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Abstract

We examine a well motivated non-universal supergravity model where the Higgs boson
masses are not unified with the other scalars at the grand unified scale at the LHC. The dark
matter content can easily be satisfied in this model by having a larger Higgsino component in
the lightest neutralino. Typical final states in such a scenario at the LHC involve W bosons.
We develop a bi-event subtraction technique to reduce a huge combinatorial background to
identify W → jj decays. This is also a key technique to reconstruct supersymmetric particle
masses in order to determine the model parameters. With the model parameters, we find
that the dark matter content of the universe can be determined in agreement with existing
experimental results.ar
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1 Introduction

The dark matter content of the universe today has been measured very precisely by the WMAP
experiment [1] which shows that the energy density of the universe is comprised of 23% dark
matter. Supersymmetry (SUSY) models with conservation of R-parity can naturally explain
the dark matter content, as well as solving many problems inherent in the Standard Model
(SM). In most SUSY models, the weakly interacting lightest neutalino is an excellent dark
matter candidate [2] since the dark matter content of the universe can be satisfied in these
SUSY models.

The existence of this dark matter connection is under tremendous experimental investiga-
tion at the Large Hadron Collider (LHC) and at direct and indirect dark matter detection
experiments. At the LHC, the dark matter hypothesis can be tested by producing the dark
matter particles which will give rise to missing energy signal. In addition to the dark matter
candidate, other SUSY particles will also be produced. Attempts will be made to measure
SUSY particle masses and model parameters which will be used to estimate the dark matter
content based on the available measurements at the LHC. It will be very interesting if such an
estimate of the dark matter relic density is close to the measurement of WMAP [1] because
we will be on the verge of establishing a true connection between particle physics and cosmol-
ogy. Of course, the measurements from the direct and indirect detection experiments need to
support this connection as well.

The Minimal Supersymmetric Standard Model (MSSM) is a very general supersymmetric
extension of the SM which has more than a hundred parameters to specify the model. It
would be impossible to completely reconstruct this entire model at the LHC since that would
require finding more than a hundred measurable quantities to determine the model parameters.
Extraction of the measurable quantities, end points, and peak positions of different kinematical
distributions is not easy due to severe background problems from the model itself. “Bottom-
up” studies which aim at using measurements made at the LHC to reconstruct MSSM model
parameters have been performed in the past [3]. Both model-dependent (with assumptions
about unifying parameters) and model-independent (more general MSSM) methods have been
investigated in these studies. Our approach to the “bottom-up” study of SUSY is to use well
motivated SUSY models with fewer parameters to study and understand the final states and
associated observables. This way, we can determine all the model parameters and calculate the
dark matter content. Also, the techniques we develop to extract the measurable quantities can
also be applied to models with larger sets of parameters.

We first used the minimal supergravity motivated model (mSUGRA) [4]. The mSUGRA
model has the feature that many SUSY masses unify at the grand unified scale (GUT scale).
This feature makes the model very simple, requiring only four parameters and a sign to de-
termine all of the SUSY particle spectrum. The choice of the sign can be motivated by the
branching ratio, B(b→ sγ) [5]. Thus to reconstruct this model at the LHC requires only four
distinct measurements.

In previous studies [6, 7, 8, 9], we have developed methods to determine mSUGRA param-
eters at the LHC. We found that the dark matter content can be measured with an accuracy
comparable to the WMAP measurement. We also found that different dark matter allowed
regions have different smoking gun signals at the LHC in the mSUGRA model.
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Having all scalar masses unified at the GUT scale is perhaps too simple an assumption. On
the other hand, determining many parameters at the LHC is also a very difficult task. This
study takes the first step in a more general direction. We study a non-universal supergravity
(nuSUGRA) model, where the Higgs masses no longer unify at the GUT scale with the other
scalar SUSY particles. This Higgs sector non-universality is easily imagined because it is a
completely different sector of matter from the SUSY partners of the quarks and leptons. This
type of model has been studied extensively in the context of dark matter [10, 11].

This nuSUGRA model has six parameters instead of four, with two new parameters for the
two Higgs doublet masses. The difficulty in any of these studies is to have enough experimentally
measurable observables to determine all of the model parameters. In this work, we investigate
the decay chains and final states of the model to identify typical signals and to find these
observables. This task is well worth the effort even if this nuSUGRA model is not true, since
the measurement techniques we uncover can be applied to any other model with similar signals
to measure relations between SUSY particle masses.

The SUSY measurements at the LHC involve cascade decays arising from the colored SUSY
particles, the squarks and gluinos. SUSY models with R-parity are difficult to measure, since
each event has its own background. This is because R-parity demands that SUSY particles
always be produced in pairs. Thus, each event has two SUSY decay chains which can be a
background to each other. In this paper, we demonstrate a technique to isolate only the decay
chain we want to look at by effectively subtracting out the signal from the other chain. This
technique is a method which eliminates a large amount of background from the signal we want
to measure.

This subtraction technique combines with kinematic distributions to make enough mea-
surements to fully reconstruct all the model parameters. We then use those parameters to
determine the entire SUSY spectrum, as well as to determine the dark matter relic density of
the universe.

