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ABSTRACT

We measure the luminosity and color dependence of galaxy clustering in the largest-ever galaxy redshift
survey, the main galaxy sample of the Sloan Digital Sky Survey (SDSS) Seventh Data Release (DR7).
We focus on the projected correlation function wp(rp) of volume-limited samples, extracted from the
parent sample of ∼ 700, 000 galaxies over 8000 deg2, extending up to redshift of 0.25. We interpret
our measurements using halo occupation distribution (HOD) modeling assuming a ΛCDM cosmology
(inflationary cold dark matter with a cosmological constant). The amplitude of wp(rp) grows slowly
with luminosity for L < L∗ and increases sharply at higher luminosities, with a large-scale bias
factor b(> L) × (σ8/0.8) = 1.06 + 0.23(L/L∗)

1.12, where L is the sample luminosity threshold. At
fixed luminosity, redder galaxies exhibit a higher amplitude and steeper correlation function, a steady
trend that runs through the “blue cloud” and “green valley” and continues across the “red sequence”.
The cross-correlation of red and blue galaxies is close to the geometric mean of their auto-correlations,
dropping slightly below at rp < 1 h−1 Mpc. The individual luminosity trends for the red and blue
galaxy populations are strikingly different. Blue galaxies show a slow but steady increase of clustering
strength with luminosity, with nearly constant shape of wp(rp). The large-scale clustering of red
galaxies shows little luminosity dependence until a sharp increase at L > 4L∗, but the lowest luminosity
red galaxies (0.04 − 0.25L∗) show very strong clustering on small scales (rp < 2 h−1 Mpc). Most of
the observed trends can be naturally understood within the ΛCDM+HOD framework. The growth of
wp(rp) for higher luminosity galaxies reflects an overall shift in the mass scale of their host dark matter
halos, in particular an increase in the minimum host halo mass Mmin. The mass at which a halo has,
on average, one satellite galaxy brighter than L is M1 ≈ 17Mmin(L) over most of the luminosity range,
with a smaller ratio above L∗. The growth and steepening of wp(rp) for redder galaxies reflects the
increasing fraction of galaxies that are satellite systems in high mass halos instead of central systems
in low mass halos, a trend that is especially marked at low luminosities. Our extensive measurements,
provided in tabular form, will allow detailed tests of theoretical models of galaxy formation, a firm
grounding of semi-empirical models of the galaxy population, and new constraints on cosmological
parameters from combining real-space galaxy clustering with mass-sensitive statistics such as redshift-
space distortions, cluster mass-to-light ratios, and galaxy-galaxy lensing.

Subject headings: cosmology: observations — cosmology: theory — galaxies: distances and redshifts
— galaxies: halos — galaxies: statistics — large-scale structure of universe

1 Department of Astronomy and CERCA, Case Western Reserve
University, 10900 Euclid Avenue, Cleveland, OH 44106

2 Yale Center for Astronomy and Astrophysics, Yale University,
New Haven, CT 06520

3 Department of Astronomy and CCAPP, Ohio State University,
Columbus, OH 43210

4 Center for Cosmology and Particle Physics, Department of
Physics, New York University, New York, NY, 10003

5 Department of Astrophysical Sciences, Princeton University,
Peyton Hall, Princeton, NJ 08540

6 Department of Physics and Astronomy, Vanderbilt University,
Nashville, TN 37235

7 Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349
8 Fermi National Accelerator Laboratory, P.O. Box 500, Batavia,

IL 60510
9 Department of Astronomy and Astrophysics, The University

of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60615
10 Institute of Cosmology and Gravitation, University of

Portsmouth, Portsmouth P01 2EG, UK
11 Department of Astronomy and Astrophysics, The Pennsylva-

nia State University, University Park, PA 16802
12 Steward Observatory, University of Arizona, 933 N. Cherry

Ave., Tucson, AZ 85121
13 Department of Physics, Massachusetts Institute of Technol-

1. INTRODUCTION

Three-dimensional maps of the large-scale distri-
bution of galaxies reveal a rich network of filaments
and sheets, punctuated by dense clusters and in-
terleaved with low density tunnels and bubbles
(Gregory & Thompson 1978; Kirshner et al. 1981;
Davis et al. 1982; Giovanelli, Haynes, & Chincarini
1986; Geller & Huchra 1989; Shectman et al. 1996;
Colless et al. 2001). Different classes of galaxies trace
this structure differently, with early type galaxies
residing preferentially in rich groups and clusters and
late type galaxies residing preferentially in the filaments
and walls; this segregation of clustering was already
evident in two-dimensional studies as early as Hubble
(1936). Galaxy surveys map the distribution of visi-
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ble baryons, but a combination of observational and
theoretical arguments, beginning with Zwicky (1933,
1937), show that the galaxies trace an underlying
network of invisible, gravitationally dominant dark
matter. In this paper, we measure the clustering of
galaxies as a function of luminosity and color in the
largest galaxy redshift survey to date, the main galaxy
sample (Strauss et al. 2002) of the Seventh Data Release
(DR7; Abazajian et al. 2009) of the Sloan Digital Sky
Survey (SDSS; York et al. 2000). Our primary tool is
the two-point correlation function ξ(r), which provides
a simple, robust, and informative measure of galaxy
clustering (e.g., Peebles 1980). More specifically, we
focus on the projected correlation function wp(rp),
which integrates out redshift-space distortions caused by
galaxy peculiar velocities (Davis & Peebles 1983). By
modeling our measurements in the context of the ΛCDM
cosmological framework (inflationary cold dark matter
with a cosmological constant), we infer the relation
between different classes of galaxies and the underlying
distribution of dark matter, providing fundamental tests
for theories of galaxy formation.
Over the last few decades, a variety of “local” clus-

tering studies have established an increasingly refined
and quantitative characterization of the dependence of
galaxy clustering on luminosity, morphology, color, and
spectral type (e.g., Davis & Geller 1976; Davis et al.
1988; Hamilton 1988; Loveday et al. 1995; Benoist et al.
1996; Guzzo et al. 1997; Willmer, da Costa & Pellegrini
1998; Brown, Webster & Boyle 2000; Norberg et al.
2001, 2002; Zehavi et al. 2002; Budavari et al. 2003;
Madgwick et al. 2003; Zehavi et al. 2005b; Li et al. 2006;
Swanson et al. 2008; Loh et al. 2010). Luminous galax-
ies generally cluster more strongly than faint galaxies,
reflecting their tendency to reside in denser environ-
ments. Galaxies with bulge-dominated morphologies,
red colors, or spectral types indicating old stellar pop-
ulations also exhibit stronger clustering and a prefer-
ence for dense environments. Significant progress has
also been made in recent years in measuring galaxy
clustering at intermediate and high redshifts (e.g.,
Brown et al. 2003; Daddi et al. 2003; Adelberger et al.
2005; Ouchi et al. 2005; Lee et al. 2006; Phleps et al.
2006; Coil et al. 2006b, 2008; Meneux et al. 2008, 2009;
Abbas et al. 2010).
Cosmological inferences from galaxy clustering mea-

surements are complicated by the existence of galaxy
bias, the difference between the distribution of galaxies
and that of the underlying dark matter. While the
gravitational clustering of dark matter from specified
initial conditions can be computed reliably with cos-
mological N -body simulations, the detailed physics of
galaxy formation — gas cooling, star formation, and
the feedback effects of star formation and black hole
accretion — is only partly understood, so galaxy bias
cannot be predicted robustly from first principles. Cos-
mological parameter studies must adopt a mathematical
description of galaxy bias and marginalize over its
uncertain parameters. This procedure is most straight-
forward at large scales, where the effects of bias are
expected to be simple, e.g., a scale-independent
amplification of the matter ξ(r) (Kaiser 1984;
Bardeen et al. 1986; Coles 1993; Fry & Gaztañaga 1993;
Mann, Peacock & Heavens 1998; Scherrer & Weinberg

1998; Narayanan, Berlind & Weinberg 2000). Con-
versely, for a specified cosmological model, one can
constrain detailed descriptions of galaxy bias and thus
gain insights into galaxy formation physics.
In the cold dark matter scenario (Peebles 1982;

