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ABSTRACT

We present an analysis of peculiar velocities and their effect on supernova cosmology. In particular,
we study (a) the corrections due to our own motion, (b) the effects of correlations in peculiar velocities
induced by large-scale structure, and (c) uncertainties arising from a possible local under- or over-
density. For all of these effects we present a case study of their impact on the cosmology derived by
the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey).
Correcting supernova redshifts for the CMB dipole slightly over-corrects nearby supernovae that

share some of our local motion. We show that while neglecting the CMB dipole would cause a shift
in the derived equation of state of ∆w ∼ 0.04 (at fixed Ωm) the additional local-motion correction is
currently negligible (∆w <

∼ 0.01).
We use a covariance-matrix approach to statistically account for correlated peculiar velocities. This

down-weights nearby supernovae and effectively acts as a graduated version of the usual sharp low-
redshift cut. Neglecting coherent velocities in the current sample causes a systematic shift of ∼ 2% in
the preferred value of w and will therefore have to be considered carefully when future surveys aim
for percent-level accuracy.
Finally, we perform n-body simulations to estimate the likely magnitude of any local density fluc-

tuation (monopole) and estimate the impact as a function of the low-redshift cutoff. We see that for
this aspect the low-z cutoff of z = 0.02 is well-justified theoretically, but that living in a putative local
density fluctuation leaves an indelible imprint on the magnitude-redshift relation.
Subject headings: cosmology: observations — supernovae : general
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The picture of our universe that comes out of
observations of supernovae, the cosmic microwave
background, and baryon acoustic oscillations (amongst
other tests) is of an on-average homogeneous, isotropic
universe primarily composed of around 30% matter
and 70% dark energy, where the dark energy prop-
erties are consistent with a cosmological constant
(Riess et al. 1998; Perlmutter et al. 1999; Page et al.
2003; Eisenstein et al. 2005; Tegmark et al. 2006;
Spergel et al. 2006; Astier et al. 2006; Wood-Vasey et al.
2007; Riess et al. 2004, 2007; Kowalski et al. 2008;
Hicken et al. 2009; Kessler et al. 2009; Percival et al.
2007, 2010; Freedman et al. 2009; Komatsu et al. 2009,
2010). This is known as the concordance cosmology,
or ΛCDM. The homogeneous and isotropic part of the
concordance cosmology is an assumption we impose on
the data before we calculate the densities of matter
and dark energy. Large scale structure surveys and the
isotropy of the cosmic microwave background provide
strong evidence that such an assumption is justified on
scales larger than galaxy superclusters (∼ 100Mpc).
On smaller scales it is clear that the assumption is a
phenomenally poor one.
Whether the local inhomogeneities are significant

enough to bias our inferences from cosmological obser-
vations is a pertinent question as we strive to make ever
more precise measurements of cosmological features, such
as the equation of state of dark energy, and as we en-
deavour to use cosmology to constrain other fundamental
physics, such as the neutrino mass.
Type Ia supernovae (SNe Ia) have now become a stan-
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dard tool in cosmology (Schmidt et al. 1998; Riess et al.
1998; Perlmutter et al. 1999; Perlmutter & Schmidt
2003; Astier et al. 2006; Wood-Vasey et al. 2007;
Kowalski et al. 2008; Kessler et al. 2009). The custom-
ary diagnostic is the Hubble diagram, a measurement
of luminosity as a function of redshift. To date, the
majority of the effort in calibrating supernova measure-
ments has been increasing the accuracy and precision
with which we can determine their luminosity, and
thus their use as a standard candle. In comparison the
uncertainty on the redshift of the supernovae has usually
been considered negligible. It is this more neglected
uncertainty we turn our attention to in this study.
As supernova measurements become increasingly pre-

cise, and the increasing number of supernovae reduces
the statistical uncertainty, it is worth revisiting the red-
shift uncertainty to ensure that it does not bias our cos-
mological results. The measurement of redshift will re-
main far more accurate than the measurement of the su-
pernova magnitude into the foreseeable future. However,
the accuracy of those measurements can be misleading
since systematic effects on redshift due to peculiar mo-
tions can be much larger than the measurement error
(see Fig. 1).
In a statistical sense peculiar velocities can be used

as a signal to detect large scale structure by its grav-
itational influence and thus measure cosmological pa-
rameters using diagnostics such as the peculiar veloc-
ity power spectrum (e.g. Bonvin et al. 2006a; Neill et al.
2007; Gordon et al. 2007, 2008; Abate & Lahav 2008;
Hannestad et al. 2008). In Lampeitl et al. (2010,
App. B) we showed that the signal in the SDSS SN data
set is too small to measure cosmological parameters this
way (mostly because our sample is too distant). Here we
therefore concentrate only on the deleterious impact pe-
culiar velocities have on the cosmological results derived
from the SN magnitude-redshift relation.
When using supernovae to measure the cosmological

magnitude-redshift relation, the redshift used should be
entirely due to the expansion of the universe. In prac-
tice this is never the case, as large-scale structure in the
universe induces peculiar motions so that the measured
redshift contains some contribution from peculiar veloc-
ities.
Systematic peculiar velocity effects can arise in a num-

ber of ways. These include:

• Dipole effects, which occur due to our own peculiar
motion. In the simplest case this can be accounted
for using the dipole we observe in the cosmic mi-
crowave background (CMB). However, this needs
to be modified when calculating our velocity rela-
tive to local galaxies that share some of our motion
with respect to the CMB.

• Coherent flows, which cause correlated redshift off-
sets in distant sources that are close enough neigh-
bours to share gravitational attraction to common
large scale structure.

• Monopole effects that mimic expansion, which can
arise if we are in a local over- or under-density.
These also contribute dipole effects if we are off-
centre from the density fluctuation.

All these peculiar velocities are manifestations of coher-
ent flows in the universe. We consider the lowest order
coherent flows (monopole and dipole) separately because
they have the largest systematic effects. Moreover, it
is relatively simple to correct for the dipole effect (Sec-
tion 2) while higher-order coherent motions can currently
only be taken into account statistically (Section 3). The
monopole has a potentially large systematic effect that
is difficult to correct for, so we consider how this can be
mitigated (Section 4).

1.1. Background

When we compare the precision of redshift (z) mea-
surements with the precision of apparent magnitude (m)
measurements we are primarily concerned with their ef-
fect on the Hubble diagram (rather than the relative pre-
cision as measured by ∆z/z and ∆m/m). The effect on
the Hubble diagram can be quantified by considering the
slope of the magnitude-redshift relation, dm/dz. Indeed,
the standard method for including redshift uncertainties
(σz) in cosmological analyses is to convert them to mag-
nitude uncertainties (σm) using the dm/dz derived from
a fiducial cosmological model (see Appendix A for an
outline of the procedure). The conversion between a red-
shift uncertainty and a magnitude uncertainty is shown
in Figure 1, for a few different redshifts. At higher red-
shifts the magnitude-redshift relation is flatter (dm/dz is
smaller) which means large redshift uncertainties gener-
ate only small magnitude uncertainties. At low redshifts
the converse is true, and small redshift uncertainties give
large magnitude uncertainties.
The dominant source of intrinsic redshift dispersion

(that is always included in cosmological analyses) is the
effect of random peculiar velocities. These are usually
taken to be about16 σpec

v = 300kms−1, which accord-
ing to vpec = czpec corresponds to an error in redshift
of σpec

z = 0.001. This redshift uncertainty gives a non-
negligible magnitude uncertainty of σpec

m = 0.2 for ob-
jects at redshift z = 0.01, which reduces to σpec

m = 0.02
for objects at z = 0.1. These values should be compared
with the intrinsic diversity in supernova magnitudes of
σint
m ≈ 0.1 and the observational magnitude uncertainty

(including the uncertainty in fitting the SN light curves)
of σmeas

m
<
∼ 0.1 for the most distant supernovae included

in most samples (closer ones have smaller observational
uncertainty).
The observational uncertainty in redshift is typically

σspec
z ≈ 0.0005 for SN host-galaxy-based redshifts mea-

sured by SDSS, and σspec
z ≈ 0.005 for redshifts based on

the supernova spectra alone (Zheng et al. 2008). So the
observational uncertainty is of similar magnitude to the
intrinsic scatter due to peculiar motions. Some of these
sources of uncertainty are depicted in Fig. 1 for compar-
ison.
In this paper we use the Sloan Digitial Sky Survey-II

Supernova Survey (SDSS-II SN Survey York et al. 2000;
Holtzman et al. 2008; Frieman et al. 2008; Sako et al.

16 For the SDSS sample Kessler et al. (2009) use σpec
v =

300km s−1 for the random peculiar motions added in quadra-
ture with σpec

v = 200km s−1 for the internal velocities, giv-
ing a total σpec

v =360km s−1, corresponding to σpec
z of 0.0012.

For the ESSENCE sample Wood-Vasey et al. (2007) uses σpec
v =

400km s−1.
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Fig. 1.— Plot of the conversion between a redshift uncertainty
σz and a magnitude uncertainty σm, for a variety of redshifts be-
tween z = 0.001 and z = 0.02 as labelled. Dotted lines depict the
typical redshift dispersion from random peculiar velocities, and the
observational uncertainties in magnitude and redshift (the obser-
vational uncertainty for σz assumes we have redshifts from host
galaxy spectra, when only SN spectra are available the redshift
error is an order of magnitude higher). Those random contribu-
tions are all marked ‘(rand)’, while the other dotted line depict-
ing ‘CMB (syst)’ shows the maximum systematic shift in redshift
caused by the CMB dipole. This figure shows why the low-redshift
cutoff of z = 0.02 is appropriate, because above this redshift all
redshift uncertainties are significantly smaller than the observa-
tional magnitude uncertainty. The conversion has been done for
the (Ωm,ΩΛ) = (0.3, 0.7) model, but there is negligible difference
between this and most plausible homogeneous cosmological models
over this redshift range (including the empty model and a model
without a cosmological constant).