The outline of this paper is as follows. In section 2, we describe in more detail the nature of
the nuSUGRA model. In section 3, we describe the signals that would be seen from this model
at the LHC, as well as the observables and measurement techniques needed to fully determine
this model. In section 4, we compile all the measurement results together to determine the
model parameters and estimate their statistical and systematic uncertainties. We conclude in
section 5.

2 nuSUGRA Model and Benchmark Point

We first review the mSUGRA model in order to describe the nuSUGRA model. The mSUGRA
model has the attractive feature that many of the SUSY particle masses are unified at the
GUT scale. Thus, it needs only four parameters and a sign to specify the entire model. These
parameters are:

• The unified scalar mass at the GUT scale, m0,

• The unified gaugino mass at the GUT scale, m1/2,

• The trilinear coupling at the GUT scale, A0,
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• The ratio of the vacuum expectation values of the two Higgs doublets, tan β, and

• The sign of the Higgs bilinear coupling, sign(µ).

Since these model parameters (along with the SM parameters) specify all of the masses and
mixings for the SUSY particles in the model, they also determine whether or not this model
predicts the correct amount of dark matter left in the universe today. If we assume a history
of the universe where the dark matter particles, the neutralinos, were in thermal equilibrium
in the universe at early times, then a large region of the mSUGRA parameter space actually
predicts too much dark matter today. This is due to the neutralinos not being able to annihilate
enough in the early universe. However, certain regions of mSUGRA parameter space allow for
mechanisms where the neutralino annihilation cross-section is large enough during early times
which lead to the correct amount of dark matter today [12].

For instance, the co-annihilation region has the characteristic feature that the stau particle
has a mass very close to that of the neutralino. This allows for the neutralino to co-annihilate
with the lightest stau particle in the early universe. This extra annihilation mechanism increases
the total annihilation cross-section for the neutralino [13]. It is also possible to have stop
coannihilation if A0 has a large yet negative value [14]. Another region, called the A-funnel
region, has the feature that the neutralino mass is very close to being half the mass of the pseudo-
scalar Higgs boson (A0). Thus, there is a resonance when the neutralinos annihilate through
this A0 channel, which increases the annihilation cross-section [15]. Light Higgs resonance
annihilation is also possible for small values of m1/2 [16].

A third region, called the focus point/hyperbolic branch region, has a “focused” value for
the parameter µ [17]. This parameter is determined in mSUGRA by the electroweak symmetry
breaking requirement. In the focus point region, this requirement causes the value of µ to be
very small. The small value of µ causes the lightest neutralino to be very Higgs-like and couple
strongly to heavier particles. Thus, neutralino annihilation diagrams containing Z or Higgs
bosons are favored. This effect causes the annihilation cross-section to be large enough to have
the right amount of dark matter today.

There is another way to achieve this small value for the µ parameter: The nuSUGRA model.
In the nuSUGRA model, the Higgs bosons are given a non-universal mass. Normally, for the
mSUGRA model, the Higgs bosons, being scalar particles, have a mass of m0 at the GUT scale.
Since the Higgs masses are intimately related to the electroweak symmetry breaking condition,
adjusting the Higgs masses has a direct effect on the value of µ. In a sense, we are promoting µ
to a free parameter, since for any particular choice of the other four parameters, we can adjust
µ by adjusting Higgs masses.

Since there are two Higgs doublets in SUSY models, we can have a parameter for each of
their masses at the GUT scale, i.e., m2

Hu
= (1 + δHu)m2

0, m2
Hd

= (1 + δHd)m
2
0. However, only

one of the Higgs masses affects the value of µ. The value of µ2 at the electroweak scale in terms
of the GUT scale parameters is determined by the renormalization group equations (RGEs).
In general, one must solve these numerically. However, one can get a qualitative understanding
of the effects of the δH ’s from an analytic solution which is valid for low and intermediate
tan β [10]:

µ2 =
t2

t2 − 1

[(
1− 3D0

2
− 1

t2

)
+

(
−1 +D0

2
δHu +

δHd
t2

)]
m2

0 + ∆, (1)
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Table 1: SUSY masses and parameters (in GeV) for the point m0 = 360 GeV, m1/2 = 500 GeV,
tan β = 40, A0 = 0, and mH = 732 GeV. The top mass is set as 172.6 GeV. For this point, the
dark matter relic density is Ωχ̃0

1
h2 = 0.11. The total production cross-section for this point is

σ = 1.25 pb.

g̃
ũL
ũR

t̃2
t̃1

b̃2

b̃1

ẽL
ẽR

τ̃2

τ̃1

χ̃0
2

χ̃0
1

χ̃0
4

χ̃0
3

χ̃±
2

χ̃±
1

A0

h0
µ

1161
1113

1078

992

781

989

946

494

407

446

255

293

199

432

316

427

291

647

115
307

where t ≡ tan β, D0 ' 1 − (mt/200 sin β)2, and ∆ contains the universal parts (which are
independent of the δH ’s) and loop corrections. In general D0 is small (D0 . 0.23). Equation 1
shows that µ is primarily sensitive to δHu . However, the pseudoscalar and heavy Higgs boson
masses depend on both δHu and δHd .

