, the observer’s position can be taken as the origin of the

coordinate system. The anisotropic curvature causes Σ to deviate from sphericity and warps the photon trajectories.

θ0 is the angle between the photon’s trajectory and the observer O’s z axis. θP is the angle between the photon’s

trajectory and the z axis at P .

in (16)) have negative curvature and grow with scale factor a (t). The other dimension, parameterized

by the coordinate z in (16), grows with scale factor b (t). The space-time geometry of such a universe

can also be described using the metric (1) with k = −1. These metrics are related by a coordinate

transformation and they yield identical FRW equations (2), (3) and (4) for the scale factors a (t) and b (t).

Th is setup also describes anisotropic universes with positive curvature (equation (1) with k = +1). Such

a universe is described by the metric (16) with the sinh2 (r) term replaced by sin2 (r). With this metric,

the FRW (equations (2), (3) and (4)) and null geodesic equations (17) have the same parametric forms.

Our calculations also apply to this case, with the difference between the two cases being captured by the

sign of the curvature term Ωk.

An observer O (see figure 1) at the present time receives photons from the surface of last scattering

Σ. This photon follows a null geodesic. In computing this null geodesic, we can assume without loss in

generality that the point O lies at the origin of the coordinate system. With this choice, we focus on

geodesics that lie along a direction of constant φ. These geodesics contain all the information required to

describe our setup. The geodesics that connect the point O with the surface of last scattering have zero
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velocity along the φ direction. The O (2) symmetry in the (r, φ) plane then implies that φ remains constant

during the subsequent evolution of the geodesic. Using the metric (16), the null geodesic equations that

describe the photon’s trajectory (r (t) , z (t)) are

r̈ + ṙHa

(
1 +

∆H

Ha

(
1− ṙ2a (t)2

))
= 0

z̈ + żHb

(
1− ∆H

Hb

(
1− ż2b (t)2

))
= 0 (17)

where the dots denote derivatives with respect to t. With the boundary condition that the null geodesic

reaches O at time t0, equation (17) can be solved perturbatively to leading order in Ωk. The coordinates

(rP , zP ) on Σ from which the photon is emitted are

rP = sinα
3 t

1
3
0

c0

(
1− Ωk0

3

(
4

5
+ cos 2α

))

zP = cosα
3 t

1
3
0

c0

(
1− Ωk0

3

(
−4

5
+ cos 2α

))
(18)

In the above expression, α is a parameter that governs the direction in the (r, z) plane from which the

photon is received at O and Ωk0 denotes the fractional energy density in curvature at the present time.

The physical angle θ between the photon’s trajectory and the z axis, as measured by a local observer, is

different from α, and is given by

tan (θ) =

(
a (t)

b (t)

dr

dz

)
+O (Ha) (19)

For the geodesics computed in (18), the relation between the parameter α and the physical angle θ0 observed

at O is

tan (θ0) =

(
1− 2

5
Ωk0

)
tanα (20)

The O (Ha) corrections in the definition (19) arise because the coordinates (t, r, φ, z) used to describe the

metric (16) are not locally flat. Local coordinates
(
t̃, r̃, φ̃, z̃

)
can be constructed at any point (tQ, rQ, φQ, zQ)

of the space-time. These two sets of coordinates are related by

t = tQ + t̃− 1

2

(
a (t)2Ha

(
r̃2 + sinh2 (rQ) φ̃2

)
+ b (t)2Hbz̃

2
)

r = rQ + r̃ − 1

2

(
2Ha r̃ t̃ − cosh (rQ) sinh (rQ) φ̃2

)

φ = φQ + φ̃− φ̃
(
Ha t̃ + coth (rQ) r̃

)

z = zQ + z̃
(
1−Hb t̃

)
(21)
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FIG. 2: The effect of the anisotropic curvature on a measurement of the angular size of standard rulers. The black

ellipse is the surface of recombination and the red lines are photon paths from standard rulers on this surface to the

observer at O. The standard rulers are depicted by the thick straight lines. The angular size varies depending upon

the location and orientation of the ruler.

The coordinate transformations in (21) imply that operators constructed from global coordinates (e.g. d
dr )

differ from the corresponding operator in the local inertial frame (e.g. d
dr̃ ) by quantities ∼ O (Har̃). The

difference between these operators is suppressed by the ratio of the size of the local experiment over the

Hubble radius. These differences are negligible for any local experiment today. The angle defined by (19)

is therefore very close to the physical angle measured by a local experiment and we will use this definition

for subsequent calculations.

With the knowledge of the geodesics (18), we can calculate the angular size of a standard ruler of length

∆L at the time of recombination. Since Ωk is very small during this time, the physical size of the ruler is

independent of its location and orientation. First, consider a ruler oriented in the z direction. This ruler

lies between the co-ordinates (r (tr) , z (tr)) and (r (tr) + ∆r, z (tr) + ∆z) at the time tr of recombination.