2008) as a case study, in combination with nearby SNe
at lower redshift. For the SDSS-II SN Survey repeat im-
ages were taken of an equatorial stripe, 2.5 degrees wide
and about 120 degrees long centred on RA 23.5hr (SDSS
Stripe 82). Over three years about 500 spectroscopically
confirmed Type Ia supernovae were discovered in the red-
shift range 0.05 < z < 0.4. The first year’s data including
103 supernovae were published in Holtzman et al. (2008)
and analysed in Kessler et al. (2009, hereafter referred to
as K09)17 who combined these with a re-analysis of ex-
isting data to make a coherent sample of 288 supernovae
that were used to measure cosmological parameters. It is
this data set that we use here, focussing on several of the
subsets they define to demonstrate the effect of different
redshift ranges.
Since the SDSS sample concentrates on relatively

nearby supernovae (0.05 <
∼ z <

∼ 0.4) the peculiar velocity
contribution is a more significant proportion of the to-
tal redshift than in surveys that focus on higher red-
shifts such as ESSENCE (Wood-Vasey et al. 2007), Su-
perNova Legacy Survey (Astier et al. 2006), and Higher-
z (Riess et al. 2007). Moreover, the region of sky covered
by the SDSS SN survey lies close to the direction of the
CMB dipole (Fig. 2) so the alignment conspires to max-
imise the magnitude of the effect. For all these reasons
the SDSS SN sample is an interesting one in which to
test peculiar velocity effects.
In Section 2 we calculate the dipole corrections for the

SDSS supernova sample, taking into account both the

17 http://das.sdss.org/va/SNcosmology/sncosm09_fits.tar.gz

CMB dipole correction and the contribution from our
common local group motions. We then show the effect
this correction has on the cosmological parameters de-
rived (Sect. 2.3). Typically supernova surveys to date
correct for the CMB, but not the local dipole. We demon-
strate that this choice is justified.
In Section 3 we deal with the peculiar velocity of the

supernova itself, which is typically treated as random
scatter since the motions are expected to be largely ran-
dom. This treatment is not entirely valid since galax-
ies (and the supernovae in them) preferentially fall into
overdense regions, so objects in the same region of sky
will tend to have correlated peculiar velocities. Detailed
measurements of this effect may provide another tech-
nique for measuring the matter distribution of the uni-
verse (e.g. Neill et al. 2007; Hannestad et al. 2008). Here
we assess the redshift dependence of correlated velocities
and how to deal with them statistically (in the absence
of measurements of the density field that would allow
correction for correlations on an object-by-object basis).
Finally, we consider in Section. 4 the monopole that

arises in an inhomogeneous universe because observers
do not generally find themselves in a region of average
density. Much attention has been given over the last
few years to a possible Hubble Bubble — a proposed
underdensity in our local universe that may explain
some of the acceleration inferred from supernova data
(Zehavi et al. 1998; Giovanelli et al. 1999; Hudson et al.
2004; Jha et al. 2006; Conley et al. 2007). Such an
underdensity is very difficult to detect (if we are at
the centre of it) because it imprints a systematic red-
shift on every source that is in large part degener-
ate with the cosmological redshift. To completely ex-
plain the observed acceleration the size of the under-
density would have to be far larger than one expects
for a typical density fluctuation in a ΛCDM universe
(Furlanetto & Piran 2006; Garcia-Bellido & Haugbølle
2008; Zibin et al. 2008; Alexander et al. 2009). However,
since we are trying to test whether ΛCDM is the correct
model for the universe, we enter a circular argument if
we reject propositions on the basis that they are not ex-
pected within ΛCDM. In any case, a smaller underden-
sity such as is expected in ΛCDM can still significantly
bias the cosmological results (Sinclair et al. 2010).
Supernova studies usually discard supernovae below a

certain redshift that are particularly susceptible to this
kind of monopole systematic.18 In Section 4 we anal-
yse the likely monopole contribution for density fluc-
tuations on a scale observed in galaxy redshift surveys
(Geller et al. 1997; Croton et al. 2004; Hoyle & Vogeley
2004; Patiri et al. 2006). We model the effect of impos-
ing a low redshift cutoff and find that the restriction of
z ≥ 0.02 imposed by the SDSS-II SN Survey based on
empirical considerations (Kessler et al. 2009) is also the-
oretically justified. However, we also note that a local
under- or over-density leaves an irreducible systematic
error on our cosmological inferences, even when one im-
poses a low-z cut that excises all the data within the

18 The motivation is not primarily to avoid a monopole sys-
tematic but rather because at low-redshifts peculiar velocities are
a significant proportion of the cosmological redshift and add ex-
cessive scatter to the Hubble diagram. Nevertheless, rejection of
low-redshift objects also helps reduce the effect of any local Hubble-
bubble, should one exist.

http://das.sdss.org/va/SNcosmology/sncosm09_fits.tar.gz
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local density fluctuation.

1.2. Notation

We use the metric

ds2 = −c2dt2 +R(t)2
[

dχ2 + S2
k(χ)dΘ

2
]

, (1)

where t is proper time, R(t) is the scale factor with
dimensions of length, χ is the dimensionless comov-
ing coordinate, Sk(χ) = sin(χ), χ, sinh(χ) for closed,
flat, and open universes respectively, and dΘ encom-
passes the angular terms. The present day scale factor,
R0 ≡ c/(H0

√

|Ωk|), and the dimensionless scale factor is
defined as a = R/R0. Hubble’s parameter isH(z) = ȧ/a,
where an overdot represents differentiation with respect
to proper time. The dimensionless comoving distance as
a function of redshift is related to cosmological parame-
ters by

χ =
c

R0

∫ z

0

dz

H(z)
. (2)

Frequently we will need the comoving distance with units
of length, for which we will use the shorthand χ̃ ≡ R0χ.

2. DIPOLE CORRECTION

When using supernova redshifts to make cosmologi-
cal inferences we need to remove the imprint of our
own peculiar motion so that the redshift of the super-
nova is entirely due to the expansion of the universe.
To first order this is straightforward, since we know our
own velocity to high precision from measurements of the
CMB dipole. Correcting for the CMB dipole is stan-
dard practise in all supernova cosmology analyses (e.g.
Astier et al. 2006; Wood-Vasey et al. 2007; Riess et al.
2007; Kowalski et al. 2008; Kessler et al. 2009).
For nearby supernovae there is an additional subtlety

that arises because they share some of our motion. The
dipole correction should account for the relative veloc-
ity between the detector and the supernova, so applying
the CMB dipole correction to nearby supernovae actu-
ally over-corrects the effect. Here we give the details of
how the CMB correction is applied to SNe, noting some
mathematical subtleties that are at times neglected, and
assess the impact of neglecting the local dipole.

2.1. CMB dipole

We are moving at vpec
⊙ = 371 kms−1 with respect to

the CMB (Kogut et al. 1993; Bennett et al. 2003). This
is small compared to the Hubble flow for all but the near-
est objects, dropping to less than ∼ 1% beyond a red-
shift of 0.1. Our motion thus contributes a maximum
redshift change of σz = 0.00124 to sources that are di-
rectly aligned with the dipole. This is much less than
the equivalent uncertainty in our magnitude measure-
ment (see Fig. 1); it is only its coherence among SNe
that can make it significant.
The direction of the CMB dipole in Galactic coordi-

nates is toward (ℓ, b) = (263◦.85, 48◦.25) (Bennett et al.
2003); so the antipode direction lies at (ℓ, b) ≈
(83◦.85,−48◦.25). The SDSS SN Stripe 82 consists of
an equatorial strip between right ascension of approx-
imately 20hr and 3hr (J2000), which corresponds to a
field centre at Galactic coordinates (ℓ, b) ≈ (84◦,−57◦).
That means that the centre of the SDSS field is almost
aligned with the negative direction of the CMB dipole.

2.1.1. Correcting for the dipole

The general relationship between redshift and peculiar
velocity is,

1 + zpec =

√

1 + vpec/c

1− vpec/c
, (3)

which simplifies to zpec = vpec/c in the non-relativistic
limit.19 The redshift correction required to account for
our velocity with respect to the CMB, v⊙, is

zpec⊙ = −vpec⊙ /c = v
pec
⊙ · (−n)/c (4)

where n is the unit vector from the sun to the supernova.
(The negative sign ensures that if we are moving in the
direction of the supernova the resulting correction is a
blueshift.)
The observed heliocentric redshift, z, is then related to

the cosmological redshift, z̄, by,20

(1 + z) = (1 + z̄)(1 + zpec⊙ ). (5)

Note that the NED velocity calculator
(NASA/IPAC Extragalactic Database 2008) uses
the approximation,

z ≈ z̄ + zpec⊙ . (6)

This gives a fractional error21 of precisely zpec⊙ , which is
negligible for most circumstances.
The dipole not only shifts the redshift but also changes

the apparent magnitude of the source due to the Doppler
shift of the photon energy and relativistic beaming. The
CMB dipole therefore also has an effect on the luminosity
distance calculated from the magnitude of a supernova
(Sasaki 1987; Pyne & Birkinshaw 1996; Bonvin et al.
2006a; Cooray & Caldwell 2006; Hui & Greene 2006).
This arises because the luminosity distance is related to
the comoving distance, χ, by (recalling that overbars re-
fer to observations made from the CMB rest frame),

d̄L(z̄) = (1 + z̄)R0Sk(χ). (7)

However, what we actually observe is (recalling that z
is the observed redshift and considering for the moment
only our own motion),

dL(z)= (1 + z)R0Sk(χ), (8)

= (1 + z̄)(1 + zpec⊙ )R0Sk(χ), (9)

= d̄L(z̄)(1 + zpec⊙ ). (10)

So both the redshift and the luminosity distance need to
be corrected for the effect of the dipole.22

19 Note that the special relativistic velocity-redshift relation is
not appropriate for recession velocities (the velocity that appears
in Hubble’s Law), for which special relativistic corrections should
never be applied (Davis & Lineweaver 2004, 2005).

20 This assumes the observer has already corrected both for
the motion of the Earth around the Sun, which contributes up
to 30km s−1 depending on the time of observation and for atmo-
spheric refraction, which contributes up to 90km s−1 (the index of
refraction of air is 1.0003, so ∆z = 0.0003 and c∆z = 90km s−1).
Usually this is done as a standard step in wavelength calibration.

21 Rearranging Eq. 5 and Eq. 6 gives z̄
NED

−z̄

z̄
= zpec

⊙
.

22 You may be concerned that in going from Eq. 8 to Eq. 9
we’ve neglected the factor of z in the calculation of χ =
(c/R0)

∫

z̄

0
dz̄/H(z̄). However, this cosmological redshifting is in-
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Fig. 2.— Map of the distribution of supernovae in the Nearby,
SDSS, ESSENCE, SNLS, and HST samples in Galactic coordinates
with the local (z ∼ 0.1) dipole indicated by diamonds and the CMB
dipole indicated by stars. The centre of the SDSS-II SN stripe lies
close to the direction of the CMB dipole, which makes it important
to carefully correct the SDSS sample for the effects of the dipole.
The local dipole is measured with respect to the CMB and is in
approximately the opposite direction since galaxies in our local
neighbourhood tend to share some of our peculiar velocity with
respect to the CMB. See the electronic edition of the Journal for a
color version of this figure.