In this model, the dark matter content can be satisfied not only by lowering µ but also having
the pseuoscalar or heavy Higgs mass equal to twice the neutralino mass. Since we have two new
parameters in the Higgs sector, both the pseudoscalar mass and µ are free parameters in this
model. In the case where the dark matter content is satisfied by the heavy Higgs/pseudoscalar
Higgs resonance, the heavy Higgs mass needs to be measured to see whether its mass obeys the
resonant funnel condition. In our case we do not consider the Higgs funnel region but consider
the first scenario where µ is changed to satisfy the dark matter content. For the purposes of
this study, we choose one such model which predicted a dark matter relic density in agreement
with that measured by WMAP. This scenario is also very interesting since it has large direct
detection spin-independent cross-section of 3.56 × 10−8 pb for proton collisions, and therefore
it will be detected in the ongoing/upcoming runs of direct detection experiments [18].

Since µ is affected by only the up type Higgs, we define the nuSUGRA model with the
unified Higgs mass at the GUT scale, mHu = mHd ≡ mH , which becomes the fifth parameter
of the model. The mass spectrum for our benchmark point of the nuSUGRA model is shown
in Table 1. We determine the mass spectrum for this model using ISASUGRA [19].

3 Characteristic Signal and Observables at the LHC

Our benchmark point of the nuSUGRA model shows some features which we observed in
previous studies of mSUGRA scenarios [6, 7, 8, 9]. In particular, it still predicts that the
LHC would see high pT jets from squark decays to neutralinos and charginos, many τ ’s from
neutralino and stau decays, and large missing transverse energy (E/T) from the lightest neutralino
escaping the detector. However, in this nuSUGRA region, we also see another unique final
state: There are many W bosons being produced from neutralinos decaying into charginos or
vice versa.

Since these W bosons seem to be a smoking gun signal, we perform a random parameter
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space scan in mSUGRA to see if W bosons are being produced or not. For values of tan β =
{10, 40}, we scan m1/2 < 1000 GeV, and m0 < 2000 GeV, keeping A0 = 0 and µ > 0. We
also ensure that experimental bounds for the Higgs mass [20], lightest chargino mass [21], and
squark masses [22] are not violated. The results of this scan show that W bosons in similar
decay chains do appear in mSUGRA. However, under a thermal dark matter scenario, if we
constrain the relic density of the universe to be somewhat close to the WMAP allowed region
(using Ωχ̃0

1
h2 < 0.3), then we find that the only mSUGRA models with jet+2τ and jet+W final

states are in the co-annihilation region. This means that we can discern between mSUGRA
and nuSUGRA at the LHC simply by measuring the difference in mass between the lightest
stau and lightest neutralino (assuming a thermal dark matter scenario). For instance, in the
coannihilation region of mSUGRA, the mass difference is ∆Mτ̃1−χ̃

0
1

= 5-20 GeV, whereas in

our nuSUGRA benchmark point ∆Mτ̃1−χ̃
0
1

= 56 GeV.

Since this model can be discerned at the LHC, we study it to see if we can fully reconstruct
the model. We use Monte Carlo programs which simulate a LHC experiment. To determine
the mass spectrum of the model, we use ISASUGRA [19]. The mass spectrum is passed on to
PYTHIA [23] to generate the Monte Carlo hard scattering events and hadron cascade. Unless
otherwise specified, these events are 14 TeV pp collisions. Each such event is then passed on to
PGS4 [24] to simulate the detector effects.

Since we require five independent measurements to determine our five model parameters,
we construct as many useful measurements as possible. To this end, it is necessary to utilize
the W boson decay chains. Reconstructing W bosons from their hadronic decays is difficult in
a jets plus E/T final state. The leptonic decays of W decay are not adequate, since neutrinos, a
source of E/T, are also produced. We instead reconstruct W bosons from their decays to quark
pairs, i.e. jets in the detector. Thus, we must develop techniques of reconstructing W bosons
from these jets.

There are several mass reconstruction techniques for finding new particles, such as classical
endpoint measurements [25], mass relation techniques [26], and mT2 techniques [27]. We choose
the endpoint measurements as the simplest technique with minimum assumptions in this study
to demonstrate our proposed subtraction technique. We also assume that the SM background
shapes are studied and subtracted in order to focus on this technique as well as the observables
we use to fully determine the nuSUGRA parameters. The subtraction technique and LHC
simulations of the observables are described in the following subsections

3.1 Bi-Event Subtraction Technique (BEST)

One such technique aims at an ability to select the particular jet pair originating from W
boson decays. The difficulty is in discerning this jet pair from amongst the large combinatorial
background of non-W jets. We employ a subtraction technique to deal with this issue. This
subtraction technique is similar to one used for a lepton plus jets system [28]. We collect all
the jet pairs in an event, each of which could be (a) both from the W boson decay, (b) one
from the W boson and one from another source, or (c) both from non-W sources. These are
“same-event” jet pairs with which we form the same-event dijet invariant mass distribution,
M same

jj .
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If we know the shape of the distribution containing (b) and (c) jet pairs, we can subtract
this distribution from M same

jj to drastically reduce the background. To estimate the shape of
this distribution, we collect all the jet pairs we can make by selecting one jet from the event
of interest and one jet from a different event. We expect the “bi-event” dijet invariant mass
distribution, Mbi event

jj , to have a similar shape as most of the background in (b) and (c). Since
there is no way for the bi-event jet pairs to come from a single W boson, it definitely does not
match the shape of the (a) distribution. We normalize the Mbi event

jj distribution to the M same
jj

distribution in the region of mass heavier than the W boson. Then we subtract the Mbi event
jj

distribution from the M same
jj distribution to get Mjj. This final Mjj distribution shows a nice W

boson mass peak with a much smaller background than the original M same
jj distribution. This

“bi-event subtraction technique” is the BEST we can do for finding W bosons.
To demonstrate the BEST, we produced a small (1 fb−1) tt̄ sample of 7 TeV pp collisions.

