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ABSTRACT

We study the effect of filter zero-point uncertainties on future supernova dark energy

missions. Fitting for calibration parameters using simultaneous analysis of all Type Ia

supernova standard candles achieves a significant improvement over more traditional fit

methods. This conclusion is robust under diverse experimental configurations (number

of observed supernovae, maximum survey redshift, inclusion of additional systematics).

This approach to supernova fitting considerably eases otherwise stringent mission cali-

bration requirements. As an example we simulate a space-based mission based on the

proposed JDEM satellite; however the method and conclusions are general and valid

for any future supernova dark energy mission, ground or space-based.

1. Introduction

The discovery of the acceleration of the expansion of the universe (Riess et al. 1998; Perlmutter et al.

1999) ranks as one of the most significant recent discoveries in cosmology. This acceleration is
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usually ascribed to a mysterious “dark energy” about which almost nothing is known although

there are many competing ideas; what is needed to distinguish between them and shed more light

on the nature of the acceleration is more and improved data. Observations of type Ia super-

novae (SNe Ia) have allowed the discovery of the acceleration of the expansion (Riess et al. 1998;

Perlmutter et al. 1999) and are currently the most established and best (Albrecht et al. 2006). The

method is described by many authors (Perlmutter et al. 1997; Riess et al. 1998; Perlmutter et al.

1999; Perlmutter & Schmidt 2003) and is based on the fact that SNe Ia are, to good accuracy,

standardizable candles (for a review of SNe Ia as standardizable candles see Phillips (2003);

Branch & Tammann (1992)). However current supernova observations are limited by systematic

uncertainties; while this was not a problem when the supernova sample was small and statisti-

cal uncertainties were the dominant ones, the growing sample size has already reached the point

when statistical and systematic uncertainties are of comparable magnitude, as in e.g. the combined

sample of 557 supernovae studied by Amanullah et al. (The Union2 compilation: 2010). As more

supernovae will be discovered in the future the need to better characterize and reduce systematic un-

certainties will become the dominant concern in dark energy experiments. This has been recognized

for several years, and the SuperNova/Acceleration Probe (SNAP) satellite1(SNAP Collaboration:

Aldering et al. 2004) was proposed as a systematics-controlled space-based experiment that would

put much tighter constraints on dark energy than current and near future experiments by following

≈ 2000 supernovae out to zmax ≈ 1.7. More recently NASA and the Department of Energy have

announced the Joint Dark Energy Mission (JDEM) 2,3 as a future space-based mission to study the

nature of dark energy by employing a combination of techniques including supernovae. Therefore it

is important to characterize the sources of systematics of future supernova experiments; studies of

this kind have already appeared (Kim et al. 2004; Kim & Miquel 2006; Nordin et al. 2008; Linder

2009) and this paper aims at building upon and expanding them. Studies using real data-sets have

also appeared: for example Kilbinger et al. (2009) use the SNLS supernovae in (Astier et al. 2006)

to evaluate the effect of zero-point uncertainties on the final cosmology.

The two most important sources of systematic uncertainty in dark energy experiments that

use supernovae are the dimming by dust in the host galaxy and uncertainties in the flux calibra-

tion, specifically the filter zero-points, as seen in recent cosmological analyses such as Astier et al.

(2006), Wood-Vasey et al. (2007), Kowalski et al. (2008), Hicken et al. (2009), Amanullah et al.

(2010). The problem of host-galaxy dimming is also being aggressively pursued, by e.g. targeting

supernovae in rich clusters of galaxies (Dawson et al. 2009); we will include it statistically in our

analysis but will not go into its systematics. Properly taking into account zero-point uncertain-

ties is nontrivial because their causes are numerous, ranging from any inaccuracy in the response

function of telescope, filter, or detector (from now on collectively indicated as “channel”), or the

1http://www.snap.lbl.gov/

2http://jdem.gsfc.nasa.gov/

3http://jdem.lbl.gov/

http://www.snap.lbl.gov/
http://jdem.gsfc.nasa.gov/
http://jdem.lbl.gov/
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atmosphere for ground-based experiments, to uncertainties in the calibration procedure. While

accurately characterizing all these is obviously an experiment-dependent problem, our aim is to

provide a more general way to deal with them.

Starting with a simple model of zero-point uncertainty, we perform a complete end-to-end

simulation of a supernova dark energy mission, propagating zero-point uncertainties through the

simulation chain, and we evaluate its effects on the final cosmology fit. We do not aim at a detailed

physical modelling of particular causes of uncertainty such as imperfect knowledge of the standard

stars used to calibrate the zero-points or of the filter response functions, but rather at characterizing

their overall effect, whatever their underlying reasons, with a set of zero-points representing the

contribution of these important sources of systematics to the final error budget. This will serve

as a guide to designers of how much specific components (telescope, filters, detectors, calibration

procedure and so on) could be imperfectly known and still achieve the mission objectives.

Our starting point is the result by Kim & Miquel (2006, hereafter KM). KM introduce a new

model of filter zero-point uncertainty and show that, due to the standardizable candle nature of

SNe Ia, it is possible to treat these uncertainties as parameters that can be included with other

parameters in a cosmology analysis. More precisely, KM model the observed peak magnitude m

of a supernova as m = µ + M + Other + Z where µ is the distance modulus, M is the absolute

magnitude after standardization (and therefore the same for all supernovae), “Other” indicates

all residual effects that influence m, such as host galaxy extinction, and Z is a new fit parameter

for zero-point offsets to be fit with all the other parameters in the model. It is important to

note that modelling zero-point offsets as fit parameters would not be possible if SNe Ia were not

standardizable candles because M would not be the same for every supernova. KM show that by

fitting for all the supernovae distance moduli simultaneously it is possible to achieve a significant

reduction in the final uncertainties in the cosmological parameters with respect to the traditional

case when supernova distances are fit one by one and calibration uncertainties are then included

in the total error budget. In the rest of the paper we will refer to the KM fitting approach as

“simultaneous fit” and to the traditional approach as “SN by SN fit”.