Alternatively, one can choose to correct for both in one
fell swoop by correcting the observed luminosity distance
at redshift z to the luminosity distance that would have
been observed at redshift z in the absence of peculiar
velocities. This is the approach taken by the commonly
used program simple cosfitter.23 Hui & Greene (2006)
give the formula for d̄L(z), which can be used to correct
only the dL values without correcting z. Considering
only our own motion, Eq. 15 of Hui & Greene (2006)
can be rearranged to give,

dL(z) = d̄L(z)

[

1 +
ae

a′eR0Tk(χ)
v0.n

]

, (11)

where a′e ≡ dae/dτ represents the derivative of the scale
factor with respect to conformal time, evaluated at the
time of emission,24 and here we have kept the curva-
ture dependence explicit, with Tk(χ) ≡ tan(χ), χ, and
tanh(χ) in closed, flat, and open universes respectively.

2.1.2. Correcting for the dipole and the source’s motion

When there are two peculiar velocities to correct, such
as when accounting for the supernova’s motion25 with

dependent of the motion of the emitter or observer, and therefore
does not need correcting for peculiar velocities. As long as we cor-
rect the redshift of the supernova to the CMB frame our theoretical
model comparison will be correct.

23 http://qold.astro.utoronto.ca/conley/simple cosfitter/html/
24 We give conformal time dimensions of time, so dτ = dt/a

and the conformal time derivative is related to the proper time
derivative (denoted by an overdot) according to

a′ =
da

dt

dt

dτ
= ȧa. (12)

25 The additional redshift due to the supernova’s motion is

zpec
SN

= vpec
SN

/c = v
pec
SN

· n/c, (13)

Fig. 3.— Peculiar velocity correction required for the SDSS sam-
ple, plotted as a function of right ascension (J2000). The SDSS
SN sample spans an equatorial strip, and thus the peculiar veloc-
ity correction is systematic with right ascension. The CMB dipole
correction is shown in black, while the local dipole correction, which
is more relevant for low-redshift sources, is shown as shaded points,
with different shades representing different redshift ranges. See the
electronic edition of the Journal for a color version of this figure.

respect to the CMB (zpecSN ) in addition to our own motion,
one uses

(1 + z) = (1 + z̄)(1 + zpec⊙ )(1 + zpecSN ). (14)

This equation is valid even for relativistic velocities, but
in the literature it is more common to encounter approx-
imate formulae such as (Hui & Greene 2006),

(1 + z)= (1 + z̄)(1 − v⊙ · n/c+ vSN · n/c), (15)

= (1 + z̄)(1 + zpec⊙ + zpecSN ), (16)

which are perfectly appropriate for the low velocities we
encounter in almost all practical situations.
When including the source motion the correction to

the luminosity distance becomes,

dL(z) = d̄L(z̄)(1 + zpec⊙ )(1 + zpecSN )2. (17)

Note that two factors of (1 + zpecSN ) enter the luminosity
distance correction. One is due to the Doppler shifting
of the photons, the other is due to relativistic beaming.

2.2. Local dipole

Galaxies in our local universe share some of our lo-
cally induced peculiar motion, so our velocity relative to
our neighbours is lower than our velocity with respect
to the CMB. For example, below redshifts of ∼0.02 we
are strongly influenced by the Great Attractor and the
Perseus-Pisces Supercluster (Erdoğdu et al. 2006). Thus
the lowest redshift supernovae in the SDSS sample should
be corrected for this more local dipole rather than the
CMB dipole.
Bonvin et al. (2006b) measured our dipole relative to

the nearby sample of 44 supernovae used by (Astier et al.
2006) and found it to be consistent with the CMB
dipole, although with large uncertainties (about ±30◦

where again n is the unit vector from the sun to the supernova and
v
pec
SN

is measured with respect to the CMB.

http://qold.astro.utoronto.ca/conley/simple_cosfitter/html/


6 Davis et al.

Fig. 4.— Similar to Figure 3, but with the correction expressed
as a percentage and plotted against redshift. The peculiar velocity
correction taking into account the local dipole (shaded filled cir-
cles) is compared to the CMB dipole corection (black filled circles).
The difference between the two is shown as shaded diamonds. The
dashed line shows the theoretical maximum correction that would
be applied to an object directly aligned with the CMB dipole: a
constant peculiar velocity correction of 371km s−1 that decreases
with redshift only because it is a decreasing fraction of the total
redshift. The difference between the CMB and local dipole cor-
rection is only significant for the closest supernovae in the sample,
with a ∼4% correction in redshift when z < 0.02 but a correction
of less than 1% for supernovae with z >

∼ 0.05. See the electronic
edition of the Journal for a color version of this figure.

directional uncertainty, and 200kms−1magnitude uncer-
tainty). Haugbølle et al. (2007) were able to more pre-
cisely measure the velocity flow of the local universe using
the 133 low-redshift type Ia supernovae from Jha et al.
(2007). At a redshift of ∼ 0.02 (60h−1Mpc) they find
a dipole amplitude of 239+70

−96 kms−1in the direction
ℓ ≈ 281◦ ± 23◦, b ≈ 14◦ ± 16◦ (measured relative to
the CMB rest frame). In Figure 2 this dipole is marked
by diamonds. The magnitude of this dipole decreases
with redshift.
This result is consistent with a recent compilation by

Watkins et al. (2009) who combined nine peculiar veloc-
ity datasets measured using five different methods of dis-
tance estimation (surface brightness fluctuations; fun-
damental plane; type Ia supernovae; Tully-Fisher; and
brightest cluster galaxies) and concluded that the bulk
flow within a Gaussian window of radius 50h−1Mpc is
407± 81kms−1 toward ℓ = 287◦± 9◦, b = 8◦ ± 6◦. They
note that the magnitude of this flow is larger than would
be predicted by standard cosmological models based on
the best cosmological parameter estimates from WMAP
(Komatsu et al. 2009). An even more significant de-
viation from the predictions of ΛCDM was found by
Kashlinsky et al. (2008, 2009), who measured the kine-
matic Sunyaev-Zel’dovich effect of the CMB in the di-
rection of known galaxy clusters. Their observations
were at higher redshift (z ∼ 0.1 or about 300h−1Mpc)
and they found a considerably higher amplitude bulk
flow (600-1000kms−1) than measured by Watkins et al.
(2009) and Haugbølle et al. (2007), but the dipole direc-
tion was the same. As well as differing from the theoret-
ical prediction, this result does contradict the measure-
ment by Haugbølle et al. (2007) of a dipole amplitude

that decreases with distance.
Given the uncertainty in the redshift dependence of the

local dipole it is premature to apply any correction before
publishing observational data. Nevertheless we want to
estimate the effect the local dipole has on cosmological
inferences. Since the low-redshift supernova data is the
most influenced by redshift uncertainties, it is sufficient
to use the consistent estimates of Haugbølle et al. (2007)
and Watkins et al. (2009) at around z ∼ 0.015 for the
local dipole magnitude. We then choose to use the red-
shift dependence measured by Haugbølle et al. (2007),
in which the dipole magnitude decreases with distance.
This relation is qualitatively what is predicted by stan-
dard ΛCDM models; however, quantitatively it does not
drop as quickly as one expects from simulations. Our
choice of redshift dependence therefore lies between the
theoretical predictions and the kinematic SZ results. The
precise choice is not significant because it is the low-
redshift points that have the largest dm/dz effect.

2.3. Dipole results

The magnitude of the correction due to the local dipole
is shown for the SDSS supernovae as a function of right
ascension in Figure 3. The black points show the correc-
tion for the CMB dipole, ignoring the local dipole. The
shaded points show the correction after the contribution
from the local-dipole has been included. The velocity
correction required is less than the CMB correction be-
cause within the local group we are all moving towards
the same large scale structures and thus our relative ve-
locity is smaller than our velocity with respect to the
CMB. The different shades in the figure represent differ-
ent redshift ranges, with the lowest redshifts receiving the
largest local-dipole correction, and the higher-redshifts
tending towards the CMB correction.
Figure 4 shows the same information plotted as a func-

tion of redshift and expressed as a percentage (∆z/z ×
100%). Here the dashed line shows the theoretical max-
imum correction required due to the CMB dipole – as
occurs for objects directly aligned with the dipole. The
size of this ∆z correction is constant but its fractional
contribution decreases with redshift. The black points
show the CMB correction for the SDSS supernovae tak-
ing into account their position on the sky. The shaded
circles under the black CMB points show the correction
for the local dipole. The shaded diamonds show the dif-
ference between the CMB and local dipoles (the amount
by which applying the CMB dipole overcorrects). This
difference does decrease in absolute terms as a function
of redshift, resulting in the sharper decline with redshift
than the CMB correction. The CMB dipole correction
drops to less than about 1% beyond redshifts of z >

∼ 0.13.
The difference between that and the local dipole correc-
tion becomes negligible much faster, reducing to less than
1% beyond redshifts of z >

∼ 0.05.
All the major supernova datasets, such as the re-

cent ones compiled by ESSENCE (Miknaitis et al. 2007;
Wood-Vasey et al. 2007), SuperNova Legacy Survey
(Astier et al. 2006), HST (Riess et al. 2007), Supernova
Cosmology Project (Kowalski et al. 2008, Union), Centre
for Astrophysics (Hicken et al. 2009, Constitution), and
SDSS (Kessler et al. 2009) have the CMB dipole correc-
tion applied, but none correct for the local dipole.
In Figure 5 we show the shift in cosmological parame-
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Fig. 5.— Cosmological parameter likelihood surfaces in the flat wCDM model (one, two, and three sigma). The shaded contours display
the K09 data set e (full sample) and the same contours are displayed in both the top and bottom panels for reference. The red cross
indicates the point of maximum likelihood for the K09 data. In addition, the top panel shows an alternative analysis of the same data in
which the CMB dipole correction is not applied (black curves). The bottom panel shows an alternative analysis where the both the CMB
dipole and local dipole corrections are applied to the SN data. The point of maximum likelihood for each of these alternative analyses
is indicated by the black diamond on the top and bottom panels respectively. Only shifts perpendicular to the long axis of the contours
are significant, because shifts along the long axis represent very small changes in χ2 and are well constrained by other measurements (e.g.
CMB and BAO). Correcting for the CMB dipole shifts the contours by about 15% of 1σ, while the shift due to the local dipole is negligible.
See the electronic edition of the Journal for a color version of this figure.