The length of this ruler is

(a (tr) ∆r)2 + (b (tr) ∆z)2 = ∆L2 (22)

Using (18) and (19) in (22), we find that the angular size ∆θ subtended by a ruler of length ∆L at a local

experiment O is

∆θ (θ) =
∆L

3 t
2
3
r t

1
3
0

(
1 +

Ωk0

5
cos 2θ

)
(23)
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A similar procedure can also be adopted to describe standard rulers that lie along the (r, φ) plane. The

angular size of these rulers is given by the angle φ between the null geodesics that connect the ends of the

ruler to the origin. Following the above procedure, this angular size ∆φ is

∆φ =
∆L

3 t
2
3
r t

1
3
0

(
1 +

3

5
Ωk0

)
(24)

The angular size of a standard ruler thus changes when its location and orientation are changed (see figure

2). For a ruler located at z = 0 (i.e. θ = π
2 ) the warp of the angle (in equations (23) and (24)) changes from

(
1 + 3

5 Ωk0

)
for a ruler in the (r, φ) plane to

(
1− 1

5 Ωk0

)
for a ruler oriented in the z direction. Similarly,

as a ruler oriented in the z direction is moved from θ0 = 0 to θ0 = π
2 , the angular warp factor changes

from
(
1− 1

5 Ωk0

)
to
(
1 + 1

5 Ωk0

)
. The reason for this change can be traced to the fact that for a ruler

oriented in the z direction, all of the angular warp occurs due to the effect of the curvature on the scale

factor. a (t) and b (t) expand as though they have the same magnitude of the curvature but with opposite

sig n. Consequently, the angular warps along the two directions also have the same magnitude, but are

of opposite sign. This angular dependence is an inevitable consequence of the anisotropic curvature Ωk

endemic to this metric. We note that this measurement of the anisotropic curvature is relatively immune

to degeneracies from the cosmological expansion history since the angular size changes depending upon the

orientation of the ruler along every line of sight. We discuss how this measurement can be realized using

CMB measurements in section III B 2.

B. Effect on the CMB

The CMB offers a unique probe of the space-time geometry between the surface of last scattering and

the current epoch. The spectral characteristics of the CMB photons at the time of last scattering are

well determined. Differences between this well determined spectrum and observations of the local flux of

CMB photons arise during the propagation of the photons from recombination to the present epoch. These

differences can be used to trace the space-time geometry since these photons travel along null geodesics of

the geometry. In this section, we use the trajectories of CMB photons computed in sub section III A to

derive the spectrum of the CMB flux observed today.

The CMB flux observed at O (see figure 1) is

Φ0 (E0) =
dN0 (E0)

sin θ0dθ0dφ0dA0dt0dE0
(25)
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where dN0 (E0) is the number of photons with energies between E0 and E0 + dE0 received at O within a

solid angle sin θ0dθ0dφ0 in an area dA0 during a time dt0. The angle θ0 is defined as per (19) since that

definition corresponds to the physical angle that a local observer measures between the photon’s trajectory

and the z axis. The photons that are received at O within this solid angle were emitted from the point

P on the surface of last scattering Σ (see figure 1). Since the geometry of the universe (equation (16)) is

curved, the solid angle sin θPdθPdφP is different from the solid angle at O. The energy EP at which the

photon is emitted is also different from the energy E0 at which it is received owing to the expansion of

the universe. Furthermore, due to the differential expansion of the (r, θ) plane and the z directi on, this

energy shift is also a function of the solid angle. The photons received in the space-time volume dA0 dt0

are emitted from a volume dAP dtP . The ratio of these volume elements is proportional to the expansion

of the universe. Incorporating these effects, the flux (25) can be expressed as

Φ0 (E0) =
dNP (EP )

sin θPdθPdφPdAPdtPdEP

(
sin θPdθPdφP
sin θ0dθ0dφ0

)(
dAPdtP
dA0dt0

)(
dEP
dE0

)
(26)

or, in terms of the emission flux ΦP ,

Φ0 (E0) = ΦP (EP )

(
sin θPdθPdφP
sin θ0dθ0dφ0

)(
dAP dtP
dA0 dt0

)(
dEP
dE0

)
(27)

To find the local flux, we have to relate the geometric and energy elements in (27) at P to those at O.

We begin with the angle θ0. Using the definition (19) of θ and the solution (17) for the geodesic, we solve

for θ0 along the null geodesic and find that

θ0 = θP +
1

5
Ωk0 sin (2 θP ) +O (ΩkP ) +O

(
Ω2
k

)
(28)

where θ0 and θP are the angles of the photon’s trajectory at the observer’s present location O and the

point P (see figure 1) on the surface of last scattering which is connected to O by the null geodesic. We

have ignored contributions of order ΩkP , the fractional energy in curvature at the time of recombination,

in this solution. This is justified since ΩkP � Ωk0 . The angle φ is unaffected by the anisotropic curvature

since there is an O (2) symmetry in the (r, φ) plane. Consequently, dφ0 = dφP .

The volume elements are proportional to the expansion of the universe and are given by

dAP dtP
dA0 dt0

=

(
aP
a0

)2(bP
b0

)
(29)

where (aP , bP ) and (a0, b0) are the scale factors at the points P and O respectively. Finally, we need to

compute the relationship between the observed energy E0 of the photon and the emission energy EP .
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The energy E observed by a local observer at some point along the photon’s trajectory is given by

E2 =

(
a
dr

dτ

)2

+

(
b
dz

dτ

)2

(30)

where τ is an affine parameter along the photon trajectory. Using the geodesic equations (17) and the

above expression, the present day energy E0 is

E0 = EP

(
aP
a0

)(
1− 2

5
Ωk0 cos2 θP

)
(31)

Incidentally, this expression can also be arrived at by red shifting the momentum components of the photon

along the radial and z directions by
(
aP
a0
, bPb0

)
respectively.