This work expands KM in several ways:

1. KM carry on a Fisher matrix analysis of their model; we perform a complete end-to-end

simulation of a supernova dark energy mission, with a realistic modelling of all its aspects.

2. KM use a particular z distribution, in which all supernovae are placed at those special redshifts

that have zeroK-correction. At those z the improvement in mission performance is maximum;

we study a more realistic z distribution.

3. We include an intrinsic color dispersion.

4. We investigate whether our conclusions are robust with respect to several changes in mission

parameters (number of supernovae, maximum redshift, inclusion of additional systematics);

our simulation tool allows us to explore a much wider parameter space than KM.
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It is important to point out that the KM model that we adopt here is applicable to a generic future

dark energy mission based on supernovae; however, for concreteness we will present our results by

considering a specific example: the supernova survey of the future space-based dark energy mission

based on the proposed SNAP satellite. We will also assume that a nearby sample of supernovae,

whose characteristics are based on the expected Nearby Supernova Factory sample4 (Aldering et al.

2002; Copin et al. 2006), is available: specifically this sample is comprised of 316 supernovae with

0.03 ≤ z ≤ 0.08.

The paper is organized as follows: Section 2 describes the KM model and its implementation in

our simulation tool, Sections 3 and 4 describe our results and Section 5 summarizes our conclusions

and discusses ways the work can be expanded. In what follows we will use the terms “mission” and

“experiment” interchangeably.

2. Supernova model and implementation

Our analysis begins with a set of supernova statistics (peak magnitudes and stretches) in

different bands, representing both the distant sample that our simulated mission will observe and

the nearby sample that we assume already available; these statistics are obtained in the following

way. For each supernova a redshift is chosen from a specified redshift distribution and fluxes and

their uncertainties are computed by convolving spectral templates from Hsiao et al. (2007) with

the channel throughputs; this results in a set of simulated supernova fluxes in different bands at

different epochs. The flux variability due to Poisson noise is simulated by drawing the fluxes from

a Gaussian distribution, which is appropriate in the limit of high expected numbers of photons.

Each band is then fit independently of the others, following Perlmutter et al. (1999), to give, among

other parameters, an estimated flux at maximum and a stretch in each band; the covariance matrix

is also computed and propagated later. Up to and including the stage of light curve fitting, the

two approaches, simultaneous fit and SN by SN fit, do not differ and they are carried out in the

same way by our analysis. We then fit for the distance moduli (hereafter “µ fit”); this is the step

where the differences in the two approaches are manifest, and we describe the models we used for

each approach in more detail in the next two subsections. We then describe the data error model

used both by the µ fit and the cosmology fit, the cosmology fit itself, which again is performed in

the same way for simultaneous fit and SN by SN fit, and finally the mission parameters we use. In

the rest of the paper NSN will denote the number of supernovae observed by the mission, excluding

the nearby sample and N = NSN +NNearby will denote the total number of observed supernovae.

4http://snfactory.lbl.gov/

http://snfactory.lbl.gov/
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2.1. Simulating the zero-point uncertainty in the SN by SN fit: a Monte Carlo

approach

In this section we present how the SN by SN analysis is performed. After converting fitted

peak fluxes to magnitudes we model these and the stretches as:

mi
k = µi + α(Si − 1) +M(zi)k +AV

ia(zi)k +BV
ib(zi)k

sik = Si, (1)

with i = 1 · · ·N ; for each supernova i, k belongs to the subset of {1 · · ·NF} that covers restframe

optical and near infra-red (NIR) wavelengths and NF denotes the number of filters used in the

mission; in our simulations we assume NF = 8. The meaning of the symbols in Equations 1 is as

follows, distinguishing between input data, model parameters, and known functions.

1. Input data from simulations:

(a) mi
k denotes the simulated peak instrumental magnitudes of supernova i in observer

frame band k obtained after light curve fitting.

(b) sik denotes the stretch of supernova i in observer frame band k after light curve fitting.

2. Model Parameters:

(a) µi denotes the distance modulus of supernova i.

(b) Si is a weighted stretch parameter for supernova i used to fit for µi; unlike sik which

depends on the observer frame band, there is a single parameter Si for each supernova.

(c) AV
i andBV

i ≡ (AV /RV )
i are extinction parameters (CCM: Cardelli, Clayton, & Mathis

1989).

3. Known functions:

(a) M(zi)k is the absolute peak magnitude of a S = 1 supernova at redshift zi in observer

frame band k, given by:

M(zi)k = −2.5 log

(
∫

dλf((1 + zi)λ)Tk(λ)

)

(2)

where f(λ) is a template spectrum from Hsiao et al. (2007) and Tk(λ) is the throughput

of channel k, with λ the observer frame wavelength.

(b) a(zi)k and b(zi)k model host galaxy extinction and are computed in a manner similar to

M(zi)k:

a(zi)k = −2.5 log

(
∫

dλaCCM((1 + zi)λ)f((1 + zi)λ)Tk(λ)

)

b(zi)k = −2.5 log

(
∫

dλbCCM((1 + zi)λ)f((1 + zi)λ)Tk(λ)

)

(3)
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where aCCM(λ) and bCCM(λ) are known functions of wavelength, describing host galaxy

extinction; we assume a CCM extinction law.

(c) α is a fixed dimensionless constant; we assume α = −1.7.

For each supernova i = 1 · · ·N we fit for µ, S, AV , and BV .