Fig. 6.— Similar to Fig. 5, but using dataset ‘b’ from K09, which includes the SDSS, ESSENCE, and SNLS data. This dataset is more
sensitive to dipole corrections because it excludes the relatively isotropically distributed nearby sample and relies on the SDSS sample as
the local anchor of the Hubble diagram. The best fit values are shown (as red crosses for K09, black diamonds for the two variations), but
these are not particularly good indicators because the best fit in this case is on the edge of the parameter space explored. More indicative
of the magnitude of the effect is the amount that the contours shift. The CMB dipole shifts the contours by about 0.2σ, corresponding to

a ∆w ∼ 0.04 along the line of constant ΩM = 0.3, while the shift due to the local dipole is small (∆w <
∼ 0.01). See the electronic edition of

the Journal for a color version of this figure.

ter estimates that occurs when we ignore the CMB dipole
correction (upper) and when we add the additional cor-
rection due to the local dipole (lower).
To make this comparison we have used the MLCS2k2

version of data set ‘e’ from K09, which includes the
new supernovae from the SDSS collaboration combined
with the high-redshift ESSENCE, SNLS, and HST data
along with the low-redshift sample (Hamuy et al. 1996;
Riess et al. 1999; Jha et al. 2006).
The choice of dataset is important, so we also show in

Figure 6 the effect of the dipole on data set ‘b’ from K09,
which excludes the relatively isotropically distributed

nearby sample and relies on the SDSS sample as the
nearby anchor for the Hubble diagram. This makes it
more sensitive to the dipole correction.
It is clear from these figures that the CMB dipole cor-

rection is important. Neglecting it introduces a system-
atic shift of ∆w = 0.04 when considering the best fit
w at a constant ΩM ∼ 0.3. This represents about 20%
of one standard deviation at the current accuracy levels,
but will become ever more important as groups strive
to decrease the uncertainty on w below 5%. This CMB
correction is already routinely applied to supernova data
sets and it can be done to very high precision thanks to
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the accurate measurements of the CMB dipole. However,
the characteristics of the local dipole are much more un-
certain. Given the assumptions we have outlined here,
Figure 5 shows the contribution from the local dipole is
currently negligible, giving a shift of ∆w <

∼ 0.01. For the
current sample, therefore, K09 are justified in correcting
solely for the CMB dipole and ignoring local non-CMB
contributions. This may not be true in the future when
more data are available, particularly data at redshifts
below 0.05.
The lower sensitivity to dipole corrections shown in

Figure 5 compared to Figure 6 demonstrates that choos-
ing an isotropically distributed local supernova sample
protects us, to a great extent, from systematic errors due
to any unaccounted-for local dipole. In the next section
we will see that isotropic samples do not save us from
the effects of higher-order motions.

3. COHERENT FLOWS

The next peculiar velocity effect we consider is the im-
pact of coherent bulk motions. Large scale structure in-
troduces correlated peculiar velocities as neighbouring
galaxies, and the supernovae they host, fall towards the
same overdensities. Ignoring these correlations under-
estimates the uncertainty in our cosmological inferences.
The effect is particularly important at low redshift where
supernovae will tend to be physically closer to each other
(as a function of angular separation on the sky).
These coherent flows are the higher-order manifesta-

tions of the gravitational influence of large scale struc-
ture, beyond the local dipole we discussed in Sect. 2.
This exercise is analogous to subtracting the dipole from
the CMB and considering the residual fluctuations.
The reason correlated velocities have a deleterious im-

pact on standard supernova cosmology arises because two
correlated supernovae can not be statistically averaged in
such a way so as to reduce the error in proportion to the
square-root of the number of supernovae, as is usually
assumed. Correlations mean the data are not randomly
distributed about the central value, so the uncertainties
do not average out exactly and there remains a resid-
ual error even in the limit of an infinite number of data
points.
Put simply, two correlated supernovae could both lie

above (or below) the magnitude-redshift relation of the
correct underlying model, so taking the average of the
two will not reduce to the correct model. The amount of
correlation determines how much residual uncertainty is
required to take this into account.
Here we assess the impact of coherent flows on the error

estimates and thus the cosmological constraints derived
from supernovae. We first calculate the expected statis-
tical correlations in the peculiar velocities of galaxies as
a function of their distance from each other based on a
ΛCDM model. We convert this into an observationally
useful measure by converting it to the expected covari-
ance in magnitudes as a function of angular separation
and redshift separation. We then apply the results to the
low-redshift supernovae in our sample and calculate the
difference in the uncertainty estimates on the cosmolog-
ical parameters.
In the next section we summarize how to calculate cor-

relations and include this information in the likelihood
calculation for cosmological models. We then demon-

strate the effect on the error estimates and the best-fit
values of the cosmological parameters.

3.1. Calculating correlations

Recall that supernova cosmology aims to fit the obser-
vations of apparent magnitude, m, and redshift, z of a
supernova to the following relation,

m(z) = 5 log10dL(z) +M, (18)

where dL is the luminosity distance (in units of 10pc) and
M is a constant incorporating the absolute magnitude
of the supernova and Hubble’s constant. The luminosity
distance is a function of the cosmological parameters we
want to fit.
The likelihood of a particular model, in a gaussian dis-

tribution, is proportional to e−χ2/2. Let m̂i represent
the ith measurement and mi the corresponding model
prediction. When all data points are independent, χ2 is
given by,26

χ2 =
∑

i

(m̂i −mi)
2

σ2
i

. (19)

Here σi ≡ σmi
is the magnitude uncertainty onmi. How-

ever, when data points are correlated the more general
form of χ2 is given by,

χ2 =
∑

i,j

(m̂i −mi)C
−1
ij (m̂j −mj), (20)

where the covariance matrix,

Cij ≡ 〈δm̂iδm̂j〉, (21)

quantifies how likely two supernovae are to have the same
offset from the correct model. The factor δm̂i ≡ m̂i −
〈m̂i〉 designates how far the ith data point deviates from
the mean of the observational data.
The covariance matrix can be divided into the random

component σi and the correlated component, which we
consider to be only due to peculiar velocities, Cvel

ij ,

Cij = σiδij + Cvel
ij . (22)

As discussed in Hui & Greene (2006), there are a wider
variety of large scale structure induced fluctuations than
are accounted for in Eq. 22. For instance, lensing intro-
duces correlated noise in addition to Poissonian fluctu-
ations. There are also fluctuations due to gravitational
redshift and the integrated Sachs-Wolfe effect. It can be
shown that all these effects can be neglected for surveys
of current practical interest (Hui & Greene 2006).
The random uncertainties, which contribute to the di-

agonal part of Cij , include the intrinsic diversity in the
supernova population, σintr

i , the scatter due to measure-
ment uncertainty, σmeas

i , and the contribution from ran-
dom peculiar velocities, σvel

i . Although random peculiar
velocities primarily add dispersion in the apparent red-
shift of the sources (the effect on the luminosity is smaller
and is usually neglected), this is usually converted to a
dispersion in magnitude and added in quadrature to the

26 In this paragraph χ2 represents the statistic, not the comoving
coordinate squared.
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other magnitude uncertainties (see Appendix A for more
detail),

σ2
i = σintr

i

2
+ σmeas

i
2 + σvel

i

2
. (23)

Since random peculiar velocities are taken into account
by this diagonal term we set all diagonal terms Cvel

ij = 0.

Alternatively we could remove σvel
i and reinstate them

as the diagonal elements of Cvel
ij .

The velocity correlation function is defined to be,

ξvelij ≡ 〈(vi · x̂i)(vj · x̂j)〉 (24)

where x̂i and x̂j represent the unit vectors pointing to-
wards SNe i and j respectively, and vi and vj represent
the velocity vectors of each supernova’s motion.
The peculiar-motion-induced magnitude covariance is

related to the velocity correlation function ξvelij by,

Cvel
ij =

[

5

c ln 10

]2 [

1−
ai
a′i

c

χ̃i

]

[

1−
aj
a′j

c

χ̃j

]

ξvelij , (25)

where c is the speed of light, χ̃ ≡ R0χ is the radial co-
moving distance, a = R/R0 is the normalised scale fac-
tor, and the prime denotes the conformal time derivative.
All quantities with a subscript i or j are to be evaluated
at the redshift of the SN in question. For a non-flat uni-
verse χ̃ → R0Tk(χ).
A numerical code to compute both ξvelij and

Cvel
ij for a pair of points at arbitrary red-

shifts and angular separation in the standard
cosmological model of ΛCDM is available at
http://www.astro.columbia.edu/∼lhui/PairV.
We illustrate the results of that code in Figs. 7 and 8,
and in what follows we explain the theory behind those
calculations.
To calculate the expected velocity correlation function

given a theoretical model we need information about how
structure grows. To first order this is given by the linear
growth factor D(z) ≡ δ(z)/δ(0), where the overdensity
δ = (ρ− 〈ρ〉)/〈ρ〉. As input we also use the mass power
spectrum of density fluctuations observed at the present
time P (k)z=0, where k is the comoving wavenumber (in-
verse distance).
Using these we can estimate the distribution of pecu-

liar velocities expected in a particular theoretical model.
Concentrating for the moment only on the dispersion
(the diagonal terms in the velocity correlation func-
tion), one finds the dispersion in peculiar velocities to
be (Hui & Greene 2006),

σvel
vi

2
≡ ξvelii = D′(zi)

2
∫ ∞

0

dk

6π2
P (k)z=0, (26)

which results in a dispersion in apparent magnitude of,

σvel
i

2
=

[

5

c ln 10

]2 [

1−
ai
a′i

c

χ̃i

]2

σvel
vi

2
. (27)

In principle this dispersion is sensitive to non-linear fluc-
tuations, but the velocity power spectrum weights larger-
scale modes more than the density power spectrum does
and we find that when using the linear mass power spec-
trum for a ΛCDMmodel the resulting value for σvi agrees

with the canonical value of 300 km/s to better than 10%
for all redshifts of interest. The off-diagonal components
of Cij should be at least as well fit by linear theory since
they are less sensitive to small-scale structure than σvi .
The off-diagonal part of Cij , given by Cvel

ij in Eq. 22,
accounts for the effects of correlated peculiar flows.
Expressing this quantity in an observer-centric form
Hui & Greene (2006) show that for a flat universe,