We now have all the ingredients necessary to compute the present day flux Φ0 given an initial flux ΦP

at recombination. Since Ωk prior to recombination is much smaller than Ωk0 � 1, the CMB spectrum at

recombination is identical to that of the usual FRW universe. In particular, the CMB at P is a black-body

at a temperature TP , with its spectrum, independent of angle, given by the Planck distribution

ΦP (EP ) =
E2
P

exp
(
EP
TP

)
− 1

(32)

We define T̃0 = TP

(
a2P bP
a20b0

) 1
3
. This definition is motivated by the fact that CMB temperature should

redshift roughly as the ratio of the scale factors of expansion. In this anisotropic universe, where two

dimensions expand with scale factor a and the other with scale factor b, the quantity
(
a2P bP
a20b0

) 1
3

is roughly

the mean expansion factor. Using (28), (29), (31) and (32) in (27), we get

Φ0 (E0, θ0) =
E2

0

exp
(
E0

T̃0

(
1 + 8

15

√
π
5 Ωk0Y20 (θ0, φ0)

))
− 1

(33)

where Y20 (θ0, φ0) is the spherical harmonic with l = 2,m = 0.

It is well known that primordial density fluctuations lead to temperature anisotropies ∼ 10−5 in the

CMB. The temperature T̃0 in (33) inherits these anisotropies and is consequently a function of the angle

(θ, φ) in the sky. Using this input, the distribution in (33) describes a blackbody with a temperature

T0 (θ0, φ0) = T̃0 (θP , φP )

(
1− 8

15

√
π

5
Ωk0Y20 (θ0, φ0)

)
(34)

at a given direction (θ0, φ0) in the sky. Note that the relation between the present day temperature T0 and

the temperature at recombination TP is warped both by the multiplicative factor (the term in brackets) in

(34) as well as the difference between the angles (θP , φP ) and (θ0, φ0). Both these effects are proportional

to Ωk0 and lead to effects in the CMB. In the following subsections, we highlight the key observables of

this spectrum.
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1. The Quadrupole

The temperature T0 (θ0, φ0) is nearly uniform across the sky with an average temperature T̄0 and pri-

mordial temperature fluctuations ∼ 10−5. Substituting for T0 (θ0, φ0) in (34), we find that the anisotropic

curvature leads to a quadrupole a20 ∼ −T̄0
8
15

√
π
5 Ωk0Y

0
2 (θ0, φ0) (see equation (35)) in the CMB temper-

ature. The source of this quadrupole is the differential expansion rate of the Universe between the (r, θ)

plane and the z direction (see equation (16)), leading to differential red shifts along these directions. These

differential red shifts lead to a quadrupolar warp of the average temperature of the surface of last scat-

tering. Unlike the primordial perturbations which are generated during inflation, this contribution to the

quadrupole in the CMB arises from the late time emerge nce of the anisotropic curvature. Fractionally,

the additional power due to this effect is ∼ Ωk0 .

Current observations from the WMAP mission constrains the quadrupolar temperature variation ∼
10−5 [21]. Naively, this constrains Ωk0 / 10−5. However, the quadrupole that is observed in the sky is a

sum of the quadrupole from the primordial density fluctuations and this additional contribution from the

anisotropic curvature. It is then possible for these two contributions to cancel against each other leading

to a smaller observed quadrupole. This cancellation requires a tuning between the primordial quadrupolar

density perturbation and the anisotropic curvature contribution. Additionally, this tuning can be successful

only if the primordial quadrupolar perturbation is O (Ωk0).

The primordial density fluctuations are ∼ 10−5 and it is difficult for the quadrupolar fluctuations to

be much higher than this level. However, in a universe with a small number of e-foldings of inflation,

the quadrupole is the mode that leaves the horizon at the very beginning of inflation and is therefore

sensitive to physics in the primordial pre inflationary space-time. These phenomena are not constrained

by inflationary physics and they could lead to additional power in the quadrupolar modes [16, 17, 22]. It

is therefore possible for the power in the primordial quadrupolar mode to be somewhat larger, leading to

possible cancellation of the quadrupole from the late time anisotropic curvature. In fact, the measured

quadrupole in our universe has significantly less power than expected from a conventional ΛCDM model

[21]. This anomaly may already be an indication of non-inflationary physics affecting th e quadrupole

[11]. There is also some uncertainty on the overall size of the quadrupole. For example, astrophysical

uncertainties [23, 24] could potentially make the quadrupole in the CMB larger by a factor ∼ 2 − 3.

Owing to these uncertainties, it may be possible for Ωk0 to be as large as 10−4 without running afoul of

observational bounds. Values of Ωk0 significantly larger than ∼ 10−4 may also be possible. However, the
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additional tuning required to cancel the associated quadrupole may disfavor this possibility.

It is interesting to note that anisotropic curvature is much more constrained than isotropic curvature.

Current cosmological measurements constrain the isotropic curvature contribution / 10−2 [21]. However,

anisotropic curvature leads to temperature anisotropies in the sky. Since these anisotropies are well con-

strained by current measurements, the bounds on Ωk0 / 10−4 are more stringent (for example, see [43]).

This bound is close to the cosmic variance limit on Ωk0 u 10−5. Consequently, there is an observational

window of 10−5 / Ωk0 / 10−4 where the anisotropic curvature can be discovered.

2. Statistical Anisotropy

In this subsection we discuss the effects of anisotropic curvature on the power spectrum of the CMB.

The warping of standard rulers by the anisotropic curvature (see section III A) manifests itself in the CMB

through these effects. At the present time, an observer O (see figure 1) characterizes the CMB through

the spectrum defined by

alm =

∫
dΩT0(θ0, φ0)Ylm(θ0, φ0) (35)

where the present day temperature T0 is defined in equation (34). The correlation functions 〈alma∗l′m′〉 of

this spectrum contain all the information in the CMB. In a statistically isotropic universe, all non-diagonal

correlators of the alm vanish. Anisotropies mix different angular scales and will populate these non-diagonal

correlators. We compute them in this section.