We selected events with the following cuts:

• Missing transverse energy, E/T ≥ 25 GeV;

• Number of jets, Njet ≥ 4 with jet pT ≥ 25 GeV and |η| ≤ 2.5;

• At least one of the four jets must be b tagged;

• Exactly one lepton (e or µ with pT > 20 GeV).

With these events, we find the W mass peak without the top mass constraint in a jjb final
state. We select jet pairs with ∆Rjj ≥ 0.4, since jets which are too close cannot be discerned
by the detector. The BEST W finding for this sample is shown in Fig. 1.

This technique helps us remove backgrounds from other signals as well. For instance, we
often combine the two leading jets in each event (which come from the squark decays) with other
reconstructed objects to form an observable. Doing our BEST helps us to choose the correct jet
from the decay chain we want. We perform our BEST in almost all of the observables described
below.

3.2 W Plus Jet

The W plus jet signal originates primarily from the following two decay chains:

q̃ → q + χ̃±
1 → q +W± + χ̃0

1 (2a)

q̃ → q + χ̃0
4 → q +W± + χ̃∓

1 → · · · (2b)

The signal is characterized by a high pT jet and high E/T as well as a W boson, which we see in
the detector as two jets with invariant mass in the W mass window (65 GeV ≤Mjj ≤ 90 GeV).
We reconstruct the W boson and combine it with the corresponding leading pT jet from this
decay chain to make the W plus jet invariant mass, MjW .

To select events for this signal, we use the following cuts:

• Missing transverse energy, E/T ≥ 180 GeV;
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Figure 1: The di-jet invariant mass distribution for tt̄ in 7 TeV pp collisions with a luminosity
of 1 fb−1. This figure demonstrates our BEST for finding W bosons in the events. The solid
red(grey) histogram is constructed using same-event jets. The dot-dashed and filled red(grey)
histogram is constructed using jets from different (or bi-) events and is normalized to the
shape of the long tail (above 200 GeV) in the same-event histogram. The same-event minus
bi-event subtraction produces the black subtracted histogram. We notice a clear reduction in
the background shape around the W mass peak.

• Number of jets, Njet ≥ 4 with jet pT ≥ 30 GeV and |η| ≤ 2.5. (Here we do not count b
tagged jets);

• The two leading jets must have pT ≥ 100 GeV;

• No leptons at all in the event (no τ with pT > 20 GeV, and no e or µ with pT > 5 GeV);

• The scalar sum, pTjet,1 + pTjet,2 + E/T ≥ 600 GeV;

• There must be no b tagged jet with pT larger than either of the two leading jets.

These cuts help to remove a lot of the SM background which will be seen at the LHC. The
dominant SM backgrounds for this process are tt̄, W plus jets, and Z plus jets events. After
the cuts are performed, we begin to pair up all of the jets (except for the two leading jets) to
look for W candidates. The W bosons which are produced by the decay chain in Eq. 2 can
have large momentum from being near the bottom of the cascade decay. Thus, we expect the
jets pairs from the W to be close together due to Lorentz boosting. Again, the detector cannot
discern the two jets if they are too close together. Therefore, we choose jet pairs which have
0.4 ≤ ∆Rjj ≤ 1.5. We have used a similar cut in our previous studies [9].

We sort our jet pairs into two categories: Those that are in the W mass window (where
65 GeV ≤ Mjj ≤ 90 GeV), and those that are clearly not W ’s which are in the sideband
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Figure 2: The di-jet invariant mass distribution for our benchmark point. This figure demon-
strates our BEST as well as how we find W bosons in the events. The solid red(grey) his-
togram is constructed using same-event jets. The dot-dashed and filled red(grey) histogram
is constructed using jets from different (or bi-) events and is normalized to the shape of the
long tail in the same-event histogram. The same-event minus bi-event subtraction produces
the black subtracted histogram. This subtracted histogram is plotted again in the inset plot.
Also in the inset plot is shown the W mass window (which is the cyan filled region between
65 and 90 GeV), the sideband windows (which are the orange filled regions between 40 and
55 GeV as well as between 100 and 115 GeV), and the cubic plus Gaussian fit which describes
the background and W peak shapes (shown as short dashed lines).

window (where 40 GeV ≤ Mjj ≤ 55 GeV or 100 GeV ≤ Mjj ≤ 115 GeV). We sort them this
way for an upcoming sideband subtraction.