Cvel
ij =

[

5

c ln 10

]2 [

1−
ai
a′i

c

χ̃i

]

[

1−
aj
a′j

c

χ̃j

]

× (28)

D′

iD
′

j

∫ ∞

0

dk

2π2
P (k)z=0 ×

∞
∑

ℓ=0

(2ℓ+ 1)j′ℓ(kχ̃i)j
′

ℓ(kχ̃j)Pℓ(x̂i · x̂j),

where Pℓ is the Legendre polynomial, jℓ is the spherical
Bessel function, and j′ℓ is its derivative with respect to
its argument. It is useful to note that j′ℓ(x) = jℓ−1− (ℓ+
1)jℓ/x. This observer-centric form can be derived from
Eq. 22, D7, and D10 of Hui & Greene (2006), by setting
the survey geometry to be two delta functions localized
at the two SNe of interest.
An alternative separation-centric form for the same

quantity is (Gorski 1988; Gordon et al. 2007),

Cvel
ij =

[

5

c ln 10

]2 [

1−
ai
a′i

c

χ̃i

]

[

1−
aj
a′j

c

χ̃j

]

× (29)

[ (x̂i · r̂)(x̂j · r̂)Π(r) + [x̂i · x̂j − (x̂i · r̂)(x̂j · r̂)]Σ(r) ]

Π(r) ≡ D′

iD
′

j

∫ ∞

0

dk

2π2
P (k)z=0

[

j0(kr) −
2j1(kr)

kr

]

Σ(r) ≡ D′

iD
′

j

∫ ∞

0

dk

2π2
P (k)z=0

j1(kr)

kr

where the comoving separation between the two SNe is
given by r and r̂ is the unit vector pointing along the
separation.
That Eq. (28) and (29) are equivalent is shown in Ap-

pendix B. The separation-centric form is useful for fast
computation, while the observer-centric form is more di-
rectly linked to the observed velocity angular power spec-
trum. Note that these two equations are only strictly
valid for a flat universe, since the derivation in Appendix
B uses a plane-wave expansion that needs modification
if the universe is not flat.
We are interested in the implications of deviating from

the common practise of assuming all velocities are uncor-
related. In the next section we therefore test the impact
of including Cvel

ij in the covariance matrix of the uncer-
tainties for the supernova sample used by K09.

3.2. Correlation’s impact on cosmology

We use a model linear power spectrum and growth
function based on a fiducial flat-ΛCDM cosmology with
[h,Ωm,Ωb, σ8, n] = [0.701, 0.2792, 0.046, 0.817, 0.96] to
estimate Cij as per Eq. 28. This allows us to calculate
the likelihood that two supernovae will have correlated
velocities based on their physical separation. We plot the
amount of velocity correlation as a function of redshift
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Fig. 7.— The velocity two-point correlation, ξ12, in units of
(km s−1)2. The upper panel shows the correlation as a function
of z2 (the redshift of the higher redshift supernova) compared to
a low-redshift supernova at a fixed z1 = 0.01, for three different
angular separations (0, 30 and 100 degrees). As the redshift sepa-
ration increases the correlation diminishes. The lower panel shows
the correlation as a function of angular separation, in the case
where the two supernovae are at the same redshift (z2 = z1 =0.01,
0.02, 0.05, and 0.1). For a fixed angular separation the correlation
is most dramatic at low redshifts because this corresponds to a
smaller physical distance than the same angular separation at high
redshifts. ξ12 is given by the last two lines of Eq. 28.

and angular separations in Fig. 7, with the corresponding
magnitude covariances shown in Fig. 8.
After applying that correction to the K09 sample we

re-fit our cosmological models. We fit a flat wCDM
model, allowing the matter density Ωm and dark energy
equation of state w to vary. (Note that we do not redo
the velocity covariance approximation for each different
model, but the differences would be small.) In addition
to the supernova data we also include the same priors
as K09, described in detail in their Section 8. Specif-
ically, for Baryon Acoustic Oscillations (BAO) we use
the (Eisenstein et al. 2005) result that the derived dis-
tance parameter, A(z = 0.35) = 0.469± 0.017, and from
the CMB we use the (Komatsu et al. 2009) result that
the shift parameter R(z = 1100) = 1.710± 0.019.
The low-redshift cutoff is usually applied in order to re-

move the effect of low-redshift peculiar velocities. Imple-
menting a correlated velocity correction increases the er-
ror bars on all the low-z supernovae relative to the high-z
supernovae. This effectively down-weights the lower red-
shift end of the Hubble diagram and thus has a similar
effect to the low-redshift cutoff.
We first consider only the low-redshift supernovae, for

which this gives the largest effect, i.e. the Low-z+SDSS
sample ‘c’ from K09. As done in K09, we apply a
low-z cut of zcut = 0.02. In this case w increases by
0.02 when the distance correlations are included. Using
the larger sample ‘d’ from K09 that also includes the
higher redshift ESSENCE and SDSS data, we find w in-

Fig. 8.— The magnitude covariance due to peculiar motion
(Eq. 28). As for Fig. 7 the upper panel shows, for three different
angular separations, the covariance between a z1 = 0.01 source
and a source at a higher redshift, z2. The lower panel shows
for fixed redshifts (z2 = z1 =0.01, 0.02, 0.05, and 0.1) how the
covariance drops as the angular separation increases. To get a
feel for how much additional uncertainty the correlated compo-
nent adds to the uncorrelated dispersion consider that for these
four redshifts the canonical 300km s−1 dispersion corresponds to
σ2
m

∼ (25, 10, 7, 5) × 10−3 respectively (see Appendix A). So the
strongest correlated uncertainties are an order of magnitude lower
than the random dispersion. However, the random dispersion can
be beaten down by raising the number of SNe, while the correlated
covariance cannot. Thus, as the total number of SNe increases the
correlated noise becomes comparatively more and more important.

creases by 0.014 due to the correlated velocities. These
results should be compared to the uncertainty on w of
±0.07(stat)± 0.11(sys) reported by K09. Thus neglect-
ing coherent velocities represents a potential systematic
error on the best-fit value of w of up to about 2%, or
about 13% of the current estimated systematic error
budget.27 When future supernova surveys achieve (su-
pernova only) statistical error bars less than about 2%,
this potential systematic error will need to be consid-
ered carefully, especially for surveys with many nearby
supernovae. Indeed the Carnegie supernova project have
already found that the magnitude scatter in their sample
of z < 0.08 supernovae is limited by peculiar velocities
(see Folatelli et al. 2010, Fig. 19).
Figure 9 shows the effect of implementing a range of

different low-redshift cutoffs on the supernova data, both
for the original K09 MLCS2k2 data (solid lines) and for
our version of that data with uncertainties corrected for
correlated motion (dashed lines).28 We plot the best fit
value of w derived for a flat model with w and Ωm as

27 Adding 0.014 to the systematic error budget represents an
increase of 13% over the current 0.11 systematic uncertainty esti-
mate.

28 Note that K09 also uses the SALT II light-curve fitter and
the results differ. We do not debate the merits of different light-
curve fitters here, our qualitative results are relevant whichever
light-curve fitter is used.
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free parameters.
The correlation-corrected result (dashed line) can be

matched by implementing a larger low-z cut on the
uncorrected data (e.g. the correlation-corrected result
with zcut ≈ 0.015 matches the uncorrected data with
zcut ≈ 0.017). It is also evident that the effect of the
low-z cut on the data with correlated errors is smaller
than on the data set with uncorrelated errors. Both
of these features are as expected, because some of the
low-z cut was already effectively implemented by the
down-weighting due to correlations. We also note that
the SDSS supernovae are much less prone to correlations
than the Nearby sample, simply due to their greater dis-
tance. SDSS supernova therefore provide a larger im-
provement to the low-redshift anchor of the magnitude-
redshift diagram than one might näıvely expect.
This analysis demonstrates that if the velocity covari-

ance matrix had been used in K09 then the need for a
low-z cut would have been diminished. Using the covari-
ance matrix for the peculiar velocity uncertainties should
be an optimal statistical treatment of the supernova data.
It automatically includes the effect of monopole uncer-
tainties and dipole uncertainties as well as the higher-
order correlated motions. Although slightly more com-
plicated to implement than a simple low-z cut, the re-
sults are more robust. (This can be seen by the smaller
slope of the correlation-corrected analysis vs redshift cut
in Fig. 9).
Computing the full correlation matrix does have some

disadvantages, primarily because it is model dependent.
Our calculation of correlations has been made in a fidu-
cial ΛCDM model, so it is not strictly self-consistent to
use these correlations to test other models. However,
this is mitigated by the fact that the majority of the co-
variance signal comes from low redshifts, and most viable
models for the universe have to agree fairly closely on the
evolution and growth of structure in the local universe
in order to match observations. To check the differences
are negligible the correlations can be self-consistently re-
derived for each cosmological being fitted.
As future surveys with many more supernovae attempt

to obtain percent-level accuracy on the value of the equa-
tion of state the effect of correlations will become ever
more important. At the very least, neglecting correla-
tions under-estimates the uncertainty on our cosmolog-
ical inferences, and in the worst-case scenario can bias
the values of cosmological parameters we derive.