Blumenthal et al. 1984), which is now supported by a
wide range of observational evidence (e.g., Dunkley et al.
2009; Reid et al. 2010), galaxies form and reside in ex-
tended halos of non-baryonic, weakly interacting dark
matter. The existence of such halos is well estab-
lished by studies of spiral galaxy rotation curves (e.g.,
Rubin, Thonnard & Ford 1978; Persic, Salucci & Stel
1996; Verheijen 2001) and the stellar dynamics (e.g.,
Gerhard et al. 2001) and gravitational lensing (e.g.,
Bolton et al. 2008) of elliptical galaxies. Studies of weak
lensing and satellite galaxies show that the halos of lu-
minous galaxies extend to hundreds of kpc, where they
join smoothly onto the larger scale distribution of dark
matter (e.g., Zaritsky & White 1994; Fischer et al. 2000;
Prada et al. 2003; Mandelbaum et al. 2006). The for-
mation of dark matter halos is dominated by gravity
and can be well predicted for a given cosmology from
high-resolution numerical simulations and analytic mod-
els. Dark matter halos thus become the natural bridge
for connecting the galaxy distribution and the matter
distribution.
In recent years, the theoretical understanding of galaxy

clustering has been enhanced through development of
the Halo Occupation Distribution (HOD) frame-
work (e.g., Jing, Mo & Börner 1998; Ma & Fry 2000;
Peacock & Smith 2000; Seljak 2000; Scoccimarro et al.
2001; Berlind & Weinberg 2002; Cooray & Sheth 2002;
Yang, Mo & van den Bosch 2003; Kravtsov et al. 2004;
Zheng et al. 2005). The HOD formalism describes the
“bias” relation between galaxies and mass at the level of
individual dark matter halos, in terms of the probability
distribution that a halo of virial mass Mh contains N
galaxies of a given type, together with prescriptions for
the relative spatial and velocity bias of galaxies and
dark matter within virialized halos. The combination
of a cosmological model and a fully specified HOD can
predict any galaxy clustering statistic on any scale,
allowing integrated constraints from many observations.
For an assumed cosmological model and a parameterized
form of the HOD motivated by contemporary theories of
galaxy formation (e.g., Kauffmann, Nusser & Steinmetz
1997; Kauffman et al. 1999; Benson et al. 2000;
Berlind et al. 2003; Kravtsov et al. 2004; Zheng et al.
2005; Conroy, Wechsler & Kravtsov 2006), measure-
ments of wp(rp) are already highly constraining, and
HOD modeling transforms data on galaxy pair counts
into a physical relation between galaxies and dark mat-
ter halos. HOD modeling has been applied to interpret
clustering data from a number of surveys at low and high
redshifts (e.g., Jing & Börner 1998; Jing, Börner & Suto
2002; Bullock et al. 2002; Moustakas & Somerville 2002;
van den Bosch et al. 2003a; Magliocchetti & Porciani
2003; Yan, Madgwick & White 2003; Zheng 2004;
Yang et al. 2005b; Zehavi et al. 2005b; Cooray
2006; Hamana et al. 2006; Lee et al. 2006, 2008;
Zheng, Coil & Zehavi 2007; White et al. 2007;
Blake, Collister & Lahav 2008; Brown et al. 2008;
Quadri et al. 2008; Wake et al. 2008; Kim et al. 2009;
Zheng et al. 2009; Ross, Percival & Brunner 2010).
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In principle, a complete model of galaxy bias might
need to allow for the possibility that the average galaxy
content of halos depends on large-scale environment as
well as halo mass, since halo concentrations and as-
sembly histories show some environmental correlations
(Sheth & Tormen 2004; Gao, Springel & White 2005;
Harker et al. 2006; Wechsler et al. 2006; Zhu et al. 2006;
Croton, Gao & White 2007; Jing, Suto & Mo 2007;
Wetzel et al. 2007; Dalal et al. 2008; Zu et al. 2008).
However, studies assuming an environment-independent
HOD have proven successful at explaining galaxy clus-
tering in different density regimes (Abbas & Sheth 2006,
2007; Tinker et al. 2008; Skibba et al. 2009; see also
Blanton et al. 2006; Blanton & Berlind 2007), and the-
oretical models predict only a small impact of such
“halo assembly bias” on galaxy clustering statistics
for mass- or luminosity-thresholded samples (Yoo et al.
2006; Croton, Gao & White 2007; Zu et al. 2008).
The present paper follows naturally from our inves-

tigation of galaxy correlations in early SDSS redshift
data (Zehavi et al. 2002), our use of HOD modeling
to interpret deviations from a power-law in the galaxy
two-point correlation function (Zehavi et al. 2004), and,
especially, our earlier investigation of luminosity and
color dependence of the galaxy correlation function in
a sample of about 200,000 SDSS galaxies (Zehavi et
al. 2005b, hereafter Z05). Here we take advantage of
the final SDSS galaxy sample — roughly three times
more galaxies once appropriate cuts are applied — and
advances in HOD modeling methods to obtain higher
precision measurements and tighter, more informative
constraints on galaxy-halo relations. This study com-
plements correlation function measurements and HOD
models of the SDSS Luminous Red Galaxy (LRG) sam-
ple (Eisenstein et al. 2001, 2005b; Zehavi et al. 2005a;
Zheng et al. 2009; Kazin et al. 2010; Watson et al. 2010),
which probes the most luminous galaxies out to redshift
z ≈ 0.45 (Eisenstein et al. 2001). We focus our anal-
ysis on volume-limited samples of well defined galaxy
classes, which allows us to construct HOD models with
a small number of free parameters to interpret the
measurements for each class. This approach comple-
ments other analyses of the SDSS main galaxy sample
that measure luminosity or stellar mass-weighted corre-
lation functions (Li & White 2009, 2010) or use marked
correlation functions to quantify luminosity and color
dependence (Skibba et al. 2006; Skibba & Sheth 2009).
These analyses typically yield smaller error bars be-
cause they use more sample galaxies for the measure-
ment, but they require a more complete global de-
scription of the galaxy population to model the re-
sults. There are many parallels between our pro-
gram and the one pursued by van den Bosch, Mo,
Yang, and their collaborators (e.g., papers cited above
and van den Bosch et al. 2003b; Weinmann et al. 2006;
van den Bosch et al. 2007; Yang, Mo & van den Bosch
2008; More et al. 2009), though they have largely focused
on analysis of group catalogs (Yang et al. 2005a, 2007)
rather than detailed fitting of the correlation function.
The two approaches yield qualitatively similar results
(e.g., Z05; Yang et al. 2005b; Zheng, Coil & Zehavi 2007;
Yang, Mo & van den Bosch 2008).
Our correlation function measurements provide ba-

sic empirical characterizations of large-scale structure

at low redshift (z < 0.25), and the luminosity and
color dependence of these correlation functions can test
predictions from hydrodynamic cosmological simulations
(e.g., Pearce et al. 2001; Weinberg et al. 2004) or semi-
analytic models (e.g., Kang et al. 2005; Croton et al.
2006; Bower et al. 2006). The derived HOD constraints
provide informative tests of galaxy formation models,
a low redshift baseline for evolutionary studies (e.g.,
Zheng, Coil & Zehavi 2007; Brown et al. 2008), and a
description that can be used to create realistic mock
catalogs from simulations (Scoccimarro & Sheth 2002;
Wechsler 2004; Eisenstein et al. 2005b; Skibba & Sheth
2009; McBride et al., in preparation). As discussed ex-
tensively by Zheng & Weinberg (2007), the HOD for-
malism can also be used in cosmological parameter de-
terminations, allowing marginalization over the parame-
ters of a bias prescription that applies to a wide range
of clustering statistics from the linear to the highly
non-linear regime. Combinations of spatial cluster-
ing statistics and dynamically sensitive measures (such
as galaxy-galaxy lensing, redshift-space distortions, or
group and cluster mass-to-light ratios) can break the
main degeneracies between cosmological parameters and
galaxy bias. A number of papers have implemented
variants of this approach to constrain the matter den-
sity parameter Ωm and the amplitude of matter clus-
tering σ8 (van den Bosch et al. 2003b; Abazajian et al.
2005; Tinker et al. 2005; van den Bosch et al. 2007;
Cacciato et al. 2009; Rozo et al. 2010). Notably, these
analyses argued for a significant downward revision of
the WMAP1 values of Ωm and/or σ8, anticipating the
parameter changes that occurred with WMAP3 (see also
Vale & Ostriker 2006, who reached a similar conclusion
by a related method). Our correlation function measure-
ments will provide essential constraints for such analyses
using the SDSS DR7 data set, several of which are un-
derway now.
The paper is organized as follows. Section 2 describes

the SDSS data and the methods we use to measure galaxy
clustering and to interpret it via HODmodeling. In §3 we
present results on the luminosity dependence of wp(rp)
and its implications for HOD models. In § 4 we examine
the dependence of clustering on galaxy color, including
cross-correlations between red and blue galaxy samples,
and we investigate the luminosity dependence for red and
blue galaxies separately. Section 5 summarizes our re-
sults. Appendix A discusses some technical issues relat-
ing to predictions of the galaxy cross-correlation func-
tion. Appendix B presents in tabular form the wp(rp)
measurements for most of the samples discussed in the
paper.