To help us find a clean W peak with not too much background in the way, we also perform
our BEST. To this end, we combine each jet considered with a jet from the previous event.
Again, we sort these bi-event jet pairs into the W mass window and the sideband window.
We normalize the shape of the overall bi-event histogram by matching its tail with that of
the same-event histogram and subtract. We are left with a W peak surrounded by much less
background. To subtract off the remaining background, we perform the sideband subtraction.
We demonstrate this W finding process, including our BEST and the sorting of jet pairs into
the W mass and sideband windows, in Fig. 2.

Once we implement this method of finding and reconstructing W bosons, we begin to pair
them up with leading jets. Once again, we perform our BEST to help us choose the correct
leading jet (coming from the same cascade decay chain). Also, this second implementation of
BEST significantly reduces the remaining SM background (which we tested by simulating SM
backgrounds with PYTHIA), leaving a signal-to-background of around 10 : 1. So, we calculate
the invariant mass MjW for our W with leading jets from the same event, and again with
leading jets from a different event. As before, we normalize the tail of the bi-event distribution
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Figure 3: The jet + W invariant mass distribution for our benchmark point. This figure again
demonstrates our BEST. The solid red(grey) histogram is constructed by combining each W
with each of the two leading jets from the same event. The dot-dashed and filled red(grey)
bi-event histogram is constructed by combining each W with each of the two leading jets from
a different event and is normalized to the shape of the long tail in the same-event histogram.
The same-event minus bi-event subtraction produces the black subtracted histogram. This
subtracted histogram is then fitted with a straight line (shown as a dashed line in the figure) to
find the endpoint of the distribution. The result for the endpoint from the fit is 793±2(stat.) ±
29(syst.) GeV. This histogram and uncertainty are for an integrated luminosity of 1000 fb−1.

to the shape of the tail of the same-event distribution and subtract. The final result is that
the MjW distribution shows a nice endpoint which can be fit with a simple line. This endpoint
becomes our MjW observable. A sample MjW distribution which shows our BEST is shown in
Fig. 3.

3.3 The Meff observable

The effective mass observable [25], Meff , is a simple measure of the overall SUSY mass scale
for many SUSY models. The signal is characterized by production of gluinos and squarks in
the initial hard scattering events. The cascade decays of gluinos and squarks produce high
transverse momentum jets and missing energy. The Meff variable is defined as,

Meff = pTjet,1 + pTjet,2 + pTjet,3 + pTjet,4 + E/T, (3)

using the four highest transverse momentum (pT) jets of the event. Because we select the
leading four jets, we effectively get the jets which originate from gluino and squark decays.

We select events for the Meff observable with the following cuts [25]:

• Number of jets, Njet ≥ 4 with jet pT ≥ 50 GeV and |η| ≤ 2.5;
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Figure 4: The effective mass distribution for our benchmark point. The curve through the
histogram is the result of fitting with the asymmetric Gaussian function given by Eq. 4. The
result for the peak value from the fit is 1499 ± 7(stat.) ± 45(syst.) GeV. The histogram and
uncertainty are for an integrated luminosity of 1000 fb−1.

• None of the above jets can be b tagged;

• Highest jet pTjet,1 ≥ 100 GeV;

• No isolated µ leptons or electrons in the event;

• Missing transverse energy, E/T ≥ 200 GeV and E/T ≥ 0.2×Meff ;

• Transverse sphericity, ST ≤ 0.2.

Once events are selected in this way, the Meff distribution is fit with an asymmetric Gaussian
function:

N =


Ce

−
Meff−Mpeak

eff
2σ2

low , if Meff < Mpeak
eff

Ce
−
Meff−Mpeak

eff
2σ2

high , if Meff ≥Mpeak
eff

, (4)

where C is some constant scaling factor, Mpeak
eff is the peak position, and σlow and σhigh are the

variances below and above the peak position, respectively. The most important result of the fit
is the value of Mpeak

eff , which serves as our Meff observable. A sample Meff distribution is shown
in Fig. 4.

Another similar observable we define is M
(b, no W )
eff . This observable also measures the SUSY

scale, but includes information from third generation squarks. It is defined as,

M
(b, no W )
eff = pTb jet,1 + pTjet,2 + pTjet,3 + pTjet,4 + E/T, (5)
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where in this case the leading jet (and only the leading jet) must be b tagged. The selection
cuts we use for this observable are identical to those of Meff with the exception that no pair
of jets in the entire event can have a invariant mass in the W boson mass window. We define
this mass window to be between 65 and 90 GeV. The M

(b, no W )
eff distribution is fit in the same

way as Meff . The plot of this distribution looks very similar in shape with the Meff distribution
shown in Fig. 4.

3.4 Jet Plus 2τ

The jet plus 2τ signal originates from the following two decay chains:

q̃ → q + χ̃0
2(χ̃0

3)→ q + τ∓ + τ̃±1 → q + τ∓ + τ± + χ̃0
1 (6)

The signal is characterized by a high pT jet and high E/T as well as a pair of oppositely charged
τ leptons.

We used the following cuts [6, 7, 8] to select events for this signal:

• Missing transverse energy, E/T ≥ 180 GeV;

• At least two jets with jet pT ≥ 200 GeV and |η| ≤ 2.5 (here we do not count b tagged
jets);

• No µ’s or electrons at all in the event;

• At least two identified τ leptons [24] in the event with τ pT ≥ 20 GeV and |η| ≤ 2.5;

• The scalar sum, pTjet,1 + pTjet,2 + E/T ≥ 600 GeV;

• There must be no b tagged jet with pT larger than either of the two leading jets.