4. LOCAL UNDER- OR OVER-DENSITY

In cosmology the monopole term describes the expan-
sion as a function of radial distance, r. In an homoge-
neous universe the monopole is usually described by Hub-
ble’s law, in which the velocity of the comoving object is
proportional to its distance from the origin, v(t) = H(t)r,
where H(t) is known as the Hubble parameter.
In an inhomogeneous universe the Hubble parame-

ter can also depend on spatial position, H(t, r). When
that spatial dependence is spherically symmetric it con-
tributes an additional factor to the monopole term of
the expansion, which is very difficult to detect observa-
tionally, because its primary effect is simply to shift the
redshift of all objects. It effectively just makes all objects
appear more or less distant.
Were an observer to find themselves off-centre within a

Fig. 9.— Effect of low-z cut on SN data, where the solid lines
show the best fit equation of state obtained while neglecting corre-
lated errors and the dashed lines show the same when correlations
have been taken into account statistically (model assumes flatness
with w and Ωm the only free parameters, c.f. K09 Fig. 21). The
upper and lower sets of lines show how much the results differ
when you respectively include or exclude high-redshift data. Up-
per (grey) curves are for the K09 data set ‘d’, with Nearby, SDSS,
ESSENCE, and SNLS supernova samples. Lower (black) curves
are for the K09 data set ‘c’, with only the Nearby and SDSS data
included. K09 use a low-redshift cutoff of 0.02 (crosses) with sys-
tematic uncertainties (calculated for the flat-ΛCDM model with
the MLCS light-curve fitter) of ±0.11 for set ‘d’ and +0.10− 0.33
for set ‘c’ (the greater systematic uncertainty in the lower direction
for the set ‘c’ arises primarily due to uncertainties in the rest-frame
U band). So the offset seen here between these two data set com-
binations is within the uncertainties. The effect of correlations is
currently smaller than the other systematic uncertainties consid-
ered in K09, but will be important for attempts to measure w to
better than 3%. Raising the low-redshift cutoff to 0.025 is sufficient
to remove the expected effect of correlated supernova motions.

density fluctuation the existence of the fluctuation would
be much easier to observe as it would imprint an obser-
vational signature akin to the dipole in the CMB. While
the induced CMB dipole can always be accommodated
by introducing a balancing peculiar velocity of the ob-
server, such a motion simultaneously affects the SN Ia
observations. Blomqvist & Mortsell (2009) showed that
when considering voids large enough to explain the ap-
parent acceleration of the universe without dark energy,
a combined analysis of CMB and supernovae data re-
stricts our position to within 1% of the centre of the
density fluctuation.
The potential presence of a monopole term due to

a local underdensity is of particular interest to super-
nova cosmology because the discovery of the accelera-
tion of the universe is founded on the observation that
high-redshift type Ia supernovae appear to be more dis-
tant than expected in a decelerating universe (Riess et al.
1998; Perlmutter et al. 1999). This observation has in-
cited intense scrutiny of the potential for a local under-
density, known as a “Hubble bubble”, that may be influ-
encing our results.
Zehavi et al. (1998) first reported evidence for a local

Hubble bubble in the supernova data, which was refined
by Jha et al. (2006) by including more supernovae and
by embedding the proposed void in a ΛCDM universe.
This reported Hubble bubble corresponds to a local Hub-
ble parameter elevated by approximately 5% relative to
the global mean, on scales of the order 70h−1Mpc. This
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interpretation is reasonable as this distance is roughly
the scale of observed large scale structure in our universe
(Geller et al. 1997). However, these results have been
challenged by papers such as Conley et al. (2007), who
show that systematic effects in the treatment of colour
terms in the light-curve fitting procedure could be pro-
ducing a false signal. The evidence for the Hubble bubble
is also questioned by other surveys, such as Tully-Fisher
and galaxy cluster measurements (e.g. Giovanelli et al.
1999; Hudson et al. 2004), that find no significant local
underdensity.
Remarkably a local underdensity can actually mimic

the turn-over in the Hubble diagram at high redshift
where the universe transitioned from the decelerating
phase of the early universe to the accelerating phase we
see now (see Fig. 4 of Sollerman et al. 2009). That means
that the Hubble Space Telescope observations of super-
novae beyond a redshift of z ∼ 1 (Riess et al. 2004, 2007)
that appear closer than expected (in contrast to those at
z <

∼ 1 that appear further than expected) does not neces-
sarily invalidate the Hubble bubble model.
Many authors (Alnes et al. 2006; Enqvist & Mattsson

2007; Enqvist 2008; Garcia-Bellido & Haugbølle 2008;
Garćıa-Bellido & Haugbølle 2008, 2009; Zibin et al.
2008; Clifton et al. 2008; Alexander et al. 2009) have
studied the size of void required to completely explain
away the apparent acceleration in the supernova results.
The size required is so vast that the likelihood of us being
in such a void in a universe that is on average homoge-
neous is extremely small. We could abandon the Coper-
nican principle (that we are not in a special place in the
universe) and construct a model for our universe in which
we do happen to be in such an enormous void. However,
the additional restriction that we must be very close to
the centre of that void to avoid seeing an excessively large
dipole in the CMB, makes such a model very contrived
(Alnes & Amarzguioui 2006; Caldwell & Stebbins 2008;
Blomqvist & Mortsell 2009).
Nevertheless, the prevailing model of the universe con-

tains a spectrum of density fluctuations, and as observers
placed in a random galaxy amongst that distribution we
should consider the chance that we are sitting in a small
density fluctuation – say one standard deviation away
from the mean density – which could possibly have a
noticeable effect on the cosmological results we derive.
Here we study the monopole in two ways. First we per-

form a simulation of large scale structure to predict the
distribution of density fluctuations expected in a ΛCDM
universe. We can then compare this for consistency with
the density fluctuations observed. Secondly we calculate
the effect a ‘typical’ density fluctuation has on supernova
cosmology, and test whether inserting a low-redshift cut-
off in the supernova data can eliminate the effect of local
density fluctuations.

4.1. Modelling the size of density fluctuations

Once we have derived a model (such as ΛCDM) from
the observational data we can ask whether the density
fluctuations predicted in this model are consistent with
those observed. We can also address whether our treat-
ment of the dipole is justified and whether it is likely that
an undiagnosed monopole term could be biasing our re-
sults. This checks the internal consistency of the model
as well as testing for biases our assumptions may impose
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Fig. 10.— The average monopole and dipole in the velocity field
as extracted from a large N-body simulation with best-fit WMAP5
cosmological parameters. The shaded areas indicate the cosmic
variance. The dashed line is the best-fit model, Eq. (30). See the
electronic edition of the Journal for a color version of this figure.
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Fig. 11.— To what distance can the direction of the local
dipole be extrapolated? This plot shows the relative direction
of the dipole as measured by observers at two reference red-
shifts z0 = 0.015, 0.2 (blue and green respectively). When the
change reaches 90◦ (dashed lines), which occurs at z90=0.043 and
z90={0.132,0.294}, the dipole to a shell at that radius bears no
correlation with the dipole in shells very close to the observer. The
shaded area is the cosmic variance. As expected, the size of the
region in which the directions of the dipole are aligned increases
with redshift, from ∆z90 ∼0.03 to ∆z90 ∼0.08 for the two cases
shown here. See the electronic edition of the Journal for a color
version of this figure.

on our results.
To this end we have performed a large scale

dark matter N-body simulation (Lbox=2048 Mpc
h−1, Npart=10243, zstart=49) using the Gadget2 code
(Springel 2005) with best-fit WMAP5 cosmological pa-
rameters {Ωm,ΩΛ, h, w, ns, σ8} = {0.2792, 0.7208, 0.701,
-1, 0.96, 0.817}, (Komatsu et al. 2009). Using 2000 ob-
servers placed at random, but weighted by mass, we have
calculated the average magnitude of the monopole and
the dipole, together with the cosmic variance of each (see
Fig. 10). We define the magnitude of the monopole to be
σ(M) =

√

π
2 〈|M |〉, where σ(M) is the root-mean-square

of the signed monopole, and the signed monopole is sim-
ply the mean velocity (either towards or away) of matter
in a shell of a particular distance.
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While the analysis is done at redshift zero using a single
data snapshot, the velocities have been corrected using
linear theory, so the velocities in Fig. 10 are in the light-
cone. The correction from translating the velocities to
the lightcone is minor, at maximum 1%.
In order to calculate the mean size of the dipole and

how it varies with distance (redshift) we sliced the result-
ing simulation into shells with a range of radii between 10
h−1Mpc < r < 1000 h−1Mpc around each of the random
observers. We then measured the mean motion of these
shells to calculate the monopole and dipole the central
observer would see for sources at that distance.
We have done the analysis both with shells with a

thickness of 10 h−1Mpc and of 1 h−1Mpc, and confirmed
that the results do not depend on the shell thickness,
except at the very lowest redshifts where the thickness
becomes comparable to the radius of the shell. The mag-
nitude of the dipole is reasonably well described by the
simple model

vd = (507± 51)− (65± 8) ln

(

R0χ

1Mpch−1

)

km s−1,

(30)

= (−8± 12)− (63± 7) ln(z) km s−1 ,

where the differences in the fits using either comoving
distance (R0χ) or redshifts are due to the slightly non-
linear conversion between the two at larger distances.
The mean magnitude of the dipole at low redshifts

(z ∼ 0.01) is approximately 300 ± 100 km s−1. This
is consistent with the average random peculiar velocity
uncertainty we assume for supernovae.
The mean absolute magnitude of the monopole, which

is also plotted in Fig. 10, is smaller than the dipole but
still significant, on the order of 100 km s−1. We investi-
gate in Section 4.2 the impact this mean monopole would
have on our cosmological inferences.
The direction of the dipole of the local velocity field

is only known at very low redshifts. To test how well
this knowledge can be extrapolated to higher redshifts,
Fig. 11 shows how the direction of the dipole in the sim-
ulation changes as a function of redshift. The direction
is measured with respect to the direction of the dipole
at two reference redshifts z = 0.015, 0.2. These redshifts
correspond respectively to the redshift of the currently
available local dipole measurement, and a redshift repre-
sentative of the SDSS supernovae.
A näıve expectation would be that the average lo-

cal dipole should decrease with redshift until we reach
sources that are too distant to share any significant com-
mon source of gravitational attraction with us. At that
point the sources should be on-average at rest with re-
spect to the CMB, and therefore our dipole direction
with respect to those sources, if we do not correct for
our local velocity, should be simply the direction of the
CMB dipole. When we do correct for the local velocity
(as done in Figure 11), while the amplitude of the lo-
cal dipole decreases, the direction still changes at higher
redshifts, and it only makes sense to extrapolate the cur-
rently known dipole direction out to z ≈ 0.045.
This result is interesting seen in light of observational

results pointing towards a coherent dipole direction out
to at least 300 h−1Mpc (i.e. z ∼ 0.1, Kashlinsky et al.
2008), since not only the magnitude of the observed

dipole velocity (1600±500kms−1 at z ∼ 0.03 and 850±
250kms−1 at z ∼ 0.1) but also the constancy of the
the direction of the dipole is surprising (∼ 3σ deviation)
when interpreted in the framework of the ΛCDM cosmol-
ogy.