2. OBSERVATIONS AND METHODS

2.1. Data

The Sloan Digital Sky Survey (York et al. 2000;
Stoughton et al. 2002) was an ambitious project to
map most of the high-latitude sky in the northern
Galactic cap, using a dedicated 2.5 meter telescope
(Gunn et al. 2006). The survey started regular oper-
ations in 2000 and completed observations (for SDSS-
II) in July 2008. A drift-scanning mosaic CCD camera
(Gunn et al. 1998) imaged the sky in five photometric
bandpasses (Fukugita et al. 1996; Smith et al. 2002) to
a limiting magnitude of r ∼ 22.5. The imaging data
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were processed through a series of pipelines that per-
form astrometric calibration (Pier et al. 2003), photo-
metric reduction (Lupton et al. 1999, 2001) and photo-
metric calibration (Hogg et al. 2001; Ivezić et al. 2004;
Tucker et al. 2006; Padmanabhan et al. 2008). Objects
were selected for spectroscopic followup using specific
algorithms for the main galaxy sample (Strauss et al.
2002), luminous red galaxies (Eisenstein et al. 2001), and
quasars (Richards et al. 2002). Targets were assigned
to spectroscopic plates using an adaptive tiling algo-
rithm (Blanton et al. 2003a) and observed with a pair
of fiber-fed spectrographs. Spectroscopic data reduction
and redshift determination were performed by automated
pipelines. Galaxy redshifts were measured with a success
rate greater than 99% and typical accuracy of 30 km s−1.
To a good approximation, the main galaxy sample con-
sists of all galaxies with Petrosian magnitude r < 17.77,
with a median redshift of ∼ 0.1. The LRG redshift
sample uses color-magnitude cuts to select galaxies with
r < 19.5 that are likely to be luminous early-type galax-
ies, extending up to redshift ∼ 0.5.
Galaxy samples suitable for large-scale structure stud-

ies have been carefully constructed from the SDSS red-
shift data (Blanton et al. 2005b). All magnitudes are
K-corrected (Blanton et al. 2003b) and evolved to rest-
frame magnitudes at z = 0.1 (which is near the median
redshift of the sample and thus minimizes corrections) us-
ing an updated version of the evolving luminosity func-
tion model of Blanton et al. (2003c). The radial selec-
tion function is derived from the sample selection crite-
ria. When creating volume-limited samples below, we
include a galaxy if its evolved, redshifted spectral energy
distribution places it within the main galaxy sample’s
apparent magnitude and surface brightness limits at the
limiting redshift of the sample. The angular complete-
ness is characterized carefully for each sector (a unique
region of overlapping spectroscopic plates) on the sky.
Due to the placement of fibers to obtain spectra, no

two targets on the same plate can be closer than 55′′.
This results in ∼ 7% of targeted galaxies not having a
measured redshift. We assign these galaxies the redshift
of their nearest neighbor. As shown in Z05 (see their
Figure 3), this treatment yields essentially perfect cor-
rections for wp(rp) down to rp ≈ 0.1 h−1 Mpc, the small-
est scales that we measure in this paper. In fact, it is
possible to correct for fiber collisions down to scales as
small as 0.01 h−1 Mpc using the ratio of small-angle pairs
in the spectroscopic and photometric catalogs (Li et al.
2006; Li & White 2009), but we have not implemented
this technique here.
The clustering measurements in this paper are based

on SDSS DR7 (Abazajian et al. 2009), which marks the
completion of the original goals of the SDSS and the end
of the phase known as SDSS-II. The associated NYU
Value-Added Galaxy Catalog (NYU-VAGC)15 includes
∼ 700, 000 main sample galaxies over about 8000 deg2

on the sky. This data set can be compared to the much
smaller sky coverage of the samples in previous corre-
lation function analyses of the SDSS main galaxy sam-
ple: Zehavi et al. (2002) used an early sample of ∼ 700
deg2, and Z05 analyzed a sample of about 2500 deg2.
The contiguous northern footprint of DR7 offers further

15 http://sdss.physics.nyu.edu/vagc

advantage over earlier data sets by reducing boundary
effects. Figures 1-3 show the distribution of the main
sample galaxies in right ascension and redshift for slices
near the celestial equator. These plots nicely illustrate
the large-scale structure we aim to study using the two-
point correlation function, as well as the potential de-
pendencies on galaxy properties. Diagrams that show
contiguity of structure over multiple SDSS slices appear
in Choi et al. (2010), who analyze the topology of large
scale structure in the DR7 main galaxy sample.
Throughout this paper, we refer to distances in co-

moving units, and for all distance calculations and abso-
lute magnitude definitions we adopt a flat ΛCDM model
with Ωm = 0.3. We quote distances in h−1 Mpc (where
h ≡ H0/100 km s−1 Mpc−1), and we quote absolute
magnitudes for h = 1. Our correlation function mea-
surements are strictly independent of H0, except that
the absolute magnitudes we list as Mr are really values
of Mr +5 log h. Changing the assumed Ωm or ΩΛ would
have a small impact on our measurements by changing
the distance-redshift relation and thus shifting galaxies
among luminosity bins and galaxy pairs among radial
separation bins. However, even at our outer redshift limit
of z = 0.25, the effect of changing Ωm from 0.3 to 0.25 is
only 1% in distance, so our measurements are effectively
independent of cosmological parameters within their ob-
servational uncertainties.
In order to work with well-defined classes of galaxies,

we study volume-limited samples constructed for vary-
ing luminosity bins and luminosity thresholds. While
volume-limited subsamples include fewer galaxies than
the full flux-limited sample, they are much easier to inter-
pret. For a given luminosity bin, we discard the galaxies
that are too faint to be included at the far redshift limit
or too bright to be included at the near limit. We include
galaxies with 14.5 < r < 17.6, with the conservative
bright limit imposed to avoid small incompletenesses as-
sociated with galaxy deblending (the NYU-VAGC safe

samples). We further cut these samples by color, us-
ing the K-corrected g − r color as a separator into dif-
ferent populations. We also study a set of luminosity-
threshold samples, namely volume-limited samples of all
galaxies brighter than a given threshold, as these yield
higher precision measurements than luminosity-bin sam-
ples and are somewhat more straightforward for HOD
modeling. For these samples we relax the bright flux
limit to r > 10.0, so as to have a large enough redshift
range (the NYU-VAGC bright samples). Details of the
samples are given in Tables 1 and 2. The distribution in
magnitudes and redshifts and the cuts used to define the
samples are shown in Figure 4.
For luminosity-threshold samples, one could improve

statistics by using the flux-limited galaxy catalog and
weighting galaxy pairs by the inverse volume over which
they can be observed, as done by Li & White (2009,
2010) for samples weighted by stellar mass and lumi-
nosity. This procedure would extend the outer redshift
limit for the more luminous galaxies above the threshold,
thus reducing sample fluctuations, but it has the arguable
disadvantage of using different measurement volumes for
different subsets of galaxies within the sample. This ap-
proach merits investigation with mock catalogs to see
whether it offers significant statistical improvements for
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Fig. 1.— The distribution of galaxies in the SDSS main galaxy sample. Only galaxies within ±1.25 degrees of the Celestial Equator are
shown.

luminosity-threshold samples (and luminosity-bin sam-
ples), but we have not implemented it here.
The full spectroscopic survey of the SDSS DR7 Legacy

survey contains 900,000 unique, survey-quality galaxy
spectra over 8000 deg2. Of these objects, the main galaxy
sample target criteria selected 700,000. SDSS targeted
the remainder as luminous red galaxy candidates (around
100,000) or in other categories (e.g., as quasar candidates
or in special programs on the Equator). We use a reduced
footprint of 7700 deg2, which excludes areas of suspect
photometric calibration (Padmanabhan et al. 2008), re-
gions with ill-defined targeting criteria, and regions near
bright stars (which are known to be incomplete). This re-
duction leaves 670,000 main sample galaxies. Because we
are using an updated photometric reduction, a substan-
tial fraction of targets are assigned fluxes fainter than
the original flux limit, which further reduces the sam-
ple to about 640,000 galaxies. For uniformity we have
imposed an even stricter faint limit of r = 17.6 in this

paper, which yields 540,000 galaxies. About 30,000 of
the original targets at that flux limit were not assigned
fibers because of fiber collisions; we assign these objects
the redshift of their nearest neighbor. The resulting sam-
ple of 570,000 galaxies constitutes the parent sample for
all of the volume-limited samples in this paper. When we
apply a bright magnitude cut of r = 14.5, it eliminates
about 6,000 galaxies.