Our chosen value for α was based on older values and is somewhat larger, in absolute value,

than those found by recent analyses of supernova data: for example Kowalski et al. (2008) find

α = −1.46± 0.16 (note that with our sign convention in Equations 1 α < 0) for the supernovae in

the z > 0.2 Union subsample, which is the relevant one since in our subsequent analyses we will

assume z > 0.3. This may result in a conservative parameter estimation in all our simulations but

would not change our conclusions.

We now include zero-point uncertainties, which are not described in the system of Equations

1. The usual approach to incorporating zero-point uncertainties is to estimate them and include

them in the total error budget (see Amanullah et al. (2010) for an attempt at jointly modelling

zero-point uncertainties and other systematics taking their covariances into account). Following

KM we implement the usual approach by modelling the zero-point uncertainty in each bandpass k

via a peak magnitude shift, described by a parameter Zk, for supernova i in observer frame band

k.

mi
k → mi

k + Zk, ∀i (4)

where Zk is a random shift drawn from a Gaussian distribution with 0 mag mean; the value of its

standard deviation quantifies our prior knowledge of the filter zero point uncertainty, σZ . Since the

light curve fitter fits for a peak flux, f0k = 10−0.4mk(max), the magnitude shift is actually converted

to flux before being applied, according to the usual expression:

f0k → f0k × 10−0.4Zk ., (5)

The same magnitude shift Zk affects all supernovae that are observed through filter k; since this

band in the restframe varies from supernova to supernova depending on their redshifts, the same

Zk affects different supernovae in different ways, introducing a correlation between their distance

moduli µ. Neglecting for the moment other sources of variability, for supernova i we may write:

µi = mi
k −M(zi)k, where M(zi)k is defined in Equation 2. Then as mi

k → mi
k + Zk =⇒ µi →

µi + Zk; the µs become correlated via the Zk parameters and their covariance matrix becomes

non-diagonal.

The contribution of the filter zero-point uncertainty to the overall µ covariance matrix is

estimated via a Monte Carlo approach (MC): at each MC realization a different set of magnitude

shifts Zk, one for each filter, is drawn from a Gaussian distribution with 0 mag mean and a chosen

standard deviation; we run the MC with standard deviations ranging from 0.001 mag to 0.05 mag;

each MC run is iterated 500 times.

In principle the MC should be run on the actual data sample; however the large dimension of

future datasets (up to 2000 supernovae in our simulations) makes this approach impractical. We
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chose instead to run the MC on a smaller sample of supernovae, to derive a µ covariance matrix for

this smaller dateset, and to calculate the µ covariance matrix for the larger dataset by interpolating

the matrix computed for the smaller one.

More specifically we proceed as follows:

1. Generate a set of supernovae, labelled by a, at redshifts za = 0.01 . . . 1.7 in increments of 0.01;

each supernova has a stretch S = 1 and no extinction so that the only source of variation in

the dataset is the one introduced by the filter zero-point uncertainty.

2. Fit the light curves of these supernovae and obtain the flux at maximum f0k in filter k.

3. Run the MC: at each realization v a different set of magnitude shifts Zk is generated, converted

to flux, and applied to f0k as in Equation 5.

4. Fit for the distance moduli µa
k at each realization v; repeat steps 3 and 4 for 500 realizations.

5. At the end of the MC, compute a µ covariance matrix in the usual way: for a pair of supernovae

denoted by a, b:

(VZP)ab = 〈µaµb〉 − 〈µa〉〈µb〉, (6)

where

〈µaµb〉 =
1

NNR

NNR
∑

v=1

µa
vµ

b
v (7)

〈µa〉 =
1

NNR

NNR
∑

v=1

µa
v

and NNR = 500.

The covariance matrices thus computed are stored for use with the full dataset. For each pair

of supernovae i, j, at redshifts zi, zj , in the full dataset, an entry of (VZP)ij is computed by

spline interpolating the matrix defined in Equation 6 between redshifts za, zb and za+1, zb+1 with

za 6 zi 6 za+1 and zb 6 zj 6 zb+1; this matrix is added to the statistical µ covariance matrix, Vµ

and to any other covariance matrix describing some systematic, VSys, such as the systematic model

described in Linder & Huterer (2003).

Figure 1 shows, in the upper panel, the square root of the diagonal elements of the covariance

matrix computed via Equations 7, σa ≡
√

〈(µa)2〉 − 〈µa〉2, for different values of the zero-point

prior σZ . The high values of these elements compared with the values of the prior, especially at

high z (e.g: σa ≈ 0.5 mag at z ≈ 1.6 for σZ = 0.05 mag) is explained by the dust model we adopted:

a CCM model in which we fit both for AV and for BV ≡ AV /RV . As an alternative one could fix

RV and fit only for AV when running the MC; we tried this as well, fixing RV = 3.1, and obtaining

values of σa a factor of 3.5 lower than those obtained when fitting for BV ; these results are shown
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in the lower panel of Figure 1, plotted on the same scale as the upper panel to show the difference.

In the results we report later for the SN by SN fit we always use covariance matrices obtained by

fitting BV in the MC. In both cases the curves are roughly proportional to each other by the ratio

of their zero-point priors.