4.2. The impact of density fluctuations on SN
cosmology

We now extend this study to analyse the effect a typi-
cal local density fluctuation has on cosmological parame-
ter estimation with supernovae. In Sinclair et al. (2010)
some of the current authors examined this effect in gen-
eral. Here we summarise the Sinclair et al. (2010) results
and relate them to the SDSS data specifically.
Sinclair et al. (2010) used the Lemâıtre-Tolman-Bondi

(LTB) model to simulate a local underdensity, as outlined
in Garcia-Bellido & Haugbølle (2008). By adapting their
LTB software29 we generated model magnitude-redshift
data for a Hubble bubble universe with a Gaussian void
profile that follows a radial matter density profile of,

ΩM(r) = Ωout
M [1− δe(−r/r0)

2

], (31)

where r0 is the characteristic void radius and the density
contrast is defined as δ = (Ωout

M −Ωin
M)/Ωout

M . We then fit
these data with a model (ΛCDM) that erroneously as-
sumes the simulated universe is homogeneous and com-
pare the parameters so derived with the parameters input
into the simulation.
We chose to test a void (underdensity) of r0 =

70h−1Mpc, with δ = −0.3, corresponding to a maximal
monopole velocity of 120kms−1. This is a reasonable size
void given the statistical distribution derived in the pre-
vious section. This model is of further interest because
it is the radius of Hubble bubble suggested by the su-
pernova data (Jha et al. 2006; see however Conley et al.
2007), and is also close to the observed scale of struc-
tures in our universe (Geller & Huchra 1989; Geller et al.
1997; Hoyle & Vogeley 2004).
We simulated this underdensity embedded in a ΛCDM

universe with (ΩM,ΩΛ) = (0.3, 0.7). Specifically, we
generated a set of ideal magnitude-redshift data points
(301 points evenly distributed over 0 < z < 1.7) ex-
actly matching the void model, and gave these distance
modulus uncertainties of 0.2mag. We test how badly
such an underdensity would bias our cosmological con-
clusions by fitting an homogeneous model to this local
underdensity+ΛCDM data. If the void has no impact
we expect to recover (ΩM,ΩΛ) = (0.3, 0.7). Anything
else represents a systematic offset caused by the local
underdensity that will not be mitigated by adding more
data.
A similar technique was used by Vanderveld (2008)

to study the effect of peculiar velocities on supernova
cosmology, taking the distribution of peculiar velocities
from an N -body simulation. They found that zcut =
0.02 was the optimal low-redshift cutoff but applying it
only reduced the error in the cosmological parameters by
about 10%. Below we find that if we happen to live in one
of the low density regions of the universe and consider
the gravitational redshift that would induce, then the
low-redshift cut could be of greater importance.

29 http://www.phys.au.dk/∼haugboel/software.shtml

http://www.phys.au.dk/$\sim $haugboel/software.shtml
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Upon fitting a homogeneous model to our ΛCDM+void
data we extracted best-fit parameters (ΩM,ΩΛ) =
(0.299, 0.73), corresponding to a 0.3% discrepancy in the
matter density and a 4% discrepancy in the cosmologi-
cal constant density, compared to the input parameters.
This size of discrepancy is not insignificant, given the cur-
rent uncertainty in cosmological parameters: the WMAP
results in Komatsu et al. (2009) cite a 2% uncertainty on
the best fit value of the cosmological constant.
This analysis demonstrates the importance of imple-

menting a low-redshift cutoff. The above discrepancies
in ΩM and ΩΛ are reduced to 0.06% and 1% respectively
when a low-redshift cut of zcut = 0.02 is used.
The discrepancies become more severe (but with larger

uncertainties) when we allow the equation of state of dark
energy to differ from w = −1 during the fit. Starting with
a simulation with (ΩM,ΩΛ, w) = (0.3, 0.7,−1.0), when
we simultaneously fit the three parameters in the pres-
ence of the void we get a discrepancy in w of 44% with no
low-z cut, which is reduced to a discrepancy of 8.5% when
using zcut = 0.02. Imposing flatness reduces the discrep-
ancies without and with the low-z cut to 7% and 1.4%
respectively. (Without a low-redshift cutoff the best fit
models are (ΩM,ΩΛ, w) = (0.31, 0.54,−1.4) when cur-
vature is permitted, and (ΩM, w) = (0.30,−1.07) when
flatness is imposed.)
We emphasise that this analysis is only hypothetical

— if we live in a 30% underdensity of scale 70h−1Mpc,
then assuming the universe is homogeneous could dupe
us into believing that w is far more phantom-like (< −1),
and the density of dark energy far more significant, than
they really are.
Even though the proposed void is only hypothetical,

given that these discrepancies remain significant it is
worth investigating the potential impact on recent data
sets and whether a higher low-z cutoff might be worth-
while.
To that end we here apply the Sinclair et al. (2010)

result to the SDSS data explicitly. At each observed red-
shift we alter the SDSS data for the effects of a hypothet-
ical void of the type described above (r0 = 70h−1Mpc,
with δ = −0.3). The difference is shown in the up-
per panel of Fig. 12, in which the standard low-z cut
of zcut = 0.02 has been used. This low-redshift cutoff
is motivated empirically not only because random pecu-
liar velocities are significant below that redshift, but also
because for zcut < 0.02 the best fit parameters depend
strongly on the choice of zcut (see Sect. 9.1 and Fig. 21
of K09).
Although in Fig. 12 there appears to be a large shift in

the best fit parameters, from (Ωm, w0) = (0.40,−1.00) to
(0.37,−0.86), the final cosmological parameters are not
susceptible to this full discrepancy because most of the
variation is along the long-axis of the contours, which is
well constrained by other observations such as the CMB
and BAO. The direction that the supernovae constrain
most tightly is only changed a very small amount by the
presence of a local void.
It could nevertheless be argued that a higher low-z

cutoff may be necessary to avoid the effects of local in-
homogeneities. However, by excluding low redshift data
one sacrifices constraining power. In the lower panel of
Fig. 12 we show the result of increasing the low-z cutoff
to zcut = 0.04. Although the effect of the void is now

negligible (shaded and black contours overlap) the con-
tours have shifted further due to the loss of constraining
power than they did due to the hypothetical void. We
therefore conclude that increasing the redshift cutoff is
counter-productive with the size of the low-z SN sample
used in K09.
This could be considered another argument for using

the covariance matrix approach to down-weighting low-
z supernovae since it automatically takes into account
potential monopole velocities.

5. CONCLUSIONS

From this study we can conclude that the cosmological
results derived by the SDSS SN survey are robust to pe-
culiar velocity systematics. The local dipole represents a
negligible addition to the CMB dipole correction that has
already been implemented, but future surveys with many
nearby supernovae may need to take it into account. An
isotropically distributed local supernova sample would
shield us, to a great extent, from systematic errors due
to the local dipole.
Neglecting correlated peculiar velocities can cause an

error in the best-fit value of w, which in the current sam-
ple underestimates w by about 2%, and causes us to over-
estimate the precision of our measurement. As future
surveys aim for percent-level accuracy on the value of the
equation of state, the importance of correlations between
the peculiar velocities of supernovae will increase. Here
we treated them in a statistical sense, but it may be pos-
sible in the future to correct the supernova velocities for
measured local flows. An future method of testing cos-
mological parameters will be to use the peculiar velocities
as signal rather than noise, and generate a peculiar ve-
locity power spectrum to compare against cosmological
models. In the meantime, we find that accounting for pe-
culiar velocities by using a covariance matrix for the cor-
related errors is a more robust way to down-weight low-
redshift supernovae than applying a sharp low-redshift
cut. Doing so does not degrade the uncertainties in w,
despite the down-weighting of the signal, because one can
include more low-redshift supernovae in the overall fit.
Finally, we used n-body simulations to gauge the likely

distribution of local under- and over-densities and found
that a density fluctuation of 30% from the mean cosmo-
logical density, out to a range of 70h−1Mpc, is reasonable
given the expectations of concordance ΛCDM. A density
fluctuation of this size can have a significant impact on
the cosmological parameters we derive. It is crucial to
implement a low-redshift cut-off to escape the worst of
those systematic errors and we demonstrated that the
currently used zcut = 0.02 is well justified. However,
we advocate including the velocity covariance directly
in one’s likelihood analysis as a more systematic way to
down-weigh the low z SNe.
In conclusion, the local dipole, coherent motions, and

local density fluctuations, all have systematic effects on
supernova cosmology. Although these are negligible for
current data sets we have shown how to correct for them
when they become more significant for larger data sets
of the future.
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and also the Centro de Ciencias de Bensque Pedro Pas-
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Fig. 12.— This figure demonstrates the effect of correcting the SN data for a hypothetical ‘Hubble Bubble’, in this case a Gaussian
underdensity of 30% on a scale of 70h−1Mpc. In the upper panel the shaded contours display the K09 data set e (with the maximum
likelihood indicated by the red cross) and black outline indicates the results for the same data corrected for a local void (with the maximum
likelihood indicated by a black diamond). In the upper panel the low-redshift cutoff was the standard zcut = 0.02. The lower panel
demonstrates the effect of increasing the low-redshift cutoff from zcut = 0.02 to zcut = 0.04. The analysis is identical to the upper panel
except that in both the homogeneous case (shaded contours) and the putative ‘Hubble bubble’ case (black outline), the low-redshift cutoff
was zcut = 0.04. Although increasing the low-redshift cut reduces the susceptibility of the data to local density fluctuations, dropping the
low-redshift data changes the best fit cosmology by more than the local void would because of the weakened constraints. See also how the
best fit w changes with changing low-z cut in Fig. 9. See the electronic edition of the Journal for a color version of this figure.
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(Górski et al. 2005) package.
Funding for the SDSS and SDSS-II has been pro-

vided by the Alfred P. Sloan Foundation, the Partic-
ipating Institutions, the National Science Foundation,
the U.S. Department of Energy, the National Aeronau-
tics and Space Administration, the Japanese Monbuka-
gakusho, the Max Planck Society, and the Higher Educa-
tion Funding Council for England. The SDSS Web Site
is http://www.sdss.org/.
The SDSS is managed by the Astrophysical Research

Consortium for the Participating Institutions. The Par-
ticipating Institutions are the American Museum of Nat-
ural History, Astrophysical Institute Potsdam, Univer-
sity of Basel, University of Cambridge, Case Western
Reserve University, University of Chicago, Drexel Uni-
versity, Fermilab, the Institute for Advanced Study, the
Japan Participation Group, Johns Hopkins University,
the Joint Institute for Nuclear Astrophysics, the Kavli
Institute for Particle Astrophysics and Cosmology, the
Korean Scientist Group, the Chinese Academy of Sci-
ences (LAMOST), Los Alamos National Laboratory, the
Max-Planck-Institute for Astronomy (MPIA), the Max-
Planck-Institute for Astrophysics (MPA), New Mexico
State University, Ohio State University, University of
Pittsburgh, University of Portsmouth, Princeton Uni-
versity, the United States Naval Observatory, and the

