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son which is predicted in models that extend the gauge
structure of the standard model. In the left-right (LR)
symmetric model [2] considered here, the right-handed
W ′ boson mass is obtained by the symmetry breaking of
the right-handed electroweak gauge group of SU(2)R ×
SU(2)L × U(1)B,L. This provides a natural explanation
for the observed suppression of V +A currents in low en-
ergy weak processes. The LR symmetric model can also
be motivated by the manifestation of a higher symme-
try predicted at intermediate energies in grand unified
theories [3].

The manifest LR symmetric model assumes that the
right-handed Cabibbo-Kobayashi-Maskawa matrix and
the gauge coupling constants are identical to those of
the standard model [4]. The W ′ can decay in the same
way as the standard model W , with the exception that
the tb [5] decay channel is accessible if the W ′ is heavy
enough and that the diboson decay channel (W ′ → WZ)
is suppressed in the extended gauge model [1].

The W ′ boson has been previously searched for in
high energy physics experiments using final state signa-
tures such as leptons, jets, and/or missing energy. The
most recent direct searches for a charged heavy vector
boson have been performed at the Tevatron collider at
Fermilab. The CDF experiment previously set limits
on the cross section times branching fraction in the de-
cay mode W ′ → tb and excluded a W ′ boson mass be-
low 800 GeV/c2 at the 95% confidence level (CL) using
1.9 fb−1 data of pp̄ collisions [6]. The D0 experiment set
limits on the product of the cross section and branch-
ing fraction in the decay mode W ′ → eν and excluded
a W ′ boson mass below 1.00 TeV/c2 at the 95% CL us-
ing 1.0 fb−1 of data [7]. Both of these recent mass limits
assume that the couplings between the new vector bo-
son and the fermionic final states are the same as in the
standard model.

In this Letter, we present the results of a search for a
W ′ boson in the eν decay mode, assuming the manifest
LR symmetric model and the right-handed neutrino from
the boson decay to be light (mν ≪ mW ′) and stable.
Under these assumptions, the results in this Letter can
be useful in the generic model [1] since the kinematics of
the left- and right-handed W ′ bosons is not different. We
use a data sample corresponding to 5.3 fb−1 integrated
luminosity of pp̄ collisions at

√
s = 1.96 TeV recorded by

the upgraded Collider Detector at Fermilab (CDF II).
We select events that are consistent with the production
of the standard model W and the heavier W ′ boson that
decay to an electron and neutrino in the final state. The
analysis technique applied is the same as in a previous
search [8].

The CDF II detector is described in detail else-
where [9]. CDF II is a general purpose solenoidal detector
which combines precision charged particle tracking with

fast projective calorimetry and fine-grained muon detec-
tion. Tracking systems are contained inside a supercon-
ducting solenoid, 1.5 m in radius and 4.8 m in length,
which generates a 1.4 T magnetic field parallel to the
beam axis. Calorimeters and muon systems surround
the solenoid and the tracking system. Electron candi-
dates are identified by an energy deposit in the electro-
magnetic calorimeter with a track pointing to it. A set
of charged-particle detectors surrounding the calorime-
ters identify muon candidates. The energy of the elec-
tron candidate is measured by the calorimeter and its
direction is determined from the tracking system. The
component of the neutrino momentum transverse to the
beamline is inferred to be equal to the missing trans-
verse energy E/T [10], which is derived from the trans-
verse energy imbalance of all the deposited energy in the
calorimeters.

The online selection requires either one electron can-
didate in the electromagnetic calorimeter with trans-
verse energy ET > 18 GeV that has a matching track
with transverse momentum pT > 9 GeV/c or an elec-
tron candidate in the electromagnetic calorimeter with
transverse energy ET > 70 GeV. No restrictions on the
amount of energy leakage into the hadronic calorime-
ter were imposed, in order to ensure high efficiency for
high-ET electrons. We select the candidate event sample
offline by requiring an isolated electron candidate with
ET > 25 GeV and the existence of an associated track
with pT > 15 GeV/c that is contained in the fiducial
region of the tracking system of |η| < 1.0 [11]. Elec-
tron candidates are selected based on an ET -dependent
isolation cut [12] in order to maximize the efficiency in
the high-ET region. The electron shower profile is re-
quired to be consistent with that of test-beam electrons
in order to match with the expected EM shower [13].
In events with high-energy muons, the E/T is adjusted
by adding the muon momentum and removing the ex-
pected ionization energy deposition in the calorimeter.
The E/T is corrected further for η- and energy-dependent
non-uniformities of the calorimeter response. In the fi-
nal selection, the corrected E/T is required to be greater
than 25 GeV. Dilepton events coming from Drell-Yan, tt̄,
and diboson backgrounds are vetoed by rejecting events
with a second isolated lepton, either an electron or a
muon, with pT > 15 GeV/c. QCD multijet events are a
background to W/W ′ → eν when a jet is misidentified
as an electron and mismeasured jets lead to significant
E/T . The electron candidate ET and the event E/T are
likely to significantly differ in magnitude in this case.
In contrast, a W/W ′ → eν event will have an electron
and neutrino emitted in opposite directions which results
in the electron ET and E/T being of comparable magni-
tude, respectively, assuming the pT of the boson is much
smaller than its mass. Thus, in order to reduce the QCD
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multijet background, we require the candidate events to
satisfy 0.4 < ET /E/T < 2.5. The efficiency of this require-
ment is larger than 99 % for W/W ′ events whereas the
rejection rate is ∼ 40 % for QCD multijet events with
ET > 100 GeV. After all selection requirements, the
transverse mass of a candidate event is calculated as