2.2. Simulating the zero-point uncertainty in the simultaneous fit

The model we adopt to describe our simultaneous µ fit, taken from KM, is the following: for

N observed supernovae, with supernova i observed in a set of filters k = 1 · · ·NF, we have:

m1
k = µ1 + α(S1 − 1) +M(z1)k +AV

1a(z1)k +BV
1b(z1)k + Zk

s1k = S1

...

mN
k = µN + α(SN − 1) +M(zN )k +AV

Na(zN )k +BV
N b(zN )k + Zk

sNk = SN

Zobs
k = Zk, (8)

The meaning of the symbols that also appear in Equations 1 is the same and the effect of the

filter zero-point uncertainty is modelled by the set of parameters Zk, one for each filter. This

contrasts with the SN by SN case where the Zk are treated as random magnitude shifts chosen

from a defined probability distribution and added to the peak magnitudes. Zobs
k are measured

zero-point values and their uncertainty is described by a measurement covariance matrix VZ ; in the

following we assume Zobs
k = 0 mag. The covariance matrix VZ may or may not be diagonal; the

diagonal case VZ = diag(σ1
2 · · · σNF

2) (for NF filters) amounts of course to assuming that the filter

zero-points uncertainty are all uncorrelated. This simple assumption is made in KM and, while it

is too simplistic, deriving a more realistic model would require a detailed knowledge of the actual

experiment. In our analysis we will not try to do that but will rather consider uncorrelated zero-

points (but see Samsing & Linder (2010) for an attempt to model the effect of correlated zero-point

uncertainties between filters via Principal Component Analysis). In writing down Equations 8 we

have implicitly assumed that the zero-points do not vary in time and therefore can be represented by

a single set of Zk parameters. This is a reasonable assumption for the space-based mission we will

consider in our simulations, but may not be not be for other experiments; for example in a ground-

based experiment zero-points may be expected to vary with atmospheric conditions. However,

even in the case of time-varying zero-points the KM can still be used; in the ground-based case

mentioned above one may introduce separate sets of Zk for a set of different atmospheric conditions

and assign a set to each supernova depending on these conditions on the date of observation; other

cases where this approach can be used are modelling changes in the instrument during a very long

mission or combining different experiments.

Equations 8 form a linear system of 2〈NObs〉 × N observations and NPar ≡ 4 × N + NF
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Fig. 1.— Zero-point covariance matrices standard deviations σa derived from MC, for different

values of the zero-point priors, as a function of redshift. Upper panel: fitting for BV ≡ AV /RV .

Lower panel: fixing RV = 3.1. The two panels have the same scale to show how fitting for BV

significantly increases σa.
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parameters, where 〈NObs〉 is the mean number of observed bands used in the fit per supernova

(≈ 5 in our simulations), the factor of 2 is there because for each band we have a peak magnitude

and a stretch, and the factor of 4 is there because each supernova is described by four parameters

µ, S,AV , BV in addition to the zero-point parameters Zk. For a typical stage IV space-based dark

energy mission this may translate to ≈ 22000 observations and ≈ 9000 parameters; fortunately the

Fisher matrix of the system of Equations 8, whose inversion is the main computational hurdle in

implementing the KM model, is very sparse since the only non-zero entries come from 4×4 matrices

along its diagonal, corresponding to the supernova parameters, and from the entries whose row

or column index correspond to the zero-point parameters that introduce correlations among the

supernovae; therefore the total number of non-zero entries scales as N , not N2; the solution of the

system of Equations 8 can therefore be accomplished in about one hour on a 3 GHz desktop with

16 GB of memory.

Note that when VZ → 0 the supernovae in the system of Equations 8 become decoupled and the

model reduces to the traditional SN by SN fit; the cosmology fit results of the two approaches must

then be the same; mathematically the entries in the Fisher matrix whose row or column indices

correspond to the zero-point parameters Zk become zero and the Fisher matrix itself becomes block

diagonal, with a 4× 4 non zero block for each supernova.

2.3. Modelling the input data uncertainties

We have so far focused on the zero-point uncertainties, but other sources of uncertainty affect

the measured magnitudes in each band. The most important of these are: measurement errors due

to Poisson noise (which was approximated as a Gaussian in our simulation tool), a possible color

uncertainty, any remaining statistical uncertainty, and any remaining systematic not described by

our model.

We model the remaining statistical uncertainties by assuming an intrinsic dispersion σDisp =

0.1 mag for each supernova in the dataset after stretch and color correction; this value is consistent

with values of intrinsic dispersion used by recent surveys such as ESSENCE (Wood-Vasey et al.

2007) and is also used by the Dark Energy Task Force (DETF: Albrecht et al. 2006) for stage IV

experiments such as JDEM.

We then include the possibility of an intrinsic color dispersion, which is not modelled by

adding the same intrinsic dispersion to each supernova, since this affects each band in the same

way. Instead we model an intrinsic color dispersion by adding a new, in principle non-diagonal

covariance matrix to the diagonal Poisson measurement covariance matrix before fitting for the

model described by Equations 8. Therefore we have the following model of input data uncertainties:

VSN Data = VPoisson+Vδc . For simplicity we will consider only Vδc = diag(δ2c ) where δc is a constant.

Note that in spite of its form Vδc affects supernovae at different z, and therefore observed in a

different number of bands, differently: this color uncertainty model contributes to a magnitude
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uncertainty of ∼
√
Nobsδc for a supernova with Nobs measured bands. In our analyses we will

consider both δc = 0 and δc 6= 0.

After performing the linear µ fit described by Equations 8 with VSN Data as data covariance

matrix, the covariance matrix from the fit, Vµ, is added to the matrix representing the 0.1 mag

supernova intrinsic dispersion described above, obtaining the matrix VCosmology Fit = Vµ + VDisp,

where VDisp = diag(0.1 mag). This is then used as the data covariance matrix for the cosmology

fit described in Subsection 2.4 below. The cosmology fit is also the place where possible additional

systematics are taken into account, by adding an appropriate covariance matrix to VCosmology Fit (see

Section 2.4). The SN by SN case is handled slightly differently: for each supernova i, the distance

modulus µi is derived independently by fitting the model described by Equations 1, along with a

covariance matrix V i
µ that does not include the effect of zero-point uncertainties. The uncertainties

in µi derived from V i
µ are combined in a single diagonal matrix and zero-point uncertainties are

included by adding a non-diagonal matrix obtained by interpolation of the matrix VZP, obtained

from the MC, as described in Subsection 2.1; VDisp and possibly other systematics are then included,

and the cosmology fit is performed.