T0 inherits the density fluctuations at the time of recombination. Since anisotropies were small prior

to recombination, we will assume that the spectrum of density fluctuations at recombination is given by

a statistically isotropic, Gaussian distribution. The small anisotropies prior to recombination do alter this

distribution and can give rise to additional observables [42, 44]. However, these corrections are proportional

to the anisotropic curvature Ωkr during recombination [42, 44]. Since Ωkr is smaller than the present day

anisotropic curvature Ωk0 by a factor of ∼ 1000, the experimental observables are dominated by the effects

of the late time anisotropic curvature Ωk0 . In order to compute these late time effects, it is sufficient to

assume that the spectrum of density fluctuations at recombination is statistically isotropic and Gaussian.

We will therefore make this assumption for the rest of the paper. Our task is to start with this spectrum

at recombination and compute the characteristics of the CMB spectrum observed by O.

The anisotropic curvature warps the CMB spectrum at O in three ways. First, the photons from the
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surface of last scattering that reach O do not lie on a spherical surface (see figure 1). This warped surface

Σ is described by equation (18), where the deviations from sphericity are proportional to the late time

curvature Ωk0 . Second, the angle θ0 at which the photon is received at O is different from the co-ordinate

angle β on the surface of recombination at which this photon was originally emitted. Third, the photon is

red-shifted when it reaches O. This red-shift also depends upon the angle since the anisotropic curvature

causes a differential Hubble expansion leading to anisotropic red-shifts.

We first determine the spectrum on Σ, the surface from which photons at recombination reach O. Σ

can be described using spherical coordinates (R, β, φ) . R is the physical distance at recombination between

O and a point P on Σ (see figure 1), β is the polar angle between the z axis and the unit vector at O that

lies in the direction of P and φ is the azimuthal angle. These flat space coordinates appropriately describe

the recombination surface since the spatial curvature was very small during this period. In particular, the

polar angle β is given by

tanβ =
rP
zP

(36)

while the physical distance R (using equation (18)) is

R (β) = 3 t
1
3
0 t

2
3
r

(
1 +

Ωk0

45
− 8 Ωk0

45

√
π

5
Y20 (β, φ)

)
(37)

The spectrum at Σ can be characterized by

blm =

(
a2
P bP
a2

0 b0

)1/3 ∫

Σ
dΩTrec(β, φ)Ylm(β, φ) (38)

where Trec is the temperature at the recombination surface. The multiplicative factor
(
a2P bP
a20 b0

)1/3
in (38)

is introduced for convenience. It accounts for the red shift of the mean temperature from the era of

recombination to the present time, but does not introduce additional correlations in the power spectrum.

With this definition of blm, the correlation functions of the distributions (35) and (38) can be directly

compared.

After determining the correlators blm, we will incorporate the effects of the angular and energy warps

to the spectrum. Following [25], we express the temperature Trec(~P ) at any point ~P = (R, β, φ) on Σ by

the expansion

Trec(~P ) =

∫

Σ

d3k

(2π)3 e
i~k. ~P T̃rec(~k) (39)
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The Fourier components T̃rec(~k) represent the power spectrum at recombination. Since the anisotropic

curvature is small in the era preceding recombination, the T̃rec(~k) are drawn from a statistically isotropic,

gaussian distribution. Writing the term e i
~k. ~P using spherical harmonics, we have

Trec(~P ) =

∫

Σ

d3k

(2π)3 T̃rec(~k) × 4π
∑

lm

il jl (k R (β)) Y ∗
lm(k̂)Ylm (β, φ) (40)

where jl are the spherical bessel functions and Ylm are the spherical harmonics. Using the expression for

R in equation (37), we expand R (β) for small Ωk0 . Comparing this expansion with the definition of the

blm in equation (38), we have

blm =

∫

Σ

d3k

(2π)3 T̃rec(~k) × 4π il

(
jl Y

∗
lm + Ωk0

(
− dl−2 f

l−2,m
+2 Y ∗

l−2,m + dl f
l,m
0 Y ∗

l,m − dl+2 f
l+2,m
−2 Y ∗

l+2,m

))
(41)

The details of this expansion, including the definitions of the coefficients dl and f lm can be found in

Appendices A and B. The Ylm in the above expression are all functions of the unit vector k̂ in the integrand.

Armed with the expression (41), we compute the correlators to first order in Ωk0 . Each blm receives

contributions from the spherical harmonics Ylm and Yl±2,m. Consequently, we expect non zero power in the

auto correlation of each mode and correlation between modes separated by 2 units of angular momentum.

These correlators are

〈blm b∗lm〉 = Cl

(
1 +

16

45

√
π

5
Ωk0 ∆l f

lm
0

)
(42)

〈blm b∗l+2,m〉 =
8

45

√
π

5
Ωk0

(
f l+2,m
−2 ∆l+2Cl+2 + f lm+2 ∆l Cl

)
(43)

where the coefficients ∆l are O (1) numbers with a weak dependence on l. All other correlators vanish.

We relegate the details of this calculation to Appendix A.

Let us now relate the coefficients alm and blm. The present day temperature T0 is given by (34).