2.2. Clustering Measures

The auto-correlation function is a powerful way to
characterize galaxy clustering, measuring the excess
probability over random of finding pairs of galaxies as
a function of separation. To separate effects of red-
shift distortions from spatial correlations, it is custom-
ary to estimate the galaxy correlation function on a two-
dimensional grid of pair separations parallel (π) and per-
pendicular (rp) to the line of sight. To estimate the back-
ground counts expected for unclustered objects while ac-
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Fig. 2.— A slice through the SDSS main galaxy sample, with galaxies color-coded based on rest-frame g−r color. The slice shows galaxies
within ±4 degrees of the Celestial Equator, in the north Galactic cap. The redshift limit has been moved inward relative to Figure 1 to
better reveal details of structure. The large structure cutting across the center of the map is the “Sloan Great Wall” (Gott et al. 2005)
discussed in §3.2.

counting for the complex survey geometry, we generate
random catalogs with the detailed radial and angular se-
lection functions of the samples. For the different galaxy
samples, we use random catalogs with 25-300 times as
many galaxies, depending on the varying number density
and size of the samples. We have verified that changing
the random catalog or increasing the number of random
galaxies makes negligible difference to the results. We
estimate ξ(rp, π) using the Landy & Szalay (1993) esti-
mator

ξ(rp, π) =
DD − 2DR+RR

RR
, (1)

where DD, DR and RR are the suitably normalized num-
bers of weighted data-data, data-random and random-
random pairs in each separation bin. We weight the
galaxies (real and random) according to the angular se-
lection function; because we are using volume-limited
samples, we do not weight by a radial selection function.
We also tried the alternative ξ estimators of Hamilton
(1993) and Davis & Peebles (1983) and found no signifi-
cant differences in the results.
To examine the real-space correlation function, we fol-

low standard practice and compute the projected corre-
lation function

wp(rp) = 2

∫ ∞

0

dπ ξ(rp, π). (2)

In practice, for most samples we integrate up to πmax =
60 h−1 Mpc, which is large enough to include most corre-

lated pairs and gives a stable result by suppressing noise
from distant, uncorrelated pairs. For samples with low
outer redshift limits we use πmax = 40 h−1 Mpc (see Ta-
bles 1 and 2). We use these πmax values consistently
when modeling the clustering results. We use linearly
spaced bins in π with widths of 2 h−1 Mpc. Our bins in
separation rp are logarithmically spaced with widths of
0.2 dex, and the measurements are quoted at the pair-
weighted average separation in the bin. We checked the
robustness to binning in rp and π and find our results to
be insensitive to either.
The projected correlation function can be related to

the real-space correlation function, ξ(r), by

wp(rp) = 2

∫ ∞

rp

r dr ξ(r)(r2 − rp
2)−1/2 (3)

(Davis & Peebles 1983). In particular, for a power-law
ξ(r) = (r/r0)

−γ , one obtains

wp(rp) = rp

(

rp
r0

)−γ

Γ

(

1

2

)

Γ

(

γ − 1

2

)

/

Γ
(γ

2

)

, (4)

allowing one to infer the best-fit power-law for ξ(r) from
wp. Alternatively, one can invert wp to get ξ(r) indepen-
dent of the power-law assumption. Here, however, we
focus on wp itself, as this is the statistic measured di-
rectly from the data that is determined by the real-space
correlation function.
We estimate statistical errors on our different measure-

ments using jackknife resampling, as in Z05. We define
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Fig. 3.— Like Figure 2, but with galaxies color-coded by absolute magnitude. The size of the galaxies is also proportional to luminosity.
As expected for a flux-limited survey, intrinsically brighter galaxies dominate at larger redshifts.

Fig. 4.— The distribution in redshift and r-band absolute magnitude for the SDSS sample with the imposed flux limits. We plot a
random subset of the SDSS galaxies, sparsely sampled by a factor of 10. The lines show the magnitude and redshift ranges of the different
volume-limited samples used in this paper. Luminosity-bin samples are shown on the left and luminosity-threshold samples on the right.
All luminosity-threshold samples have zmin = 0.02, so a sample consists of the set of galaxies above the horizontal line marking the Mr

threshold and left of the corresponding vertical line marking zmax. As discussed in §2.1, we K-correct all galaxy magnitudes to redshift
z = 0.1, and we quote absolute magnitudes for h = 1.
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144 spatially contiguous subsamples of the full data set,
each covering approximately 55 deg2 on the sky. Our
jackknife samples are then created by omitting each of
these subsamples in turn. The error covariance matrix is
estimated from the total dispersion among the jackknife
samples,

Covar(ξi, ξj) =
N − 1

N

N
∑

l=1

(ξi
l − ξ̄i)(ξj

l − ξ̄j), (5)

where N = 144 in our case, and ξ̄i is the mean value of
the statistic ξ measured in radial bin i in all the samples
(ξ denotes here the statistic at hand, whether it is ξ or
wp). In Z05 we usedN = 104 for the smaller sample. The
larger value here is chosen to enable better estimation of
the full covariance matrix, while still allowing each ex-
cluded subvolume to be sufficiently large. Norberg et al.
(2009) have recently studied a variety of error estimators
for dark matter correlation functions in N-body simu-
lations, comparing internal methods such as jackknife
and bootstrap to external estimates derived from mul-
tiple independent catalogs. They find good agreement
between jackknife and external estimates for the variance
in wp(rp) but some disagreement in the structure of the
covariance matrix. Our own tests of the jackknife method
on PTHalos mock catalogs (Scoccimarro & Sheth 2002),
described by Zehavi et al. (2002, 2004) and Z05, show
that it yields error and covariance estimates similar to
those derived from multiple independent catalogs (see
Z05, Figure 2). In principle, covariance matrices derived
from large numbers of realistic mock catalogs are prefer-
able because they use larger total volumes and include
cosmic variance on scales of the full survey (while jack-
knife or bootstrap estimates only include cosmic variance
on the scale of individual subsamples). However, the
tests mentioned above suggest that jackknife estimates
are sufficient for our purposes, and they are a far more
practical tool when working with many subsamples of
different clustering properties, as the mock catalog ap-
proach would require a new set of realizations mimicking
the clustering signal of each one. Because of potential
noise or systematics in jackknife estimates of the full co-
variance matrix, we also present some model fits below
that use only diagonal elements.

2.3. HOD Modeling

We interpret the clustering measurements in the frame-
work of the halo occupation distribution (HOD), which
describes the bias between galaxies and mass in terms
of the probability distribution P (N |Mh) that a halo of
virial mass Mh contains N galaxies of a given type. Our
modeling effectively translates galaxy clustering mea-
surements for each class of galaxies into halo occupation
functions 〈N(Mh)〉, the mean number of galaxies as a
function of halo mass. Other aspects of the HOD — the
form of P (N |〈N〉) and the profile of galaxies within halos
— are specified by theoretical expectations.
We adopt a spatially flat “concordance” ΛCDM cos-

mological model with matter density parameter Ωm =
0.25, and baryon density parameter Ωb = 0.045, con-
sistent with recent determinations from the cosmic mi-
crowave background (WMAP5; Hinshaw et al. 2009;
Dunkley et al. 2009; Komatsu et al. 2009), supernova Ia
(Kowalski et al. 2008; Kessler et al. 2009), and baryon

acoustic oscillations (Percival et al. 2010). Accordingly,
we assume a primordial density power spectrum with
fluctuations at 8 h−1 Mpc scale of σ8 = 0.8. The Hubble
constant we use is H0 = 70 km s−1 Mpc−1, and we as-
sume an inflationary spectral index ns = 0.95. As noted
in §2.1, lowering Ωm to 0.25 has only a 1% effect on the
distance-redshift relation at our outermost redshift limit,
and we have verified that it makes no discernible differ-
ence to our clustering measurements.
Hydrodynamic simulations show that the most mas-

sive galaxy in a halo typically resides at or near the halo
center (e.g., Berlind et al. 2003; Simha et al. 2009), in ac-
cord with the expectations of semi-analytic models (e.g.,
White & Frenk 1991; Kauffmann, White & Guiderdoni
1993; Cole et al. 1994). For HOD parametrization, it
is useful to separate the contributions of these central
galaxies from those of the additional, satellite galaxies
in each halo (Kravtsov et al. 2004; Zheng et al. 2005).
For samples of galaxies brighter than a given luminosity,
the mean occupation function can be well characterized
by a smoothed step function for the central galaxy and a
power-law number of satellites increasing with halo mass.
We model it in this work using the following form:

〈N(Mh)〉 = (6)