2.4. Cosmology fit

We fit to a flat cosmology with Dark Energy Equation of state (EOS) parametrized by w(a) =

w0 +wa(1− a) where a = 1/(1 + z) is the scale factor, with a prior on the reduced distance to the

last scattering surface (d̃LSS) at zLSS = 1089 with a 0.2% fractional uncertainty where:

d̃LSS =
√

Ωmh2
∫ zLSS

0

dz
√

Ωm(1 + z)3 + (1− Ωm) exp (3
∫ z
0

1+w(z′)
1+z′ dz′)

. (9)

This gives an excellent representation of the expected Planck CMB constraints for combining with

supernova data (Linder & Robbers 2008; de Putter et al. 2009).

We chose a fiducial flat ΛCDM cosmology with Ωm = 0.3, consistent with the value found

by Kowalski et al. (2008) when fitting for such a cosmology. For presenting our results we use

the DETF Figure of Merit (FoM: Albrecht et al. 2006) as the reciprocal of the square root of

the determinant of the covariance matrix after marginalization to w0, wa. This now allows us

to investigate the effect of zero-point uncertainties in supernova experiments to understand dark

energy.

2.5. Mission simulation

While we have so far been quite general in describing our zero-point uncertainty model, we

now focus on a specific example of a mission. We choose to simulate a space mission based on



– 12 –

the proposed SuperNova Acceleration Probe5 (SNAP) satellite (Aldering et al. 2004), but with a

different configuration than the one described there. The most important differences with the

original SNAP proposal concern the telscope aperture, the number of filters, the maximum survey

redshift, and the redshift distribution; these choices are based (at the time this paper is written)

on what the future JDEM mission may look like. The most important mission parameters we used

are reported in Table 1.

The throughputs of the eight channels are shown in Figure 2; these are the transmission of the

telescope+filter+detector combinations.

3. Results

We use our simulation tool to explore a larger parameter space than KM. In particular we

want to:

1. Compare the two fit methods as a function of zero-point uncertainties for a baseline mission,

modelled on the SNAP satellite, with realistic z distributions. We show that the simultaneous

fit greatly outperforms the SN by SN fit; therefore we will concentrate on the simultaneous

fit in the subsequent analyses.

2. Investigate how the FoM, for the simultaneous fit, varies as mission parameters are changed;

in particular we focus on the effects of

• maximum survey redshift zmax.

• number of supernovae observed by the mission, NSN.

3. Include additional systematics. We will focus on the systematics model described in Linder & Huterer

(2003) (hereafter referred to as “LH systematic”).

5http://snap.lbl.gov

Table 1. Mission parameters.

Telescope aperture 1.5 m

Exposure time 1200 sec in four dithered exposure of 300 sec each.

Cadence 4 days

Filters 5 in the optical, 3 in the NIR

Observed SNe Ia 2000 with flat z distribution

http://snap.lbl.gov
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Fig. 2.— Channel throughputs for the eight channels (Five optical and three NIR) assumed in the

simulation; the transmissions refer to the telescope+filter+detector combinations.
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3.1. Making the case for simultaneous fit: results for the baseline mission

We now present the first main result of the paper: fitting for all supernovae at once vastly

outperforms the traditional SN by SN fitting, in the sense that the FoM decreases much more slowly

with increasing zero-point uncertainties in the simultaneous fit case. We present results for realistic

mission parameters and four different values of the color uncertainty δc: δc = 0, 0.005, 0.01, and

0.02 mag; the zero-points Zk are assumed uncorrelated; we always assume zmax = 1.5. Our results

are shown in Table 2.

Several things are worth noting in Table 2:

1. In the case of no zero-point uncertainty the two methods give the same result as they must,

since in this case they are mathematically equivalent.

2. The simultaneous fit vastly outperforms the traditional SN by SN both for δc = 0 and for

the more realistic case δc 6= 0. This point was already made by KM, but it is reassuring

to see that we can confirm their result for a more realistic mission architecture and with a

more sophisticated analysis. Therefore the numbers in Table 2 strongly argue for adopting

the simultaneous fit as a general analysis method for future supernova surveys.

3. For the not very realistic case of δc = 0 mag the FoM for the simultaneous fit is almost flat

as the zero-point varies. This is because in this case self-calibration works so well that the

0.1 mag intrinsic dispersion dominates the error budget. In the more realistic case of δc 6= 0

the simultaneous fit is still superior: the FoM does decline modestly because of the interaction

of δc with Zk each of which affects bands rather than supernovae as a whole.

To gain more insight into the working of this self-calibration mechanism we consider how

the final statistical uncertainties on the fit parameters Zk are related to the uncertainties on the

zero-point priors σZ . Quantitatively we consider the subcovariance matrix of the Z parameters

alone obtained from the µ fit: its determinant det(Z) is simply the product of the eigenvalues of

this submatrix and det(Z)1/NF , where NF = 8, should give an estimate of the typical statistical

uncertainty in the fit parameters Z after the simultaneous µ fit; we call this determinant σZ Fit to

emphasize this point. We compare σZ Fit with the uncertainty on the zero-point prior before the fit,

σZ , in Figure 3; the four lines show results for δc = 0, 0.005, 0.01, 0.02 mag. The figure shows that

for δc = 0, σZ Fit grows very slowly as a function of σZ : for σZ = 0.05 mag, σZ Fit = 2×10−4 mag;

this explains the almost constant FoM as a function of σZ for δc = 0 mag reported in Table 2. For

δc 6= 0 σZ Fit is higher by a factor of 3 − 5 than the δc = 0 mag case even at low σZ and grows

more rapidly as σZ increases, but it is still much smaller than σZ : for example, for δc = 0.02 mag,

at σZ = 0.05 mag, σZ Fit = 2× 10−3 mag, a factor of 10 higher than the value for δc = 0 mag, but

more than 10 times smaller than σZ . Therefore Figure 3 shows both why δc 6= 0 decreases the FoM

as σZ increases and why the simultaneous fit still outperforms the SN by SN fit.