The relationship between β and θ0 can be obtained from their respective definitions (36) and (19). This

relationship is given by

β = θ0 −
Ωk0

15
sin 2θ0 (44)

Owing to the O(2) symmetry in the (r, φ) plane, the angle φ is the same as the azimuthal angle φ0 used

by O. We use the above relation to expand T0 to leading order in Ωk0 , obtaining

T0 (θ0, φ0) =

(
a2
P bP
a2

0 b0

)1/3(
Trec(θ0, φ0)− 8

15

√
π

5
Ωk0 Y20 Trec(θ0, φ0) − Ωk0

15
sin(2θ0) ∂θ0 Trec(θ0, φ0)

)

(45)
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The second term in the above expression arises as a result of the differential red shift caused by the non-

isotropic Hubble expansion (34), while the third time arises due to the warp between the angles θ0 and β

(as in equation (44)). This expansion is valid for angular scales l / (Ωk)
−1. Using the spherical harmonic

expansions for T0 and Trec in terms of alm and blm respectively, we find

alm = blm − Ωk0

(
hlm0 blm + hl−2,m

+2 bl−2,m + hl+2,m
−2 bl+2,m

)
(46)

The coefficients hlm in (46) are obtained by combining the different spherical harmonics in (45). These

coefficients are computed in the Appendix B. Using the correlators of the blm (see equation (43)), we can

compute the expectation values

〈alm a∗lm〉 = Cl

(
1 + 2 Ωk0

(
8

45

√
π

5
∆l f

lm
0 + hlm0

))

〈alm a∗l+2,m〉 = Ωk0

(
Cl+2

(
8

45

√
π

5
∆l+2 f

l+2,m
−2 + hl+2,m

−2

)
+ Cl

(
8

45

√
π

5
∆l f

lm
+2 + hlm+2

))
(47)

Other correlation functions are unaffected by the anisotropic curvature Ωk0 . Equation (47) specifies

that modes separated by 2 units of angular momentum l are mixed while there is no mixing between modes

of different m. Physically, this implies correlations between modes of different angular scales (separated

by two units of scale), but not of different orientation. The absence of mixing between modes of different

orientation is due to the fact that the space-time preserves an O(2) symmetry in the (r, φ) plane. However,

even though there is no correlation between modes of different m, the power 〈alm a∗lm〉 in a mode depends

upon m through the coefficients f lm0 and hlm0 . Both these coefficients scale as ∼
(
l2 −m2

)
(see equations

(B1) and (B3)). Hence, we expect different amounts of power in the high m mode versus th e low m mode

for a given l.

Equipped with the knowledge of the correlators (47), we can perform tests of the statistical isotropy of

the CMB. We follow the bipolar power spectrum analysis proposed by [26] and adopt their notation (note

that the normalization convention adopted by [26] is different from that used by the WMAP team [23]).

In this analysis, one computes the correlator

ALM
ll′

=
∑

mm′

〈alm a∗l′m′〉 (−1)m
′ CLM
l,m,l′ ,−m′ (48)

where the CLM
l,m,l′ ,−m′ are Clebsch Gordan coefficients. In a statistically isotropic universe, these correlators

are all zero except when L = 0,M = 0 and l = l
′
. In the present case, we use the correlators (47) to
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compute the above statistic. For large l, the only non-zero correlators are

A20
ll ≈ (−1)l

√
lΩk0

2

15

√
2

5
Cl

(
1 − 2

3
∆l

)

A20
l+2,l ≈ (−1)l

√
lΩk0

2

15
√

15

(
l (Cl+2 − Cl) + (Cl+2∆l+2 + Cl∆l)−

15

4

(
Cl −

1

5
Cl+2

))
(49)

Since the Cl are smooth functions of l, (Cl+2 − Cl) ∼ Cl
l . The above correlators then scale as

A20
ll ∼ A20

l,l+2 ∼
√
lΩk0 Cl (50)

We note that these correlators are non-zero for all angular scales. This is precisely because the late

time warp caused by the anisotropic curvature affects all the modes in the CMB. Consequently, this

is a statistically robust test of anisotropy. Furthermore, this test of anisotropic curvature is immune to

degeneracies from the expansion history of the universe that plague the measurement of isotropic curvature.

Indeed, in an isotropic universe, irrespective of the cosmological expansion history, this statistic would be

zero. This is similar to the effect discussed in section III A on standard rulers. In both cases, the anisotropic

curvature affects measurements along every line of sight, breaking degeneracies with the cosmological

expansion history. The similarity between these two effects is not surprising since the statistic (48) captures

the effect of the angular warp of the CMB by the anisotropic curvature (the third term in (45)).

Minimum variance estimators obtained from the CMB temperature/polarization for a power asym-

metry of this type and the observability are calculated in [41]. Statistical analyses of the sort discussed

in this section have been performed with the WMAP data [23]. In a universe with anisotropic curvature,

these statistical tests can lead to quadrupolar dependence of the two point function. The expected answer

for the statistic (49) has power only in the A20
ll and A20

l,l−2 modes. Furthermore, since these correlators are

proportional to Cl, the effect shows a bump around the first acoustic peak. Interestingly, the two point

quadrupolar anomaly in the WMAP data shows similar characteristics with power only in the A20
ll and

A20
l,l−2 modes, which peaks around the first acoustic peak. This anomaly could be explained in our scenario

if the anisotropic curvature Ωk0 ∼ 10−2. However, such a large anisotropic curvature is heavily constrained

by the absence of a correspondingly large quadrupole in the CMB (see section III B 1). While this anomaly

may be due to other systematic effects [23], similar searches could be performed with upcoming CMB ex-

periments. It is conceivable that these experiments could discover correlations from anisotropic curvatures

Ωk0 ∼ 10−4, as allowed by the size of the CMB quadrupole.
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C. Compact Topology