1

2

[

1 + erf
(

logMh−logMmin

σlog M

)] [

1 +
(

Mh−M0

M ′

1

)α]

,

where erf is the error function

erf(x) =
2√
π

∫ x

0

e−t2dt. (7)

The mean occupation function of the central galaxies
(the left square brackets times the 1/2 factor) is a step-
like function with a cutoff profile softened to account for
the scatter between galaxy luminosity and halo mass (see
also More et al. 2009). The mean occupation of the satel-
lite galaxies (the second term in the right square brack-
ets multiplied by the left square brackets times the 1/2
factor) is a power-law modified by a similar cutoff pro-
file. The five free parameters are the mass scale Mmin

and width σlogM of the central galaxy mean occupation
and the cutoff mass scale M0, normalization M ′

1, and
high mass slope α of the satellite galaxy mean occupa-
tion function.
This specific form is motivated by the theoretical study

presented in Zheng et al. (2005), and is identical to the
five-parameter model adopted in Zheng, Coil & Zehavi
(2007) (see also Zheng et al. 2009, appendix B). It is
more flexible than the three-parameter model used in
Z05, which has the same basic shape. The five-parameter
model introduces two additional parameters to charac-
terize the cutoff profiles of central and satellite galax-
ies, which allows essentially perfect descriptions of the
〈N(Mh)〉 functions predicted by hydrodynamic simula-
tions and semi-analytic models, at least those considered
by Zheng et al. (2005).
Two characteristic halo masses come into play in the

modeling, setting the mass scales of halos that host cen-
tral galaxies and satellites. Mmin characterizes the min-
imum mass of a halo hosting a central galaxy above the
luminosity threshold. The exact definition of Mmin can
vary between different HOD parameterizations; in the
form we adopt (eq. 6), it is the mass for which half of
such halos host galaxies above the luminosity threshold,
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i.e., 〈Ncen(Mmin)〉 = 0.5. It can also be interpreted as
the mass of halos in which the median luminosity of cen-
tral galaxies is equal to the luminosity threshold (see
Zheng, Coil & Zehavi 2007 for details, except that it was
incorrectly labeled as mean rather than median luminos-
ity there). The second characteristic mass scale is M1,
the mass of halos that on average have one additional
satellite galaxy above the luminosity threshold, defined
by 〈Nsat(M1)〉 = 1. Note that M1 is different from M ′

1 in
equation (6), though it is obviously related to the values
of M ′

1 and M0.
As is common practice, the distributions of the oc-

cupation number of central galaxies and satellite galax-
ies are assumed to follow the nearest-integer and Pois-
son distributions, respectively, consistent with theoreti-
cal predictions (Kravtsov et al. 2004; Zheng et al. 2005).
Boylan-Kolchin et al. (2009) have recently argued that
the distributions of subhalo counts in high mass halos be-
come super-Poisson at high 〈Nsat〉, but we expect such
a distribution to have minimal quantitative impact on
our clustering predictions. The spatial distribution of
satellite galaxies within halos is assumed to be the same
as that of the dark matter, which follows to a good ap-
proximation an NFW profile (Navarro, Frenk & White
1996). For the halo concentration parameter c(Mh), we
adopt the relation given by Bullock et al. (2001), mod-
ified to be consistent with our halo definition that the
mean density of halos is 200 times the background den-
sity: c(Mh) = c0(Mh/Mnl)

β(1 + z)−1, where c0 = 11,
β = −0.13, and Mnl = 2.26× 1012h−1M⊙ is the nonlin-
ear mass scale at z = 0.
The two-point correlation function of galaxies in

our model is calculated using the method described
by Tinker et al. (2005), specifically their “n̄′

g–matched”
method, which improves the algorithm in Zheng (2004)
by incorporating a more accurate treatment of the halo
exclusion effect. The method, calibrated and tested us-
ing mock catalogs, is accurate to 10% or better. We use
the measured values of wp(rp) with the full error covari-
ance matrices. We also incorporate the number density
of galaxies in each subsample as an additional constraint
on the HOD model, with an assumed 5% uncertainty.
That is, we form the χ2 as

χ2 = (wp −w
∗

p)
T
C

−1(wp −w
∗

p)+(ng−n∗

g)
2/σ2

ng
, (8)

where wp and ng are the vectors of the two-point cor-
relation function and the number density of the sample,
andC is the full covariance matrix. The measured values
are denoted with a superscript ∗.
We implement a Markov Chain Monte Carlo (MCMC)

code to explore the HOD parameter space. At each point
of the chain, a random walk is taken in the parameter
space to generate a new set of HOD parameters. The
step-size of the random walk for each parameter is drawn
from a Gaussian distribution. The probability to accept
the new set of HOD parameters is taken to be 1 if χ2

new ≤
χ2
old and exp[−(χ2

new − χ2
old)] if χ

2
new > χ2

old, where χ2
old

and χ2
new are the values of χ2 for the old and new models.

Flat priors in logarithmic space are adopted for the three
parameters related to mass scales and flat priors in linear
space are used for the other two HOD parameters. The
length of the chain for each galaxy sample is typically
10,000 and we find convergence by comparing multiple
realizations of chains.

Before turning to our observational results, it is worth
noting the similarities and differences between HOD
modeling and two closely related methods, conditional
luminosity functions (CLF) and sub-halo abundance
matching (SHAM). Each well defined class of galax-
ies, e.g., a luminosity-bin or luminosity-threshold sam-
ple, has its own HOD. A conditional luminosity func-
tion (Yang, Mo & van den Bosch 2003) provides a global
model of the full galaxy population, specifying the lumi-
nosity function at each halo mass. An HOD can be calcu-
lated from a CLF by integrating the latter over luminos-
ity, and a CLF can be calculated from a series of HODs
by smoothed differentiation. The virtue of the CLF is
its completeness, but when fitting data it typically re-
quires stronger prior assumptions, such as a functional
form for the luminosity function itself and functional
forms for the dependence of luminosity function parame-
ters on halo mass. By contrast, the five-parameter HOD
model used here is already flexible enough to provide a
near-perfect description of theoretical model predictions
for luminosity-threshold samples (Zheng et al. 2005).
The SHAMmethod (Conroy, Wechsler & Kravtsov 2006;
Vale & Ostriker 2006) assumes a monotonic relation be-
tween the luminosity or stellar mass of a galaxy and the
mass or circular velocity of its parent halo or subhalo;
the method can be generalized to allow scatter in this
relation. While an HOD model takes the space density
and clustering of a galaxy population as input for pa-
rameter fits, a SHAM model takes only the space den-
sity as input and predicts the clustering, effectively us-
ing a theoretical prior to specify the satellite occupation
function. Despite the lack of free parameters, SHAM
models are remarkably successful at matching the ob-
served correlation functions of luminosity-threshold sam-
ples, though not at the level of our high-precision mea-
surements (Conroy, Wechsler & Kravtsov 2006).

3. DEPENDENCE ON LUMINOSITY

3.1. Clustering Results

We study the clustering dependence on luminosity us-
ing sets of volume-limited samples constructed from the
full SDSS sample, corresponding to different luminosity
bins and thresholds. Details of the individual samples
are given in Tables 1 and 2 and illustrated in Figure 4.
As a representative case, we show in Figure 5 the two-

dimensional correlation function, ξ(rp, π), as a function
of separations perpendicular, rp, and parallel, π, to the
line of sight, calculated for the −20 < Mr < −19 sam-
ple. In the absence of redshift-space distortions the con-
tours would have been isotropic, a function only of to-
tal separation (

√

rp2 + π2). Redshift-space distortions
enter in the line of sight direction and are clearly evi-
dent in the plot. For small projected separations, the
contours are elongated along the line of sight direction,
reflecting the “fingers-of-God” effect of small-scale virial
motions in collapsed objects. On larger scales, we see
the compression caused by coherent large-scale stream-
ing into overdense regions and out of underdense regions
(Sargent & Turner 1977; Kaiser 1987).
We isolate real-space correlations by calculating the

projected correlation function, wp(rp), according to
equation (2). Figure 6 shows the projected correlation
functions obtained for the volume-limited samples de-
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TABLE 1
Volume-limited Correlation Function Samples corresponding to Luminosity Bins