mT ≡
√

2ET E/T (1 − cosφeν), (1)

where φeν is the azimuthal opening angle between the
electron candidate and the E/T direction.
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FIG. 1: The transverse mass distributions for W ′
→ eν signal

events generated using pythia with total background expec-
tation.

The W ′ → eν signal events are generated with
pythia [14] using the CTEQ5L [15] parton distribution
functions (PDFs) and a simulation of the CDF II de-
tector. Since the cross sections calculated by pythia

are at leading order (LO), next-to-next-to-leading-order
(NNLO) K factors are applied to the LO cross sections.
Mass-dependent NNLO K factors from Ref. [16] are ob-
tained with an approximately magnitude around 1.3.
The total acceptance times efficiency of the event selec-
tion cuts ranges from 45 % to 35 % and decreases above
a W ′ boson mass of 800 GeV/c2. Figure 1 shows the ex-
pected W ′ boson transverse mass distributions for vari-
ous input masses with the background predictions. The
on-shell production of heavy bosons near the kinematic
limit is suppressed due to the smallness of the PDFs at
large momentum fraction, which results in the low accep-
tance rate of W ′ events at high mass above 800 GeV/c2

after applying the kinematic selection requirements.

The background sources to W ′ → eν are primarily
processes with an electron and missing energy in the fi-
nal state. These sources of background are W → eν,
W → τν → eννν, Z/γ∗ → ττ → eX , tt, and diboson
(WW , WZ) production. The Z/γ∗ → ee process can
also produce missing energy when one of the electrons
escapes detection. The mT distributions and acceptance
times efficiency of the non-multijet backgrounds are ob-
tained using pythia and a simulation of the CDF II de-
tector. Theoretical cross section predictions are used to
estimate the expected background yields [16–18]. For
the QCD multijet background estimation, a data-driven
method is applied that uses the distribution of the az-
imuthal angle between the primary electron candidate
and the vector sum of the jet energy. For the multijet
case, a jet misidentified as an electron candidate will ap-
pear to recoil against the rest of the jet in the event.
Therefore, a back-to-back distribution is expected in the
azimuthal opening angle. The W/W ′ → eν process how-
ever does not have a strong correlation in this angle. The
QCD multijet contribution is estimated by a likelihood
fit to the data using the different angular shapes. The
multijet mT distribution is obtained using a QCD en-
riched sideband sample with the isolation cut inverted.
The data and the total background mT distributions are
compared in Fig. 2. The contributions from W → eν,
QCD multijet, and the other backgrounds in the mass
region above mT = 200 GeV/c2 are listed in Table . This
comparison shows good agreement between the data and
the total backgrounds.

In order to quantify the size of the potential signal con-
tributions in the data sample, a binned maximum like-
lihood fit was performed on the observed mT distribu-
tion between 0 and 1500 GeV/c2, using the background
predictions and the expected W ′ boson contribution for
different mass values ranging from 500 to 1300 GeV/c2.
The fit results are shown in Table II, normalized to

β ≡ σ · B(W ′ → eν)

σ · B(W ′ → eν)LR

, (2)

where the numerator is the observed cross section times
branching fraction and the denominator is that expected
from the manifest LR symmetric model. The expected
signal yield was normalized to the observed W boson
yield obtained from the fit. This removes several sources
of systematic uncertainty such as the integrated lumi-
nosity, the trigger and the identification efficiencies, all
of which cancel in the ratio.

Systematic uncertainties on the signal and the back-
ground rates were considered for the PDFs, the jet en-
ergy scale, the theoretical cross sections, the multijet
background, the initial/final state radiation of the signal,
and the energy scale of the electromagnetic calorimeter.
The dominant contribution to the systematic uncertainty
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TABLE I: The event yields for the background sources in mT above 200 GeV/c2 compared to the observed data.