We have so far considered only signals arising from the geometry of the universe, but observable signals

may also arise from the topology. The normal eternal inflation picture makes it appear that space should

be very large or infinite in all directions [28]. If our observable universe nucleated as a bubble from (3+1

dimensional) false vacuum inflation then it will appear as an infinite, open universe. However, in our

picture it is natural that the observable universe could have one or two compact dimensions, even though

it came from an eternally inflating space [45]. Interestingly, the size of these compact dimensions may be

close to the Hubble scale today because the period of slow-roll inflation was not too long. In the case of a

2+1 dimensional parent vacuum, the topology of the spatial dimensions of the observable universe would

be R2×S1. Since the curvature is all in the R2 and not the S1, the curvature radius of the universe and the

topology scale (in this case the radius of the S1) are disconnected. Thus, even though the curvature radius

today is restricted to be ∼ 102 times longer than the Hubble scale, the size of the compact dimension can be

smaller than the Hubble scale. In fact, we expect that slow-roll inflation began when the curvature radius

was around the Hubble scale of inflation. Thus, for the S1 to be around the Hubble scale today it would

have needed to be about 102 times smaller than the Hubble size at the beginning of inflation. For high

scale inflation this is near the GUT scale, a very believable initial size for that dimension. This scenario is

interestingly different from the compact topologies often considered, for which an isotropic geometry (S3,

E3 or H3) is usually assumed (though see [30]). Any compact topology necessarily introduces a global

anisotropy, but in our scenario even the local geometry of the universe is anisotropic. This allows the

curvature radius and the topology scale to be different by orders of magnitude.

Thus it is reasonable that in our picture we may also have the “circles in the sky” signal of compact

topology [31]. Current limits from the WMAP data require the topology scale to be greater than 24 Gpc

[32]. This limit can be improved by further searching, especially with data from the Planck satellite, to

close to the ∼ 28 Gpc diameter of our observable universe. If discovered in conjunction with anisotropic

curvature this would provide a dramatic further piece of evidence that we originated in a lower dimensional

vacuum. Further the directions should be correlated. If the parent vacuum was 2+1 dimensional then we

expect the circles in the sky to be in the previously compact direction (the S1) while the curvature is in the

other two dimensions. On the other hand, if the parent vacuum was 1+1 dimensional then it seems possible

that both the signals of curvature and the compact topology would be in the same two dimensions, with

the third dimension appearing flat and infinite. Thus seeing both the anisotropic curvature and signals
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of the compact topology may provide another handle for determining the dimensionality of our parent

vacuum.

D. Other Measurements

The CMB is a precise tool to measure cosmological parameters. However, it is a two dimensional

snapshot of the universe at a given instant in time. Additional information can be obtained through three

dimensional probes of the universe. Several experiments that yield three dimensional data are currently

being planned. These include 21 cm tomography experiments and galaxy surveys. A complete study of

the effects of anisotropic curvature in these experiments is beyond the scope of this work. In this section,

we briefly mention some possible tests of this scenario in these upcoming experiments.

A three dimensional map of the universe can be used to distinguish anisotropic curvature from fluc-

tuations in the matter density. Anisotropic curvature does not lead to inhomogeneities in the matter

distribution. Consequently, measurements of the large scale matter density can be used to distinguish

between these two situations. Such measurements may be possible using upcoming 21 cm experiments and

high redshift surveys, for example LSST. LSST should be sensitive to isotropic curvatures down to ∼ 10−3

with objects identified out to redshift z ≈ 1 [33]. Since the dominant effect of anisotropic curvature occurs

at late times, LSST should be a good way to probe our signals. Additionally, 21 cm experiments may also

be sensitive to isotropic curvatures Ωk0 ∼ 10−4 [27], and so may offer a very precise test of anisotropic

curvature.

The curvature anisotropy also gives rise to a differential Hubble expansion rate ∆H ∼ Ωk0 Ha (see

Section II), which contributes to the quadrupole in the CMB (see section III B). This effect will also be

visible in direct measurements of the Hubble parameter. Current experimental constraints on this effect

are at the level of a few percent [34] and are likely to become better than / 10−2 in future experiments

[35, 36].

IV. DISCUSSION

A universe produced as a result of bubble nucleation from an ancestor vacuum which has two large di-

mensions and one small, compact dimension is endowed with anisotropic curvature Ωk. Such an anisotropic

universe is also produced in the case when our 3+1 dimensional universe emerges from a transition from
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a 1+1 dimensional vacuum. In this case, depending upon the curvature of the compact dimensions, the

resulting universe can have either positive or negative curvature along two dimensions, with the other

remaining flat. The geometry of the equal time slices of the daughter universe are such that two of the

directions are curved while the other dimension is flat. Immediately after the tunneling event, the energy

density of the universe is dominated by this anisotropic curvature Ωk. This curvature drives the curved

directions to expand differently from the flat direction, resulting in differential Hubble expansion ∆H

between them.

The expansion of the universe dilutes Ωk until it becomes small enough to allow slow roll inflation. At

this time, the universe undergoes a period of inflation during which the curvature Ωk and the differential

Hubble expansion ∆H are exponentially diluted. However, during the epochs of radiation and matter

domination, the curvature red shifts less strongly than either the radiation or the matter density. Conse-

quently, the fractional energy density Ωk in curvature grows with time during these epochs. This late time

emergence of an anisotropic curvature Ωk also drives a late time differential Hubble expansion ∆H in the

universe.