Because of the large parameter space we are exploring it is convenient to visualize our results
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– 16 –

as contour of constant FoM as a function of two parameters at the same time. An interesting

combination of parameters to consider is given by the zero-point prior σZ and the color uncertainty

δc: their relative interplay indicates whether more effort should be expended in calibration or

in understanding supernova colors. Figure 4 shows contours of constant FoM as a function of

the uncertainty on the zero-point prior σZ and the color uncertainty δc. The figure shows, not

surprisingly, a trade off between these two parameters. What is more interesting is the nearly

vertical shape exhibited by the graphs, indicating that it pays off to tightly control the color

uncertainty: for example, to achieve a FoM of 240, limiting δc to / 0.013 mag results in very

lax requirements on the zero-point uncertainty (between 0.01 mag − 0.05 mag), whereas poorer

control of the color uncertainty δc ' 0.013 mag imposes strong requirements on the zero-point

(/ 0.01 mag); similar considerations hold for other FoMs. Therefore we see the existence of two

regimes: the high σZ regime where tighter control of color uncertainty is more important, and

the low σZ regime, where tighter control of zero-point prior is more important; the transition

between these regimes occurs when δc ≈ σZ . For δc < Zk (high σZ regime) the decline in the

FoM is roughly 20(δc/0.01)% independent of Zk; in this regime the data themselves determine

the zero-point more precisely via self-calibration and tighter control of color uncertainty lead to

further improvements whereas tighter zero-point calibration is not essential. When σZ < δc (low σZ
regime) self-calibration is not dominant and tighter zero-point calibration is necessary to achieve

higher FoMs.

This first conclusion for the baseline mission can therefore be drawn from Table 2 and Figure

4: in order to have an impact above self-calibration alone, filter zero-point uncertainties must be

similar to or better than the intrinsic color dispersion.

4. Exploring the mission parameter space

The second aim of this paper is to explore trades in mission design. In this section we wish

to explore variations in several parameters from the baseline mission presented in Section 3, ana-

lyzing the impact on the results. In particular we focus on two crucial parameters: the maximum

survey redshift zmax and the number of observed supernovae NSN, while keeping the remaining

parameters unchanged; we are particularly interested in different combinations of parameters that

give comparable FoMs. This is a particularly interesting combination of mission parameters to

consider because spectroscopically following up supernovae at high z is very time consuming since

the required time scales as ≈ (1+z)6; the parameters in Table 1 remain unchanged but the mission

duration varies as zmax and NSN change.

We also wish to consider other sources of systematic uncertainty in addition to zero-point. A

much used model of systematic uncertainty in supernova surveys has been presented by Linder & Huterer

(2003) who introduce a redshift-dependent systematic that models, e.g., a non-standard luminosity

evolution or time-varying host-galaxy dust extinction. Their model, which we will refer to as the

LH systematic, assigns to each supernova in a bin of central redshift zb and total width 0.1 an
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Fig. 4.— Contours of constant FoM for different zero-point prior σZ and color uncertainties δc. The

straight line at 45◦ shows the points where zero-point prior and color uncertainty are equal; note

that the line intersects the contours roughly where they change their slope from almost vertical

(σZ > δc) to almost horizontal (σZ < δc). The case σZ > δc is the self-calibration regime: the data

themselves determine the zero-point more precisely than an accurate zero-point calibration. In the

case σZ < δc a tighter control of zero-point uncertainty is necessary to improve the FoM.
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equal share in quadrature of an uncertainty dm = 0.02(1.7/zmax)(1+zb)/2.7. Adopting this model,

Linder & Huterer (2003) show that maximum survey redshifts of ' 1.5 are necessary to convinc-

ingly see evidence of a variation in w. The same model is used by Kim et al. (2004) to describe a

generic mission systematic, not necessarily due to time-varying host-galaxy extinction. We use the

LH systematic in this spirit, namely to describe any other source of systematic not captured by our

zero-point uncertainty model, and we repeat the same set of simulations described in this subsection

with the LH systematic added. The covariance matrix for the cosmology fit VCosmology Fit is thus

given by: VCosmology Fit = Vµ + VDisp + VLH, and the LH systematic is given by:

dm = 0.01
1 + zb
2.7

(10)

that is, we divide the LH systematic for zmax = 1.7 by two since we include calibration uncertainty

separately. It is important to note that by adding VLH we are implicitly assuming that the LH

systematic is uncorrelated with the other systematics; a more detailed treatment should aim at

properly taking into account possible correlations; an example is described by Amanullah et al.

(2010).

We now present our results obtained considering the NSN, zmax, σZ combination, keeping in

turn one of these parameters fixed, and varying the other two. In all cases we will report tables of

FoM and contour plots of constant FoM made from these tables; all results will be given with and

without the LH systematic. We will also assume in the following δc = 0.01 mag. When we keep

NSN fixed we choose NSN = 2000; when we keep zmax fixed we choose zmax = 1.5.