M range
r czmin czmax Ngal Nblue Nred r0 γ χ2

dof
r0d γd n̄ πmax

-23 to -22 30,900 73,500 10,251 1,797 8,452 10.47 ± 0.25 1.92 ± 0.03 2.4 10.40 ± 0.18 1.94 ± 0.02 0.0044 60
-22 to -21 19,900 47,650 73,746 27,496 46,249 5.98 ± 0.11 1.92 ± 0.02 5.0 6.30 ± 0.06 1.88 ± 0.01 0.1107 60
-21 to -20 12,600 31,900 108,629 50,879 57,749 5.46 ± 0.15 1.77 ± 0.02 3.8 5.80 ± 0.09 1.75 ± 0.01 0.5300 60
-21 to -20 12,600 19,250∗ 17,853 8,103 9,749 4.82 ± 0.23 1.87 ± 0.03 2.5 5.33 ± 0.13 1.81 ± 0.03 0.5300 40
-20 to -19 8,050 19,250 44,348 25,455 18,892 4.89 ± 0.26 1.78 ± 0.02 3.8 5.19 ± 0.13 1.80 ± 0.02 1.0038 60
-19 to -18 5,200 12,500 18,200 13,035 5,165 4.14 ± 0.30 1.81 ± 0.03 2.3 4.59 ± 0.18 1.93 ± 0.04 1.2995 40
-18 to -17 3,200 7,850 5,965 4,970 995 2.09 ± 0.38 1.99 ± 0.14 1.96 4.37 ± 0.37 1.91 ± 0.08 1.9721 40

Note. — All samples use 14.5 < mr < 17.6. r0 and γ are obtained from fitting a power-law to wp(rp) using the full error covariance

matrices, while r0d and γd are obtained when using just the diagonal elements. For all samples, the number of degrees-of-freedom (dof) is 9
(11 measured wp values minus the two fitted parameters). n̄ is measured in units of 10−2 h3 Mpc−3. A handful of galaxies do not have well
measured colors, so Nblue and Nred do not sum to Ngal. The smaller −21 < Mr < −20 sample, indicated with an asterisk, is limited to a
smaller redshift range to avoid the effects of the large supercluster (see text).

TABLE 2
Volume-limited Correlation Function Samples corresponding to Luminosity Thresholds

Mmax
r czmax Ngal Nblue Nred r0 γ χ2

dof
r0d γd n̄ πmax

-22.0 73,500 11,385 2,145 9,237 10.71 ± 0.24 1.91 ± 0.03 3.2 10.56 ± 0.17 1.92 ± 0.02 0.0045 60
-21.5 59,600 39,456 10,576 28,876 7.27 ± 0.14 2.00 ± 0.01 8.8 7.68 ± 0.08 1.94 ± 0.01 0.0284 60
-21.0 47,650 83,238 30,159 53,075 5.98 ± 0.12 1.96 ± 0.02 6.1 6.46 ± 0.06 1.90 ± 0.01 0.1156 60
-20.5 39,700 132,225 54,827 77,395 5.60 ± 0.12 1.90 ± 0.01 3.2 6.01 ± 0.06 1.85 ± 0.01 0.3182 60
-20.0 31,900 141,733 62,862 78,868 5.54 ± 0.14 1.83 ± 0.01 3.8 6.00 ± 0.09 1.79 ± 0.01 0.6563 60
-20.0 19,250∗ 30,245 12,733 17,510 5.24 ± 0.28 1.87 ± 0.03 1.2 5.53 ± 0.13 1.85 ± 0.02 0.6563 60
-19.5 25,450 132,664 62,892 69,770 5.11 ± 0.17 1.81 ± 0.02 1.8 5.37 ± 0.08 1.81 ± 0.01 1.1196 60
-19.5 19,250∗ 51,498 24,005 27,491 5.17 ± 0.27 1.84 ± 0.03 2.3 5.36 ± 0.13 1.85 ± 0.02 1.1196 60
-19.0 19,250 77,142 39,554 37,585 4.86 ± 0.27 1.85 ± 0.03 3.2 5.23 ± 0.12 1.85 ± 0.02 1.6763 60
-18.5 15,750 58,909 32,554 26,355 4.48 ± 0.33 1.86 ± 0.04 2.1 5.33 ± 0.18 1.83 ± 0.03 2.3112 40
-18.0 12,500 39,027 23,159 15,868 4.10 ± 0.34 1.85 ± 0.04 1.8 4.75 ± 0.17 1.91 ± 0.04 3.0304 40

Note. — All samples use 10.0 < mr < 17.6. zmin for the samples is 0.02. r0 and γ are obtained from fitting a power-law to
wp(rp) using the full error covariance matrices, while r0d and γd are obtained when using just the diagonal elements. For all
samples, the number of degrees-of-freedom (dof) is 9 (11 measured wp values minus the two fitted parameters). n̄ is measured
in units of 10−2 h3 Mpc−3. The samples indicated with an asterisk are limited to a smaller redshift range to avoid the effects
of the large supercluster (see text).

fined by luminosity bins and by luminosity thresholds.
For the luminosity bins, we find a pronounced depen-
dence of clustering on luminosity for the bright sam-
ples, with the more luminous galaxies exhibiting higher
clustering amplitudes. The dependence on luminosity is
more subtle for the fainter luminosity-bin samples, with
little change for scales rp < 2 h−1 Mpc. Behavior for the
luminosity thresholds is similar, with nearly identical cor-
relation functions for the Mr < −18.5 and < −19.5 sam-
ples, a slow but significant increase in clustering strength
moving to Mr < −20.5 and Mr < −21.0, then a rapid
increase going to Mr < −21.5 and Mr < −22.0. Mea-
surements for the luminosity-threshold samples are less
noisy, and one can see that the shapes of wp(rp) are
similar for all samples at rp & 3 h−1 Mpc, while the
brighter samples exhibit a stronger inflection in wp(rp)
at rp ≈ 2 h−1 Mpc and a steeper correlation function
at smaller scales. The error covariance matrices exhibit
significant correlation between the measurements on dif-
ferent scales, particularly for the relatively faint, smaller
volume, galaxy samples. Similar behavior is found by
McBride et al. (2010). Power-law fits for these cluster-
ing measurements, using the measured data points for
rp < 20 h−1 Mpc, are presented in Tables 1 and 2. We
include fits computed both with and without the off-

diagonal terms in the covariance matrix.
At large scales, we expect the real-space galaxy cor-

relation function to be a scale-independent multiple of
the dark matter correlation function ξgg(r) = b2gξmm(r),
where the bias factor bg will differ from one class of galax-
ies to another. Filled circles in Figure 7 show the bias
factors bg(L) and bg(> L) for our luminosity-bin and
luminosity-threshold samples, estimated from the ratio
of the measured wp(rp) to the wp(rp) predicted for the
non-linear matter distribution of our ΛCDM cosmologi-
cal model (computed from the non-linear power spectrum
with the method of Smith et al. 2003), over the separa-
tion range 4 h−1 Mpc < rp < 30 h−1 Mpc. We refer to
these below as “DM-ratio” bias factors. We compute the
best-fit ratio using the full error covariance matrix. In
Z05 we defined bias factors via the value of wp(rp) at one
representative separation, rp = 2.67 h−1 Mpc. Open tri-
angles in Figure 7 show this measurement of “single-rp”
bias factors for comparison. For the −21 < Mr < −20
bin and the Mr < −20 and Mr < −19.5 thresholds,
we use the samples with czmax = 19, 250 km s−1 (see
Tables 1 and 2), for the reasons discussed in §3.2 below.
Because bg(L) changes so rapidly betweenMr = −21 and
Mr = −22, we have also divided the −22 < Mr < −21
bin into two half-magnitude bins and computed bias fac-
tors separately for each. The open circles, discussed fur-
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Fig. 5.— Contours of the galaxy correlation function as a func-
tion of tangential separation rp and line-of-sight separation π, eval-
uated for the −20 < Mr < −19 sample in 2h−1 Mpc bins. The
heavy (blue) contour marks ξ(rp, π) = 1; inner (blue) contours are
spaced by 0.1 in log ξ and outer (magenta) contours by 0.1 in ξ.
The dotted contours denote values of 0.067 and 0.033, while the
thick dashed contour marks ξ(rp, π) = 0. Contours show the com-
pression at large scales caused by coherent peculiar velocities and
the elongation at small rp caused by “finger-of-God” distortions in
collapsed structures.

ther in §3.3, show large-scale bias factors derived from
HOD model fits to the full projected correlation func-
tions (“HOD bias factors”).
In agreement with previous studies (Norberg et al.