These late time, anisotropic warps of the space-time geometry are all proportional to the current

fractional energy density in curvature, Ωk0 . They can be observed in the present epoch if inflation does not

last much longer than the minimum number of efolds required to achieve a sufficiently flat universe (∼ 65

efolds for high scale inflation). Anisotropic curvature leads to the warping of the angular size of standard

rulers. This warping is a function of both the angle and orientation of the ruler in the sky. Consequently,

this effect is immune to degeneracies from the expansion history of the universe since it affects rulers that

are along the same line of sight but oriented differently.

The CMB is also warped by the anisotropic curvature. In addition to the geometric warping, the

differential Hubble expansion ∆H also preferentially red shifts the energies of the CMB photons. This

energy shift differentially changes the monopole temperature of the CMB giving rise to a quadrupole in

the CMB. Furthermore, since the anisotropic curvature is a late time effect, it affects all the modes that

can be seen in the CMB. Consequently, this effect leads to statistical anisotropy on all angular scales. This

effect is different from other signatures of anisotropy considered in the literature [37, 38]. Previous work

has concentrated on the correlations that are produced due to the initial anisotropy in the universe at

the beginning of inflation. Since these modes are roughly stretched to the Hubble size today, these initial

anisotropies only affect the largest modes in the sky and are hence low l effects in the CMB. The late
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time anisotropy however warps the entire sky and leads to statistically robust correlations on all angular

scales. The anisotropies in the pre-inflationary vacuum can however lead to other interesting signatures,

for example in the gravitational wave spectrum [37]. These signatures are an independent check of this

scenario. Anisotropies that affect all angular scales have also been previously considered [39, 40]. These

required violations of rotational invariance during inflation and the anisotropy emerges directly in the

primordial density perturbations. In our case, the density perturbations are isotropic and the anisotropy

observed today is a result of a late time warp of the space-time.

Anisotropic curvature is already more stringently constrained than isotropic curvature. While isotropic

curvature is bounded to be / 10−2, it is difficult for anisotropic curvature to be much larger than ∼
10−4 without running afoul of current data, in particular, the size of the CMB quadrupole. Since the

measurement of curvature is ultimately limited by cosmic variance ∼ 10−5, there is a window between

10−5 / Ωk0 / 10−4 that can be probed by upcoming experiments, including Planck.

Future cosmological measurements like the 21 cm experiments will significantly improve bounds on

the curvature of the universe. A discovery of isotropic curvature would be evidence suggesting that our

ancestor vacuum had at least three large space dimensions. On the other hand, a discovery of anisotropic

curvature would be strong evidence for the lower dimensionality of our parent vacuum. The anisotropy

produced from such a transition has a very specific form due to the symmetries of the transition. It leads to

correlations only amongst certain modes in the CMB (for example, only A20
ll and A20

l,l−2). This distinguishes

it from a generic anisotropic 3+1 dimensional pre-inflationary vacuum which will generically have power in

all modes. In these scenarios, it is also natural for the universe to have non-trivial topology. The existence

of a non-trivial topological scale within our observable universe can be searched for using the classic “circles

in the sky” signal. If both the non-trivial topology and anisotropic curvature can be discovered, implying

a period of inflation very close to the catastrophic boundary, it would be powerful evidence for a lower

dimensional ancestor vacuum. A discovery of these effects would establish the existence of vacua vastly

different from our own Standard Model vacuum, lending observational credence to the landscape.
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different signals of a similar general framework [42].

Appendix A: Calculation of the Correlations

The temperature Trec(~P ) at any point ~P = (R, β, φ) on the surface of last scattering Σ (see figure 1)

can be expressed using spherical harmonics (see equation (40))

Trec(~P ) =

∫

Σ

d3k

(2π)3 T̃rec(~k) × 4π
∑

lm

il jl (k R (β)) Y ∗
lm(k̂)Ylm (β, φ) (A1)

Expanding the Bessel junctions jl in (A1) around R0 = 3 t
1
3
0 t

2
3
r

(
1 +

Ωk0
45

)
to linear order in Ωk0 , we get

jl (kR (β)) = jl (kR0) + Ωk0 dl Y20 (β, φ) (A2)

where the coefficient dl is

dl =
8

45

√
π

5
(kR0 jl+1 (kR0)− l jl (kR0)) (A3)

This expansion is valid for l / (Ωk0)−1. The spherical harmonic Y20 (β, φ) in (A2) multiplies Ylm (β, φ) in

the expansion (A1). These harmonics can be combined, yielding

Y20 Ylm = f lm−2 Yl−2,m + f lm0 Yl,m + f lm+2 Yl+2,m (A4)

The definitions of the f lm are given in Appendix B. Using (A4), the coefficient blm of Ylm (β, φ) in (A2) is

the expression in equation (41). With this information, we can compute the correlations amongst the blm.

Imposing the requirement that T̃rec(~k) are drawn from a statistically isotropic, gaussian distribution [25],

the two point function 〈blm b∗lm〉 to linear order in Ωk0 is

〈blm b∗lm〉 =

∫
dk

k

2

π
N2 (k)

(
j2
l + 2 Ωk0 jl dl f

lm
0

)
(A5)

where N2 (k) is the two point function
(
a2P bP
a20 b0

)2/3
〈∆Trec(~k) ∆Trec(~k)〉 of the temperature anisotropies ∆Trec

(as defined in [25]). We have again scaled out the piece that accounts for the red shift between the era

of recombination and the present epoch. The first term in the integrand is the usual contribution Cl to
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the power in the l mode. The second term, proportional to Ωk0 , arises from the anisotropic curvature. To

compute this term, we substitute for dl (from (A3)) in (A5). The resulting integral has the form

∫
dk

k

2

π
N2 (k) jl (kR0 jl+1 − l jl) (A6)

The second term in the above integrand is l Cl. For the first term,

Sl =

∫
dk

k

2

π
N2 (k) kR0 jl jl+1 (A7)

we use the fact that the jl satisfy the identity

jl+1 (kR0) + jl−1 (kR0) =
2l + 1

kR0
jl (kR0) (A8)

This implies

Sl + Sl−1 = (2l + 1)Cl (A9)

Physically, since there is roughly similar amounts of power in all the Cl, we expect Sl ∼ Sl−1. This implies

Sl = l Cl + ∆l Cl (A10)

where ∆l is an order one coefficient. ∆l can be computed by integrating (A7). This calculation requires

explicit use of the two point function N2 (k) at recombination and is beyond the scope of this paper.