Events in mT bins (GeV/c2)

200 - 250 250 - 350 350 - 500 500 - 700 700 - 1000

W → eν 711+50
−50 359+25

−25 85+6
−6 13+1

−1 1.1+0.1
−0.1

Multijet 9+2
−2 6+1

−1 2+2
−2 0.2+1.6

−0.2 0.01+1.10
−0.01

Other background 70+9
−6 33+4

−3 8+1
−1 1+0.1

−0.1 0.09+0.01
−0.01

Total background 790+61
−58 398+31

−30 94+9
−8 14+3

−1 1.2+1.2
−0.1

Data 784 426 88 18 1
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FIG. 2: The transverse mass distributions of eν candidate
events compared to the total backgrounds.

comes from the PDFs. The total systematic uncertainty
varies from ±5 % to ±10 % for W ′ boson masses ranging
from mW ′ = 500 to 1300 GeV/c2.

To determine the limit on β, we use a Bayesian ap-
proach [19] by constructing a marginalized posterior
probability distribution (p(β)) from the likelihood func-
tion. Sources of systematic uncertainty are included as
nuisance parameters in the definition of the likelihood
function. The 95 % CL upper limits on the ratio of the
observed to the expected cross section are obtained from
the fit. We use the resulting likelihood function only in
the “physical region” where this ratio is greater than or
equal to zero. The obtained upper limits are summarized
in Table II and plotted in Figure 3 as a function mW ′

together with the expected limits obtained from simu-

lated experiments with background only. Using theoret-
ical predictions that assume the manifest LR symmetric
model [4], the limits on the cross section times branch-
ing fraction are converted into limits on the mass of the
W ′ boson. The lower mass limit can be set at the mass
value for which β95 = 1, where

∫ β95

0
p(β)dβ = 0.95. We

take the lower bound of the theoretical cross section to
obtain the mass limit. Hence, the 95 % CL is found to
be mW ′ > 1.12 TeV/c2.

TABLE II: The expected numbers of events from W ′
→ eν

process, Nexp, assuming the manifest LR symmetric model
and normalized by the observed W boson yield. We also show
the observed relative rate of the W ′ boson production from
the fit described in the text, and the 95% CL upper limit on
this relative rate. The uncertainties are statistical only and do
not include systematic uncertainties. The 95% upper limits
include both statistical and systematic uncertainties.

mW ′ Nexp β
“

= σ·B(W ′→eν)
σ·B(W ′→eν)LR

”

(GeV/c2) (events) Fit (×10−2) Upper Limit

500 5828 0.08+0.21
−0.08 5.38 ×10−3

550 3407 0.18+0.26
−0.18 7.16 ×10−3

600 2037 0.28+0.36
−0.28 1.01 ×10−2

650 1218 0.43+0.54
−0.43 1.52 ×10−2

700 731 0.36+0.83
−0.36 2.22 ×10−2

750 433 0.15+1.07
−0.15 2.80 ×10−2

800 263 0.03+1.36
−0.03 3.82 ×10−2

850 160 0.00+1.89
−0.00 5.68 ×10−2

900 100 0.00+2.80
−0.00 8.79 ×10−2

950 62 0.00+4.53
−0.00 1.49 ×10−1

1000 41 0.00+6.64
−0.00 2.48 ×10−1

1050 27 0.00+10.8
−0.00 4.36 ×10−1

1100 19 0.00+17.7
−0.00 7.62 ×10−1

1150 14 0.00+32.5
−0.00 1.39

1200 10 0.00+62.7
−0.00 2.47

1250 8.1 0.00+114
−0.00 3.96

1300 6.7 0.00+224
−0.00 6.24

In summary, we have performed a search for a new
heavy charged vector boson decaying to an electron-
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FIG. 3: The 95% CL limits on cross section times branching
fraction as a function of W ′ boson mass and the expected
limits from the simulated experiments with background only.
The region above the red dashed line is excluded at the 95%
CL. The cross section times branching fraction assuming the
manifest LR symmetric model, σ · B(W ′

→ eν)LR, is shown
along with its uncertainty. The intercept of the cross section
limit curve and the lower bound of the theoretical cross section
yields mW ′ > 1.12 TeV/c2 at the 95 % CL.

neutrino pair with a light and stable neutrino in pp̄ col-
lisions at

√
s = 1.96 TeV. We do not observe any sta-

tistically significant excess over the background expec-
tations. We use a fit to the mT distribution to set up-
per limits on the production and decay rate of a W ′ bo-
son as a function of mW ′ , and exclude a W ′ boson with
mW ′ < 1.12 TeV/c2 at the 95 % CL, assuming the mani-
fest LR symmetric model.
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