4.1. Influence of maximum survey redshift zmax

We consider surveys with zmax = 1.1, 1.2, 1.3, 1.4, and 1.5 always keeping the other mission

parameters fixed. The results are reported in Table 3 with and without including the LH systematic;

contour plots of constant FoM as a function of zmax and σZ at constant NSN = 2000 and δc =

0.01 mag are shown in Figure 5 without including the LH systematic in the upper panel and

including it in the lower panel.

The upper panel of Figure 5 shows the existence of two regimes divided by FoM ≈ 250: for

FoM / 250 the contours are almost vertical, wheres for FoM ' 250 they become almost horizontal.

The former is the self-calibration regime, where, as remarked, the data themselves determine the

zero-point precisely; however self-calibration is less effective with increasing redshift because fewer

filter observations are used for each supernova as zmax increases. The figure suggests that if there

is no redshift dependent systematic then not surprisingly zmax becomes less important: a FoM

= 250 could be achieved for σZ = 0.05 mag and zmax = 1.3. For FoM > 250 we are not in the

self-calibration regime anymore and to achieve FoMs this high zero-point uncertainties must be

tightly controlled (σZ / 0.01 mag).

The inclusion of the redshift dependent LH systematic however changes the conclusions above
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maximum survey redshift zmax. We assume NSN = 2000 and δc = 0.01 mag. Upper panel: the LH

systematic is not included. Lower panel: the LH systematic is included.
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as shown in the lower panel of Figure 5. Apart from the obvious hit in the FoM it introduces

(reducing it by ≈ 70: clearly the LH systematic is dominant), there is also continuous improvement

in FoM with higher zmax. As expected, one can trade off σZ and zmax: a FoM ≈ 200 can be

achieved either by σZ ≈ 0.01 mag and zmax ≈ 1.5 or σZ ≈ 0.003 mag and zmax ≈ 1.3. The lower

maximum survey redshift, with its reduced spectroscopic time, can achieve similar results if much

more stringent zero-point requirements can be met.

4.2. Influence of the maximum number of observed supernovae NSN

We consider surveys with NSN = 1500, 1800, 2000 while keeping zmax = 1.5. Table 4 shows

our results with and without including the LH systematic. Figure 6 shows the contour plots made

from Table 4 without including the LH systematic in the upper panel and including it in the lower

panel.

In the upper panel of Figure 6 we again see the existence of the two regimes distinguished by

FoM ≈ 250 we noted in Figure 5; this shows that that the larger the number of supernovae per

redshift bin the better the self-calibration can be done. The figure shows that achieving FoM ' 250

requires a tight control of zero-point uncertainties σZ / 0.01 mag, at least if one considers NSN ≤
2000. (We did not consider NSN > 2000 because such numbers would probably be unrealistically

high for a future space-based mission). For FoM / 250 on the other hand zero-point requirements

are much less severe. The existence of these two regimes can once again be explained by self-

calibration: for FoM / 250 and σZ ' 0.02 mag we are in the self-calibration regime and the

contours are therefore roughly vertical, indicating that the FoM is quite insensitive to the actual

value of the zero-point prior σZ . In this regime it pays to increase NSN; an increase of ≈ 10 in FoM

can be achieved by observing ≈ 150 more supernovae, almost regardless of σZ . For FoM ' 250 and

NSN ≤ 2000 we are not in the self-calibration regime anymore and the contours are almost flat:

a tighter control of zero-point uncertainties is necessary to achieve higher FoMs. Figure 6 shows

that in this regime an increase of ≈ 500 supernovae, from 1500 to 2000 results in only less than

≈ 0.01 mag relaxation in the σZ requirement.

Including the LH systematic does not change this conclusion much: from the lower panel of

Figure 6 we again notice the overall decrease of about ≈ 70 in FoM and we see that a tight control

of zero-point uncertainties (σZ / 0.01 mag) is required to achieve FoM ' 200. Interestingly, for

σZ ' 0.02 mag, to achieve an increase in FoM ≈ 10, additional ≈ 220 more supernovae are required

(at least if uniformly distributed), compared with ≈ 150 without including the LH systematic; this

conclusion argues for observing modest numbers of supernovae at high z rather than many at lower

z, consistent with the conclusions of Linder & Huterer (2003).
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Fig. 6.— Contours of constant FoM for different uncertainties on the zero-point prior σZ and

maximum number of supernovae NSN. We assume zmax = 1.5 and δc = 0.01 mag. Upper panel:

the LH systematic is not included. Lower panel: the LH systematic is included.
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4.3. Varying NSN and zmax simultaneously

To further investigate the interplay of NSN and zmax, we varied them simultaneously while

keeping the uncertainty on the zero-point prior σZ fixed at 0.005 and 0.01 mag. Again the inclusion

of LH systematic changes the conclusion in each case.

The results are shown in Table 5; the contour plots drawn from the data in the table are

shown in Figures 7 and 8; the upper panels show results without including the LH systematic, the

lower panels including it. Both panels in these figures show, unsurprisingly, a tradeoff between

NSN and zmax. Without any redshift dependent systematic, for the higher FoMs (FoM ' 250 for

σZ = 0.005 mag, FoM ' 245 for σZ = 0.01 mag) going to higher zmax is not only ineffective, but

even counterproductive: the optimum zmax is about 1.4. The inclusion of the LH systematic, shown

in the lower panels of the figures, changes this conclusion, showing once again the importance of a

high zmax: only high zmax can achieve high FoM. Only if one is willing to settle for low FoM can

one lower zmax and compensate by an increase in NSN. We finally note that with the simultaneous

fit calibration uncertainties are a subdominant component to LH in the error budget, whereas with

the the SN by SN fit calibration uncertainties are dominant.