Using (A10) in (A6) and (A5) , we have

〈blm b∗lm〉 = Cl

(
1 +

16

45

√
π

5
Ωk0 ∆l f

lm
0

)
(A11)

A similar calculation can be performed for the other correlators of the blm. In the expression (41) for

blm, each blm receives contributions from the spherical harmonics Ylm and Yl±2,m. Consequently, we expect

non trivial correlations only between modes separated by 2 units of angular momentum. This correlator is

〈blm b∗l+2,m〉 =
8

45

√
π

5
Ωk0

(
f l+2,m
−2 ∆l+2Cl+2 + f lm+2 ∆l Cl

)
(A12)

With this knowledge, we can compute the correlators of the alm. Equation (45) expresses the temper-

ature T0 (characterized by alm) observed today in terms of the temperature Trec (characterized by blm) at

recombination. Writing Trec in terms of the blm in (45), we get,

T0 (θ0, φ0) =
∑

lm

(
blm

(
Ylm − Ωk0

(
8

15

√
π

5
Y20 Ylm +

1

15
sin (2θ0) ∂θ0 Ylm

)))
(A13)
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The spherical harmonics in (A13) are all functions of (θ0, φ0). The products of the spherical harmonics

Y20 Ylm and sin (2θ0) ∂θ0 Ylm can be expressed as a linear combination of the Ylm. The term Y20 Ylm can be

expressed as the combination (A4), whilst sin (2θ0) ∂θ0 Ylm is expressed as

sin (2θ0) ∂θ0 Ylm = glm−2 Yl−2,m + glm0 Ylm + glm+2 Yl+2,m (A14)

The coefficients glm are defined in Appendix B. Using (A4) and (A14) in (A13), we get the expression (46)

for the alm in terms of the blm. The alm in (46) are expressed as a linear combination of blm and bl±2,m.

Consequently, to linear order in Ωk0 , we expect power in the modes 〈alm a∗lm〉 and 〈alm a∗l±2,m〉. Using (46),

the correlators (47) can be computed.

We now give the exact answers for the measures of statistical anisotropy computed approximately in

Eqn. (49):

A20
l,l = −4(−1)ll

(
1 + 3l + 2l2

)
Ωk0Cl(−3 + 2∆l)

45
√

5
√
l (−3− 5l + 10l2 + 20l3 + 8l4)

(A15)

A20
l+2,l = −

2(−1)l
√

2
15(1 + l)(2 + l)Ωk0(Cl(3 + l −∆l)− Cl+2(l + ∆l+2))

15
√

6 + 13l + 9l2 + 2l3
(A16)

Appendix B: Spherical Harmonics

In this Appendix, we give the definitions of the coefficients f lm, glm and hlm.

The f lm are defined by the relation

Y20 Ylm = f lm−2 Yl−2,m + f lm0 Ylm + f l+2,m
+2 Yl+2,m

They evaluate to

f lm−2 =
3
√

(2l − 3)(2l + 1)(l −m− 1)(l −m)(l +m− 1)(l +m)
√

5
π

4 (8l3 − 12l2 − 2l + 3)

f lm0 =

(
l2 + l − 3m2

)√
5
π

8l(l + 1)− 6

f lm+2 =
3
√

(2l + 1)(2l + 5)(l −m+ 1)(l −m+ 2)(l +m+ 1)(l +m+ 2)
√

5
π

4 (8l3 + 36l2 + 46l + 15)
(B1)

The glm are defined by the relation

sin (2θ0) ∂θ0 Ylm = glm−2 Yl−2,m + glm0 Ylm + glm+2 Yl+2,m
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They evaluate to

glm−2 = −
2(l + 1)

√
(l−m)(l+m)((l−1)2−m2)

4l2−4l−3

2l − 1

glm0 =
6m2 − 2l(l + 1)

4l(l + 1)− 3

glm+2 =
2l
√

(2l + 1)(2l + 5)(l −m+ 1)(l −m+ 2)(l +m+ 1)(l +m+ 2)

8l3 + 36l2 + 46l + 15
(B2)

The coefficients hlm (see equation (46))are defined by the addition of the effects from the energy warp

of the CMB by the anisotropic Hubble expansion and the warp of the angle θ0 at which the photon is

observed and the angle β at which it was emitted at the surface of last scattering. These evaluate to

hlm−2 =
2(l − 2)

√
(l−m)(l+m)((l−1)2−m2)

4l2−4l−3

30l − 15

hlm0 = − 2
(
l2 + l − 3m2

)

15(4l(l + 1)− 3)

hlm+2 = −2(l + 3)
√

(2l + 1)(2l + 5)(l −m+ 1)(l −m+ 2)(l +m+ 1)(l +m+ 2)

15 (8l3 + 36l2 + 46l + 15)
(B3)
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