This signal can be utilized to make three independent observables, Mττ , Mjττ , and Mjτ . In
this study, we treated these three observables as completely independent. As such, we did not
determine any correlation between their experimental uncertainties.

3.4.1 Mττ

To construct this observable we only need to combine τ pairs from each event. We sort
the τ pairs into similarly charged or “like-sign” (LS) pairs as well as oppositely charged or
“opposite-sign” (OS) pairs. The OS pairs contain τ pairs from our desired decay chain as well
as random τ pairs, whereas the LS pairs contain only random τ pairs. Thus, we perform an
OS−LS subtraction to make the 2τ invariant mass, Mττ . This distribution shows a nice end-
point which can be determined by fitting with a simple line. A sample distribution showing
the OS−LS subtraction is shown in Fig. 5. Due to the inability to fully reconstruct each τ
(because of neutrinos which are missing energy), a small shoulder appears in the figure beyond
the endpoint. However, this shoulder is not in the way of finding the endpoint for this case.
This endpoint serves as our Mττ observable.
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Figure 5: The 2τ invariant mass distribution for our benchmark point. The solid magenta(grey)
histogram is composed of OS τ pairs, while the dot-dashed and filled magenta(grey) histogram
is composed of LS τ pairs. The OS−LS subtraction produces the black subtracted histogram.
This subtracted histogram is then fitted with a straight line (shown as a dashed line in the
figure) to find the endpoint of the distribution. The result for the endpoint from the fit is
85.3 ± 0.8(stat.) ± 3.8(syst.) GeV. This histogram and uncertainty are for an integrated
luminosity of 1000 fb−1.

3.4.2 Mjττ

As for Mττ , we consider all τ pairs from each event, sorting them into OS and LS pairs. We
combine each pair with each of the leading jets to fill the same-event jet plus 2τ invariant mass
distribution, M same

jττ . Additionally, each τ pair is combined with each of the two leading jets
from a different event to fill the bi-event distribution, Mbi event

jττ . The OS−LS subtraction is
performed first, followed by our BEST. As before, the bi-event histogram is normalized to the
shape of the tail in the same-event histogram prior to the subtraction. The result of this process
is the Mjττ distribution. Unlike our Mττ observable, we do not see a sharp endpoint. Due to
the effects of missing energy from each τ (when the neutrino escapes the detector) as well as
combining those τ ’s with a jet, the endpoint gets washed out. Instead, we choose the peak
position for our Mjττ observable. This peak is found by fitting with either a regular Gaussian
or asymmetric Gaussian (seen in Eq. 4), depending on the shape of the distribution. The fitted
peak value serves as our Mjττ observable. A sample distribution showing our BEST is shown
in Fig. 6.

3.4.3 Mjτ

To construct this observable we consider τ pairs in the event and combine one of the τ ’s with
the corresponding leading jets. There is an ambiguity which arises due to the choice of which
τ to use in the observable. The way we deal with this ambiguity is described below.
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Figure 6: The jet + 2τ invariant mass distribution for our benchmark point. The solid red(grey)
histogram is constructed by combining each OS−LS τ pair with each of the two leading jets
from the same event. The dot-dashed and filled red(grey) bi-event histogram is constructed by
combining each OS−LS τ pair with each of the two leading jets from a different event and is
normalized to the shape of the long tail in the same-event histogram. The same-event minus
bi-event subtraction produces the black subtracted histogram. This subtracted histogram is
then fitted with a Gaussian function (shown as a dashed curve in the figure) to find the peak
of the distribution. The result for the peak value from the fit is 415±8(stat.) ±40(syst.) GeV.
This histogram and uncertainty are for an integrated luminosity of 1000 fb−1.

Similarly as before we collect all possible τ pairs in the event, sorting them into OS and
LS pairs. For each leading jet, the invariant mass, Mjτ , is determined for each tau. These

two values are compared, and stored in two histograms. The histograms are labeled as M
(1st)
jτ ,

which contains the larger of the two Mjτ values for each jet, and M
(2nd)
jτ , which contains the

smaller. A similar procedure is performed for the two leading jets from a different event to
form bi-event distributions. The OS−LS subtraction is performed, followed by our BEST. This
leaves us with two resulting final distributions of M

(1st)
jτ and M

(2nd)
jτ .

For this region of parameter space, there is a systematic way to choose between these
histograms to find an endpoint which is close in agreement with the theoretical prediction. By
default, the M

(1st)
jτ histogram is chosen and fit with a line to find the endpoint of the distribution.

However, if the behavior of the endpoint region does not seem linear, we choose M
(2nd)
jτ . We

also make this choice if the BEST does not appear to work. The BEST can fail if there are not
enough signal events compared to background events. If the BEST fails like this for M

(1st)
jτ , it

tells us we are not picking up the decay chain we want to look at, so we choose M
(2nd)
jτ instead.