5. Discussion and conclusion

Adopting the general method of modelling zero-point uncertainties introduced by KM we have

carried out simulations of a future space-based supernova dark energy experiment with the main

aim of assessing the influence of zero-point uncertainties on its overall performance. We have

confirmed KM results for a more realistic experiment: fitting for all supernovae at once results

in a greatly improved mission performance over the traditional SN by SN fitting. Whereas this

effect may not be evident in today’s surveys involving a few hundreds of supernovae and few

available bands, it will become very significant for future surveys. We explored a representative

section of the mission parameter space paying particular attention to how zero-point requirements

can be traded off with other mission parameters; in particular we have shown that in general

going to higher redshift results in less stringent zero-point requirements, even without considering

other form of systematic. We stress once again that, while our results are for a specific possible

space-based mission, the KM model itself is more general. The inclusion of a redshift dependent

systematic such as the LH systematic greatly affects the mission performance, both by significantly

degrading the FoM and by making the case for higher redshift even stronger; it is therefore extremely

important to better characterize other forms of systematic by the time future stage IV experiments

get under way. Finally the tools used here can realistically simulate future dark energy supernova

experiments. The work can be expanded in many ways, all easily implementable in our simulation

tool. The most obvious examples are different mission architectures, both ground and space-based,

different redshift distributions, further models of systematics. For the zero-point uncertainties one

can explore tighter characterization in the optical vs the near infrared and variation with time.
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Fig. 7.— Contours of constant FoM for different numbers of supernovae NSN and maximum survey

redshift zmax at fixed zero-point prior uncertainty σZ = 0.005 mag. We assume δc = 0.01 mag.

Upper panel: the LH systematic is not included. Lower panel: the LH systematic included.
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The latter may be especially relevant for ground-based surveys. A more detailed treatment of the

nearby supernova sample would introduce a separate set of zero-point parameters; again this can

be accommodated by the KM model.

This work was supported by the Director, Office of Science, Office of High Energy Physics, of
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Table 2. FoM of SN by SN fit vs. FoM of simultaneous fit, for color uncertainty δc = 0, 0.005,

0.01, and 0.02 mag.

zero-point δc = 0 mag δc = 0.005 mag δc = 0.01 mag δc = 0.02 mag

uncertainty SN by SN fit Sim. fit SN by SN fit Sim. fit SN by SN fit Sim. fit SN by SN fit Sim. fit

(mag)

0 311 311 306 306 295 295 262 262

0.001 246 309 244 302 238 288 217 252

0.002 167 309 166 298 163 283 153 246

0.003 122 308 121 295 120 278 113 239

0.004 95 308 94 292 93 273 88 232

0.005 76 308 76 291 75 268 71 226

0.006 63 308 62 290 61 265 58 219

0.01 35 308 35 288 35 257 33 202

0.02 17 308 17 287 17 252 16 186

0.03 11 308 11 286 10 251 10 181

0.04 7 308 7 286 7 251 7 179

0.05 NC† 308 NC† 286 NC† 250 NC† 179

†Fit did not converge.
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Table 3. FoM as a function of uncertainty on the zero-point prior for five different

zmax : 1.1, 1.2, 1.3, 1.4, 1.5. Upper panel: the LH systematic not included. Lower panel: the LH

systematic included. In all cases NSN = 2000 and δc = 0.01 mag. The nearby supernova sample is

unchanged.

Uncertainty on zero-point prior σZ FoM

(mag) zmax = 1.1 zmax = 1.2 zmax = 1.3 zmax = 1.4 zmax = 1.5

0 266 283 290 295 295

0.002 258 273 279 284 283

0.005 245 259 265 269 268

0.010 236 250 255 258 257

0.02 233 246 251 253 252

0.03 232 245 250 252 251

0.04 231 245 249 252 251

0.05 231 244 249 251 250

0 184 201 212 220 225

0.002 180 196 206 214 218

0.005 172 188 197 204 208

0.01 167 182 191 197 201

0.02 165 179 188 194 197

0.03 165 179 188 193 196

0.04 165 179 187 193 196

0.05 164 179 187 193 196
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Table 4. FoM as a function of uncertainty on the zero-point prior for three different

NSN : 1500, 1800, 2000. Upper panel: the LH systematic is not included. Lower panel: the LH

systematic is included. In all cases zmax = 1.5 and δc = 0.01 mag. The nearby supernova sample

is unchanged.

Uncertainty on zero-point prior σZ FoM

(mag) NSN = 1500 NSN = 1800 NSN = 2000

0 259 282 295

0.002 249 271 283

0.005 235 256 268

0.01 224 245 257

0.02 219 240 252

0.03 217 238 251

0.04 217 238 251

0.05 217 238 250

0 204 218 225

0.002 198 211 218

0.005 188 201 208

0.01 181 194 201

0.02 177 190 197

0.03 176 189 196

0.04 175 189 196

0.05 175 189 196
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Table 5. FoM as a function of number of supernovae NSN and maximum survey redshift zmax for

fixed uncertainty on the zero-point prior σZ = 0.005, 0.01 mag. FoMs are reported both with and

without including the LH systematic. We assume δc = 0.01 mag. The nearby supernova sample is

unchanged.

FoM

NSN zmax σZ = 0.005 mag σZ = 0.005 mag σZ = 0.01 mag σZ = 0.01 mag

No LH LH No LH LH

1500 1.1 216 159 207 154

1500 1.2 227 171 218 165

1500 1.3 231 179 221 172

1500 1.4 232 183 221 175

1500 1.5 235 188 224 181

1800 1.1 235 168 227 163

1800 1.2 245 180 236 175

1800 1.3 253 191 243 184

1800 1.4 257 198 246 191

1800 1.5 256 201 245 193

2000 1.1 245 172 236 167

2000 1.2 259 188 250 182

2000 1.3 265 197 255 191

2000 1.4 269 204 258 197

2000 1.5 268 208 257 201
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