2001; Tegmark et al. 2004; Z05), bg(L) is nearly flat
for luminosities L ≤ L∗, then rises sharply at brighter
luminosities.16 Dotted and dashed curves in the left
panel show the empirical fits to bg(L)/bg(L∗) proposed
by Norberg et al. (2001) and Tegmark et al. (2004), re-
spectively, where we take as bg(L∗) the “DM-ratio” bias
factor estimated for the −21 < Mr < −20 luminosity
bin using the large-scale wp(rp) ratio. The Norberg et al.
(2001) form appears to fit our measurements better, but
the differences between the curves only become large for
the −18.0 < Mr < −19.0 sample, where the single-rp
and DM-ratio bias factors differ noticeably, and where
the tests discussed in §3.2 below suggest that cosmic
variance fluctuations are still significant. The HOD bias
factors are in good agreement with the “DM-ratio” ones.
The luminosity-threshold samples allowmore precise bias
measurements, and they avoid binning effects that can
influence the estimates of b(L) when it changes rapidly
across a bin. The HOD and DM-ratio values of bg(> L)
agree well for all luminosity-threshold samples except
Mr < −18.0, where the HOD fit overpredicts the large-
scale wp(rp) measurements (see Figure 10 below). The
HOD bias points are fit to 3% or better by the functional
form

bg(> L)× (σ8/0.8) = 1.06 + 0.23(L/L∗)
1.12, (9)

where L is the r-band luminosity corrected to z = 0.1

16 For the Blanton et al. (2003c) luminosity function, the char-
acteristic luminosity L∗ of the Schechter (1976) luminosity function
fit corresponds to Mr = −20.44.

and L∗ corresponds to Mr = −20.5. Except for the
Mr < −18 point, this formula also accurately describes
the DM-ratio bias factors. The HOD and DM-ratio
bias factors scale as σ−1

8 to a near-perfect approxima-
tion, since at large scales ξgg = b2gξmm ∝ b2gσ

2
8 . We

consider equation (9) to be our most robust estimate
of the dependence of large-scale bias on galaxy lumi-
nosity, applicable over the range 0.16L∗ < L < 6.3L∗

(−22.5 < Mr < −18.5). Fitting the DM-ratio bias val-
ues for the luminosity-bin samples yields

bg(L)× (σ8/0.8) = 0.97 + 0.18(L/L∗)
1.04, (10)

which is close to the formula derived by Norberg et al.
(2001) for bJ -selected galaxies but has a slightly steeper
rise at high luminosities.

3.2. Tests of Cosmic Variance

Our volume-limited, luminosity-bin samples span dif-
ferent ranges in redshift (specified in Table 1), with in-
trinsically brighter galaxies observed over larger volumes.
It is thus important to test for the robustness of the de-
tected luminosity dependence to “cosmic variance” of the
structure in these different volumes. (We follow common
practice in referring to these finite-volume effects as cos-
mic variance, though a more precise term would be “sam-
ple variance”; Scott, Srednicki & White 1994.) Figure 8
compares projected correlation functions of adjacent lu-
minosity bins when using their respective full volume-
limited redshift range (points with error bars) and when
restricting both to their common overlap range (lines).
The overlap volume is similar to the full volume of the
fainter sample (differing only because of the r > 14.5
bright limit), so the filled points and solid lines are usu-
ally in close agreement.
The most significant cosmic variance effect on the mea-

surements appears to be due to the Sloan Great Wall
(SGW), a huge supercluster at z ∼ 0.08, which is the
largest coherent structure detected in the SDSS (Fig. 2;
see also Gott et al. 2005). Its distance places it right at
the edge of the −21 < Mr < −20 sample (see Table 1).
Its exclusion from this sample when limiting to the over-
lap range with the −20 < Mr < −19 sample causes the
decrease in clustering amplitude on large scales seen in
the bottom-left panel. Hence, this structure also causes
the flattening in the projected correlation function of
this sample at large separations seen in Figure 6. Con-
versely, restricting the brighter −22 < Mr < −21 sample
to the smaller overlap range accentuates the superclus-
ter’s dominance and gives rise to the increased clustering
seen in the top-right panel (dashed line). Taken together,
these results strongly suggest that the most reliable esti-
mate of wp(rp) for the −21 < Mr < −20 luminosity bin
comes from the SGW-excluded sample rather than the
full sample. Brighter, larger volume samples are much
less affected by the SGW, while fainter samples do not
extend as far and are thus not affected. These results are
very similar to those of an identical test performed with
the earlier samples of Z05.
We have performed similar tests with the luminosity-

threshold samples, and we find an analogous effect of the
SGW, mostly for the Mr < −20 sample and, to a lesser
degree, for the Mr < −19.5 sample. We have also done
tests where we have excluded specifically the SGW region
with angular and redshift cuts, confirming its significant
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Fig. 6.— Projected correlation functions for volume-limited samples corresponding to different luminosity-bin samples (left) and
luminosity-threshold samples (right), as labeled. Error covariance matrices are computed from jackknife resampling as described in the
text. The error bars shown are the square root of the diagonal elements of these matrices. For visual clarity, only a subset of the threshold
samples are plotted.

Fig. 7.— Bias factors for the luminosity-bin samples (left) and the luminosity-threshold samples (right). Filled circles show bias
factors defined by the ratio of the measured wp(rp) to the dark matter wp(rp) predicted for our fiducial cosmological model over the
range 4h−1 Mpc ≤ rp ≤ 30h−1 Mpc. Open triangles show the bias factors defined by this ratio for the single radial bin centered at
rp = 2.67h−1 Mpc, as done previously by Z05. In addition to the luminosity-bin samples shown in Figure 6, the left panel includes bg(L)
points for the half-magnitude bins −21.5 < Mr < −21.0 and −22.0 < Mr < −21.5. Open circles show the bias factors inferred from HOD
modeling as described in §3.3; the statistical errors on these estimates are smaller than the points, and we omit them for visual clarity. In
the left panel, the dotted curve is a fit to projected correlation functions in the 2dFGRS, bg/b∗ = 0.85 + 0.15L/L∗ (Norberg et al. 2001),
where we take b∗ ≡ bg(L∗) = 1.14 to be the bias factor inferred from the dark-matter-ratio estimate in the −21 < Mr < −20 luminosity
bin (L ≈ L∗), and the dashed curve is a modified fit to SDSS power spectrum measurements, bg/b∗ = 0.85 + 0.15L/L∗ − 0.04(M − M∗)
(Tegmark et al. 2004). The solid curve is the fit in eq. (10). In the right panel, the solid curve is the fit to the HOD model bias factors,
eq. (9). Small horizontal offsets have been added to points for clarity.
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Fig. 8.— Check of finite volume effects (“cosmic variance”) in the measured luminosity dependence of the correlation function. Each
panel shows projected correlation functions of two adjacent luminosity bins in their full volume-limited range (symbols with error bars)
and in their common overlap regions (lines). The solid line and filled symbols correspond to the fainter luminosity bin in each panel, while
the dashed line and open symbols correspond to the brighter sample. Comparison of the dashed and solid lines in each panel tests for
luminosity segregation between the two adjacent bins measured in a common volume, and thus free of cosmic variance in the underlying
large scale structure.
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Fig. 9.— Check of finite volume effects in the faint (nearby)
luminosity-threshold samples. The plot shows the projected corre-
lation functions of the three faintest luminosity-threshold samples
in their full volume-limited range (symbols with error bars) and
limited to the smaller overlap region of the adjacent sample (lines).
When limiting the Mr < −18.5 sample (or brighter ones) to the
volume of the Mr < −18 sample (solid black line), the correlation
function changes significantly and agrees with the latter measure-
ment, while no such effect is detected when limiting measurements
to the volume of the Mr < −18.5 sample.

impact on the large-scale clustering measurement for
these samples. It is striking that even with the full SDSS
sample, the effect of the SGW is still significant, and one
should use caution in interpreting clustering measure-
ments for relatively large separations (rp > 5 h−1 Mpc)
for the few specific samples whose redshift range extends
just up to (and including) this structure. For this reason,
in Tables 1 and 2, we also provide power-law fits of these
samples when restricted to a redshift limit that excludes
the SGW (czmax = 19, 250 km s−1, the same limiting red-
shift as for the −20 < Mr < −19 and theMr < −19 sam-
ples). The HOD parameters derived for these samples are
relatively insensitive to the choice of sample volume, and
the correlation functions corresponding to these HOD
models differ much less than the power-law fits. This
insensitivity reflects the constrained nature of HOD fits
for a specified cosmological model: there is little free-
dom within these fits to adjust the large-scale correla-
tion amplitude relative to the robust measurements at
rp < 2 h−1 Mpc, so the HOD modeling just accepts the
χ2 penalty of missing the large-scale data points.
Additional cosmic variance concerns have to do with

the relatively small volumes associated with the dimmest
samples we consider. Figure 8 can shed some light on
this issue as well. Specifically, the bottom-right panel
checks the sensitivity to the volume probed in the cor-
relation functions measured for the −19 < Mr < −18
and −20 < Mr < −19 luminosity bins. The general
agreement of the curves (calculated in the overlap vol-
ume) to the respective sets of points (calculated for the
full volume-limited sample), within the measured uncer-
tainties, is reassuring. We perform similar tests with the
magnitude-threshold samples, looking at the robustness