A sample distribution for our benchmark point is shown in Fig. 7. Since we have less missing
energy here (only one τ), we can see the endpoint clearly for this observable. This endpoint is
our Mjτ observable.
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Figure 7: The jet + τ invariant mass distribution for our benchmark point. The solid red(grey)
histogram is constructed by combining each OS−LS τ with each of the two leading jets from
the same event, choosing the τ which gives the larger value of Mjτ . The dot-dashed and filled
red(grey) bi-event histogram is constructed the same way with each of the two leading jets from
a different event and is normalized to the shape of the long tail in the same-event histogram.
The same-event minus bi-event subtraction produces the black subtracted histogram. This
subtracted histogram is then fitted with a linear function (shown as a dashed line in the figure)
to find the endpoint of the distribution. The result for the endpoint from the fit is 540 ±
2(stat.) ± 34(syst.) GeV. This histogram and uncertainty are for an integrated luminosity of
1000 fb−1.

4 Determining Model Parameters and Relic Density

With the six observables in section 3, we determine the model parameters. We vary each model
parameter independently about our benchmark point to find how each observable behaves as a
function of the model parameters. We vary one parameter at a time, performing at least three
additional simulations for each parameter. If an observable is found to be particularly non-
linear in a certain region, we simulate additional points in that region. For instance, to vary
the m1/2 parameter alone, we held all the other parameters fixed and performed simulations for
m1/2 = {480, 490, 520, 540} GeV in addition to our base point. To get a five dimensional cross
in parameter space, we did the same for all the five parameters, requiring around 30 simulations
in total.

We simulate the LHC experiment for each point in our cross, and determine all the observ-
ables along with their uncertainties. A sample set of observable results and uncertainties for our
benchmark point is shown in Table 2. For each observable, we plot the value of the observable as
a function of each model parameter. Fits through these plots determine the “functional form”
for our observables in a similar fashion as in Ref. [8]. In this region of nuSUGRA parameter
space, the observables behave in a fortunate manner. Some observables are only functions of
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Table 2: Results from the fits of kinematical observables found at our benchmark point, along
with its statistical uncertainty for luminosities of 1000 fb−1 and 100 fb−1, and its systematic
uncertainty [30]. All values have units of GeV.

Observable Value 1000 fb−1 Stat. 100 fb−1 Stat. Systematic

Mpeak
eff 1499 ±7 ±21 ±45

M
(b, no W ) peak
eff 1443 ±43 ±107 ±43

M end
jW 793 ±2 ±5 ±29

Mpeak
jττ 415 ±8 ±26 ±40

M end
ττ 85.3 ±0.8 ±2.8 ±3.8

M end
jτ 540 ±2 ±6 ±34

some of the model parameters, while being constant with respect to variations in other model
parameters. The functional forms are as follows:

• Mpeak
eff = f1(m1/2);

• M (b, no W ) peak
eff = f2(m1/2);

• M end
jW = f3(m1/2,mH);

• Mpeak
jττ = f4(m1/2,mH ,m0);

• M end
ττ = f5(m1/2,mH ,m0, A0);

• M end
jτ = f6(m1/2,mH ,m0, A0, tan β).

These functional forms make a lot of sense. The sensitivity of each observable on a model
parameter depends on the relative change that varying that parameter will affect the observable.
For instance, the Meff observables have peak values that are quite large (' 1500 GeV), so small
changes in the squark masses (caused by varying m0, A0, or tan β) are undetected. Thus, in
this region of parameter space, the Meff observables are only a function of m1/2. A similar effect
happens for MjW as well. However, MjW also depends on neutralino and chargino masses which
are strongly affected by µ(mH). Both squark masses and neutralino masses show a slight m0

dependence. Since, for Mjττ , we are looking at the relatively small peak position (' 400 GeV),
we pick up this m0 sensitivity. Lastly, the Mττ and Mjτ feel the involvement of the stau particle,
showing dependencies on m0, A0, and tan β.

This behavior luckily allows us to solve for one parameter at a time. If we wanted to solve
for all parameters at once, perhaps performing a least squares fit, that would require many
additional simulations. We would have to simulate a grid in parameter space rather than just a
cross. Thus, the advantage of solving for one parameter at a time whenever it is possible is to
save on computing time. Perhaps in future studies which accompany actual LHC data, the least
squares fit method would be preferable. The least squares method to find the model parameters
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would find correlations between the uncertainties. In addition, the least squares method would
be potentially more precise. However, for our feasibility study, finding the parameters one at a
time is sufficient.

The method to solve for one parameter at a time is as follows. The result of each model
parameter is used as input for the next parameter to be solved for. In this manner, solving
for each parameter is as simple as solving for one unknown from one equation. However,
the uncertainty in each solved parameter would then influence the next one to be solved for.
To estimate this effect, we use the uncertainty in each parameter as an additional source of
uncertainty for the next observable. All such uncertainties are estimated using simple Monte
Carlo programs.