University of Washington.
This work is based in part on observations made at

the following telescopes. The Hobby-Eberly Telescope
(HET) is a joint project of the University of Texas
at Austin, the Pennsylvania State University, Stanford
University, Ludwig-Maximillians-Universität München,
and Georg-August-Universität Göttingen. The HET is
named in honor of its principal benefactors, William
P. Hobby and Robert E. Eberly. The Marcario Low-
Resolution Spectrograph is named for Mike Marcario of
High Lonesome Optics, who fabricated several optical
elements for the instrument but died before its comple-
tion; it is a joint project of the Hobby-Eberly Telescope
partnership and the Instituto de Astronomı́a de la Uni-
versidad Nacional Autónoma de México. The Apache
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APPENDIX

APPENDIX A: TREATMENT OF RANDOM PECULIAR VELOCITY CONTRIBUTIONS

The motion of distant supernovae and their host galaxies imprints a peculiar velocity error that is primarily random
(as opposed to our own motion, on which Sect. 2 concentrates). That peculiar velocity dispersion σpec

v ∼ 300kms−1

30 http://healpix.jpl.nasa.gov

http://healpix.jpl.nasa.gov
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gives a redshift error of σpec
z = σpec

v /c (or the special relativistic formula if the peculiar velocity was higher). The
measured redshift, z, is a combination of the recession and peculiar velocity contributions according to (1 + z) =
(1 + z̄)(1 + zpec), where z̄ and zpec are the recession and peculiar velocity contributions to the redshift, respectively.
Differentiating this expression to calculate the error contribution from peculiar velocities gives

σz = (1 + z̄)σpec
z + (1 + zpec)σz̄ . (A1)

We can take the error in recession velocity to be zero, σz̄ = 0, so the uncertainty we need to add to our redshifts to
account for peculiar velocities is σz = (1 + z̄)σpec

z .
Previous analyses, including for example Davis et al. (2007), used σz = σpec

z and so slightly underestimated the
contribution from peculiar velocities at high redshifts. Formally, the uncertainty at z = 1 should have been double
what was used, but since the proportional contribution from peculiar velocities still decreases with redshift, this only
corresponds to an error of 0.26%, as opposed to 0.13%, and the difference is negligible for cosmology.
We convert σz into an approximate magnitude uncertainty, σpec

m , using the magnitude-redshift relation, and combine
it in quadrature with the uncertainty in the measured magnitude, σmeas

m , and the intrinsic magnitude dispersion, σint
m ,

of the supernovae.
The distance modulus has the form

µ = 5 log10(d̄L) =
5

ln(10)
ln [χ̃(1 + z̄)] , (A2)

where χ̃ = R0χ = c
∫ z̄

0
H(z)−1dz is the comoving distance. Therefore an error in the redshift corresponds to a

magnitude error of

σµ = σz
5

ln(10)

[

1

1 + z̄
+

c

χ̃H(z̄)

]

. (A3)

Although a fiducial cosmology is used for this calculation – often taken to be ΛCDM with ΩM ∼ 0.3 and ΩΛ ∼ 0.7 –
differences from the derived cosmology are small and have negligible impact on cosmology fits. Note that K09 use the
empty universe as their fiducial cosmology for error calculations, and approximate the empty universe case, in which
H(z̄) = H0(1 + z̄) and χ̃ = c ln(1 + z̄)/H0, by

σµ ∼ σz
5

ln(10)

[

1 + z̄

z̄(1 + z̄/2)

]

. (A4)

The difference between this approximation and Eq. A3 is shown in Fig. 13.
In the non-flat case χ̃ should be replaced with R0Sk(χ) in the equation for µ, or R0Tk(χ) in the equation for σµ,

where Sk = sin or sinh in the closed and open cases, respectively, and Tk = tan or tanh.

APPENDIX B: THE EQUIVALENCE OF THE OBSERVER-CENTRIC AND SEPARATION-CENTRIC EXPRESSIONS FOR
THE MAGNITUDE COVARIANCE MATRIX

Here we derive the expressions for Cvel
12 in Eq. 28 and 29. These derivations are valid in the flat universe case. It

comes down to evaluating the two point velocity correlation ξvel12 ≡ 〈(v1 · x̂1)(v2 · x̂2)〉, where 1 and 2 label the two
SNe in question, since

Cvel
12 =

[

5

c ln 10

]2 [

1−
a1
a′1

c

χ̃1

] [

1−
a2
a′2

c

χ̃2

]

ξvel12 . (B1)

This is actually an old subject (see e.g. Gorski 1988). One reason we go over the derivation here is that errors have
crept into some recent literature, as pointed out by Gordon et al. (2007). It is also useful to see how two completely
different looking expressions, i.e. Eq. 28 and 29, are actually equivalent. Errors have occurred in some recent versions
of Eq. 28 (e.g. Hernández-Monteagudo et al. 2006; Cooray & Caldwell 2006).
Using linear theory, it can be shown that

ξvel12 = D′

1D
′

2

∫

d3k

(2π)3
k−2P (k)z=0 (k̂ · x̂1)(k̂ · x̂2)e

−ik·(x1−x2) (B2)

where x1 and x2 are the comoving positions of the two SNe in question, x̂1 and x̂2 are the unit vectors pointing in
these directions, P (k)z=0 is the mass power spectrum today, and D′

1 and D′
2 are the derivatives of the growth factor

with respect to conformal time at the two redshifts of interest.
An observer-centric approach is to use

k̂ · x̂2e
ik·x2 = 4π

∑

ℓ,m

iℓ−1j′ℓ(kχ̃2)Y
∗

ℓm(k̂)Yℓm(x̂2) (B3)

where jℓ is the spherical Bessel function, j′ℓ is its derivative (with respect to its argument, not conformal time), and

Yℓm’s are the spherical harmonics. Performing the integral over k̂ in Eq. B2, and using
∫

dΩkY
∗

ℓm(k̂)Yℓ′m′(k̂) = δℓℓ′δmm′
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Fig. 13.— Examples of the conversion
from redshift uncertainty to magnitude un-
certainty. A peculiar velocity uncertainty of
σpec
v =300km s−1 corresponds to σpec

z =0.001.
This value converts to a large magnitude
uncertainty at low redshift, where the slope of
the magnitude-redshift diagram is steep, but a
smaller magnitude uncertainty at high redshift.
Different fiducial models give slightly different
conversions between redshift and magnitude
uncertainties, but the difference is negligible for
cosmological inferences. Here the empty model
conversion (Eq. A4) is compared to the ΛCDM
model conversion (Eq. A3 with Ωm = 0.3,
ΩΛ = 0.7). In absolute terms (middle panel)
the difference is largest at low redshift, but in
relative terms (lower panel) the difference is
largest at high redshifts. The lower panel shows
[

σpec
m (empty)− σpec

m (ΛCDM)
]

/σpec
m (ΛCDM).

See the electronic edition of the Journal for a
color version of this figure.

and Pℓ(x̂1 · x̂2) = 4π/(2ℓ+ 1)
∑

m Y ∗
ℓm(x̂1)Yℓm(x̂2), it is straightforward to show that

ξvel12 = D′

1D
′

2

∫

dk

2π2
P (k)z=0

∑

ℓ

(2ℓ+ 1)j′ℓ(kχ̃1)j
′

ℓ(kχ̃2)Pℓ(x̂1 · x̂2) (B4)

from which Eq. 28 can be obtained (see Hui & Greene 2006, for details). The above expression is observer-centric in
the sense that one can easily read off from it the angular velocity power spectrum as seen by the observer,

Cvel
ℓ = D′

1D
′

2

∫

2dk

π
P (k)z=0 j

′

ℓ(kχ̃1)j
′

ℓ(kχ̃2). (B5)

Here, 1 and 2 can refer to the same redshift, or two different redshifts.
A different approach to reducing Eq. B2 is to first note that by symmetry arguments (Gorski 1988),

〈vi(x1)vj(x2)〉 = [Π(r) − Σ(r)]r̂i r̂j +Σ(r)δij , (B6)

where i and j here, unlike in the rest of the paper, label the spatial directions rather than the SNe, r is the comving
separation between points 1 and 2, and r̂ is the associated unit vector. Suppose r̂ points in the z direction, then the
above matrix is diagonal, with diagonal entries Σ,Σ,Π i.e. Σ is the perpendicular velocity correlation and Π is the
parallel velocity correlation. Here, parallel and perpendicular are defined by the separation vector between the two
SNe (hence a separation-centric approach). From this matrix, one can deduce that

ξvel12 = (x̂1 · r̂)(x̂2 · r̂)Π(r) + [x̂1 · x̂2 − (x̂1 · r̂)(x̂2 · r̂)]Σ(r) (B7)

where [x̂1 · x̂2 − (x̂1 · r̂)(x̂2 · r̂)] can be written as sinθ1 sinθ2 if x̂1 · r̂ = cosθ1 and x̂2 · r̂ = cosθ2. Comparing this
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expression with Eq. B2, one can see that,

Π(r) = D′

1D
′

2

∫

d3k

(2π)3
k−2P (k)z=0(k̂ · r̂)2eik·r. (B8)

Using

eik·r =
∑

ℓ

(2ℓ+ 1)iℓjℓ(kr)Pℓ(k̂ · r̂) (B9)

and integrating over k̂ (choosing r̂ to lie in the z direction for instance), one can see that only ℓ = 2 and ℓ = 0 survives.
Finally, using j2 = 3j1/x− j0, one obtains,

Π(r) = D′

1D
′

2

∫

dk

2π2
P (k)z=0

[

j0(kr)−
2j1(kr)

kr

]

. (B10)

The perpendicular counterpart can be similarly obtained from,

Σ(r) = D′

1D
′

2

∫

d3k

(2π)3
P (k)z=0

k2
(k̂ · x̂)2eik·r, (B11)

with x̂ pointing in the x direction while r̂ points in the z direction. A few manipulations yield,

Σ(r) = D′

1D
′

2

∫

dk

2π2
P (k)z=0

j1(kr)

kr
, (B12)

reproducing the results of Gorski (1988) and giving our Eq. 29.
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