To illustrate this whole process, we describe the first few logical steps in how we determine
the model parameters: Mpeak

eff and M
(b, no W ) peak
eff are only functions of m1/2, so we use each

to solve for m1/2 separately, then combine the measurements. This measurement combination
reduces the uncertainty slightly (around a 7% uncertainty reduction) as compared to using
Mpeak

eff alone. Next, we propagate the uncertainty in m1/2 to an additional uncertainty in M end
jW

by using the M end
jW versus m1/2 functional form. This uncertainty is added in quadrature to the

measurement uncertainty in M end
jW . With the uncertainty in M end

jW estimated this way, we use
the M end

jW versus mH functional form to solve for mH . Then the uncertainties in m1/2 and mH

are propagated as additional uncertainties in Mpeak
jττ while solving for m0. The process continues

like this all the way down the above list of functional forms.
Once we have finally determined all the model parameters, we use darkSUSY [29] to calculate

the dark matter relic density of the universe today, Ωχ̃0
1
h2. We also estimate the uncertainty in

the dark matter relic density due to the uncertainties in the measured model parameters. Our
results are shown in Table 3. We find that the model parameters m0, m1/2, mH and tan β can
be determined a good accuracy: The statistical uncertainties are . 15% for 100 fb−1 luminosity,
with the systematic uncertainties nearly the same. The relative uncertainty in the parameter
m0 is somewhat larger than the others due to the fact that we determine it with the Mpeak

jττ

observable. The peak value of Mjττ is a less accurate measure of the SUSY masses in the decay
chain (Equation 6) than the endpoint would be, were it possible to use the endpoint.

We can determine the accuracy of µ from these parameters and we find that µ can be
determined with accuracies of around 15% and 8% for luminosities of 100 fb−1 and 1000 fb−1,
respectively. The uncertainty of µ is influenced not only by the uncertainty in mH , but by m0

and other model parameters as well, as surmised from Equation 1. Even though that equation
is for low and intermediate tan β, we see in Table 3 a similar behavior that the uncertainty of
µ is dominated by the uncertainty in m0 which is large compared to other model parameters.

Since the dark matter content is sensitive to the value of µ, in Fig. 8, we plot one σ contours
of the dark matter content as a function of µ for luminosities of 100 fb−1 (red shaded region) and
1000 fb−1 (brick shaded region). The determination of dark matter content is of couse much
better with 1000 fb−1, but even with 100 fb−1 the measurement accuracy is quite encouraging.
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Table 3: Results of the nuSUGRA model parameters and relic density of dark matter in the
universe for integrated luminosities of 1000 fb−1 and 100 fb−1. The systematic uncertainties are
also estimated here [30]. Note that the uncertainties for an integrated luminosity of 100 fb−1

were estimated by simply scaling down the distributions before performing fits for the analysis.

L (fb−1) m1/2 (GeV) mH (GeV) m0 (GeV) A0 (GeV) tan β µ (GeV) Ωχ̃0
1
h2

1000 500± 3 727± 10 366± 26 3± 34 39.5± 3.8 321± 25 0.094+0.107
−0.038

100 500± 9 727± 13 367± 57 0± 73 39.5± 4.6 331± 48 0.088+0.168
−0.072

Syst. ±10 ±15 ±56 ±66 ±4.5 ±48 +0.175
−0.072
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Figure 8: Estimates of the statistical 1σ uncertainties in the Ωχ̃0
1
h2 versus µ plane. The solid

red (brick textured) region is for a luminosity of 100 fb−1 (1000 fb−1).

5 Conclusions and Discussion

In this paper we have shown that the LHC has an ability to investigate the origin of dark
matter by establishing SUSY models. At the LHC, the colored SUSY particles, the squarks
and gluinos, will be produced profusely. The squarks and gluinos will then go through cascade
decays into final states involving the SM particles and missing energy. The challenge is to
reconstruct masses or model parameters by forming observables using these final states. If
we can reconstruct the model we will be able to calculate the dark matter content and check
whether the established model explains the cosmology correctly. In this way, establishing the
MSSM could be very hard. We may not have enough observables to measure all the parameters
of the MSSM. Also not all the particles of the model would show up in the cascade decays with
sufficient branching ratios. We therefore started with a simpler model where the gaugino masses
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are unified, and all scalar masses except that of the Higgs bosons are also unified at the GUT
scale. This type of model is quite realistic and very popular since the explanation of dark
matter becomes easy. The explanation can occur either via a large Higgsino component in
the neutralino or via a resonance with the heavy or pseudoscalar Higgs. Here we considered
the scenario with the larger Higgsino component. This scenario also gives rise to a larger
direct detection cross-section and therefore can be detected in the upcoming direct detection
experimental results.

Since SUSY production occurs in pairs of colored SUSY particles, each event has two decay
chains. The particle from one decay chain will create background for any measurement of mass
involving the other decay chain. In this paper, we first established techniques to remove this
kind of background by combining particles from different events. We then created observables
to establish the model. In previous works, when we tried to establish the mSUGRA model, we
found that the observables mostly involved leptons, jets, Higgs bosons and Z bosons. However,
for this nonuniversal Higgs model, nuSUGRA, we found that the final states involved W bosons
arising from chargino decays in addition to jets, and τ leptons in the final states. We constructed
observables, e.g., Wj, jττ , ττ etc. and use them to determine masses and the model parameters.
We showed that the model parameters can be determined with good accuracy (e.g. m0, m1/2,
mH , and tan β have statistical and systematic uncertainties of . 15% for a combined uncertainty
of . 20%) at a luminosity of 100 fb−1. The parameter µ can be determined with an accuracy
of 21% for the same luminosity. Finally, we showed that the dark matter content also can be
determined in agreement with the WMAP experiment.
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