of the clustering measurements of different samples when
limiting to the inner small volumes associated with the
fainter thresholds. Here we find substantial volume ef-
fects when considering the volume of the faintest thresh-
old sample Mr < −18, but very weakened effects for the
Mr < −18.5 and brighter thresholds (see Figure 9). We
are unsure why the effects for the Mr < −18.0 sample
appear larger than those for the −19.0 < Mr < −18.0
luminosity-bin sample, as they have the same outer red-
shift limit; however, both the galaxy populations and the
inner redshift limit are different. We find these finite-
volume effects to be smaller than those found in the ear-
lier samples of Z05, due to the larger sky coverage of
SDSS DR7.
The comparisons of solid and dashed curves in Fig-

ure 8 provide the fairest test of luminosity dependence
between the samples, as the effects of cosmic variance are
removed by matching volumes. For the fainter samples
shown in the lower panels, the evidence for luminosity
dependence is marginal relative to the error bars. The
detection is stronger in the upper right panel and over-
whelming for the brightest galaxies in the upper left. The
difference between the dashed line and the open points
in this panel is plausibly explained by the small sam-
ple (∼ 2600 galaxies) of −23 < Mr < −22 galaxies in
the overlap volume: the larger volume of the full sample
is required to give a robust measurement of large-scale
clustering for these rare galaxies. These conclusions —
evidence for increased clustering at Mr ≈ −21.5 and dra-
matically increased clustering at Mr ≈ −22.5 — are con-
sistent with the b(L) data points in Figure 7.

3.3. Modeling the luminosity dependence

To investigate further the implications of the
luminosity-dependent clustering, we turn to HOD mod-
eling. We find the best-fit HOD models for our set of
volume-limited luminosity-threshold samples, using the
five-parameter model described in § 2.3. Figure 10 shows
the HOD best fits to the projected correlation functions
(staggered by 0.25 dex for clarity). Here we use the full
volume-limited samples, with no attempt to remove the
SGW. The values of the fitted parameters, inferred us-
ing the full error covariance matrix, are given in Table 3.
We also list fsat, the fraction of sample galaxies that are
satellites from the HOD modeling results. We see that
the HOD models provide reasonable fits to the projected
correlation functions, with deviations from a power-law
more apparent for the brighter samples. The character-
istic inflections in wp(rp) at rp = 1 − 2 h−1 Mpc arise
at the transition from the small-scale, one-halo regime,
where most correlated pairs come from galaxies in the
same halo, to the large-scale, two-halo regime, where
the shape of ξ(r) approximately traces the shape of the
matter correlation function (Berlind & Weinberg 2002;
Zehavi et al. 2004). The χ2 values for these fits are also
specified in the table and can be compared to the cor-
responding values for the power-law fits (Table 2). We
note that in all cases the HOD model has an improved
goodness-of-fit over the best-fit power law model. For
the Mr < −18.0 sample, the HOD model overpredicts
the amplitude of wp(rp) at large scales, but the tests in
Figure 9 suggest that the large scale clustering of this
sample is significantly affected by the small sample vol-
ume. The high-mass slope α of the satellite mean occu-
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pation function is around unity for most samples. For the
brightest sample (Mr < −22.0), α is noticeably higher
than unity, but with large error bars.
The right panel of Figure 10 presents the halo occu-

pation functions themselves. It is evident that when go-
ing toward brighter samples, the main effect is a shift of
the halo occupation function toward higher halo masses,
a shift that affects both the central galaxy cutoff and
the satellite occupation. More luminous galaxies occupy
more massive halos, which leads to their stronger clus-
tering. For the six fainter samples, there are models
with sharp central-galaxy cutoffs (σlogM = 0) that have
∆χ2 < 1 compared to the best-fit model; we have chosen
to plot these sharp-cutoff 〈N(Mh)〉 curves in Figure 10.
For the Mr < −21.0, Mr < −21.5, and Mr < −22.0
samples, however, a non-zero value of σlogM , indicating
scatter between halo mass and central galaxy luminos-
ity, is required to simultaneously fit the galaxy number
density and projected correlation function. A sharper
cutoff would predict an excessive clustering amplitude
for the measured number density because of the rising
b(Mh) relation. Figure 11 illustrates the level of statis-
tical uncertainty in the HOD fits, plotting 〈N(Mh)〉 for
ten models randomly chosen from the MCMC chain that
have ∆χ2 < 1 relative to the best-fit model for each of
three luminosity thresholds. The cutoff profile is gener-
ally better constrained for brighter samples because of
the steeper form of b(Mh) at high Mh. The satellite oc-
cupations are tightly constrained in all cases.
Figure 12a shows the two characteristic halo mass

parameters Mmin and M1 (see § 2.3) as a func-
tion of the threshold luminosity. Both halo mass
scales increase with the sample’s threshold luminos-
ity, with a steeper dependence for brighter galax-
ies. Because central galaxies dominate the total num-
ber density for any luminosity threshold (Zheng et al.
2005), the approximate form of the Mmin curve fol-
lows simply from matching the space densities of galax-
ies and halos (e.g., Conroy, Wechsler & Kravtsov 2006;
Vale & Ostriker 2006). In our HOD parameterization,
Mmin can be interpreted as the mass of halos in which
the median luminosity of central galaxies is equal to the
threshold luminosity. We propose the following form for
the relation between median central galaxy luminosity
Lcen and halo mass Mh,

Lcen/L∗ = A

(

Mh

Mt

)αM

exp

(

−Mt

Mh
+ 1

)

, (11)

where A, Mt, and αM are three free parameters. That
is, the median central galaxy luminosity has a power-law
dependence on halo mass at the high mass end (with a
power-law index of αM ) and drops exponentially at the
low mass end. The transition halo mass is characterized
by Mt, and the normalization factor A is the median
luminosity of central galaxies (in units of L∗ = 1.20 ×
1010h−2L⊙ in r-band; Blanton et al. 2003c) in halos of
transition mass. The fit (solid curve) shown in Figure 12a
has A = 0.32, Mt = 3.08 × 1011h−1M⊙, and αM =
0.264. Figure 12b shows the Mh/Lcen ratio as a function
of halo mass. The solid curve is derived from the fit in
Figure 12a:

Mh

Lcen
=

(

Mh

Lcen

)

Mt

(

Mh

Mt

)1−αM

exp

(

Mt

Mh
− 1

)

, (12)

where (Mh/Lcen)Mt
= 80hM⊙/L⊙ is the mass-to-light

ratio in halos of transition mass. The transition mass also
marks the approximate scale at which Mh/Lcen reaches a
minimum. Halos of Mh ≈ 3×1011h−1M⊙ are maximally
efficient at converting their available baryons into r-band
light of their central galaxy. Other authors have reached
a similar conclusion using HOD, CLF, or SHAM meth-
ods (e.g., Yang, Mo & van den Bosch 2003; Tinker et al.
2005; Vale & Ostriker 2006; Zheng, Coil & Zehavi 2007;
Guo et al. 2010; Moster et al. 2010).
In Figure 12a, the sharp upturn in Mh (Mmin)

arises because the galaxy luminosity function drops
exponentially in a regime where the halo mass func-
tion remains close to a power-law. The sharp rise in
b(L) (Figure 7) is driven both by this upturn in Mh

(Mmin) and by the steepening of the b(Mh) relation it-
self (Mo & White 1996; Jing 1998; Sheth, Mo & Tormen
2001; Tinker et al. 2010). As discussed by Zheng et
al. (2009, Appendix A), the greater departures from
a power-law wp(rp) evident for brighter galaxies arise
mainly because Mmin and M1 are larger compared to
the characteristic halo mass M∗

h where the halo mass
function begins to drop exponentially; this change in the
halo mass function shape leads to a sharper transition
between the one-halo and two-halo regimes of the corre-
lation function.
There is a considerable gap between the values ofMmin

and M1 at all luminosities. As in earlier works, we find
an approximate scaling relation of M1 ≈ 17Mmin, imply-
ing that a halo hosting two galaxies (one central galaxy
and one satellite) above the luminosity threshold has to
be about 17 times more massive on average than a halo
hosting only one (central) galaxy above the luminosity
threshold. Halos in this “hosting gap” mass range tend to
host more luminous (higher mass) central galaxies rather
than multiple galaxies, consistent with the predictions of
Berlind et al. (2003) based on hydrodynamic simulations
and semi-analytic models. As can be seen in Figure 12a,
this scaling factor is somewhat smaller at the high lu-
minosity end, corresponding to massive halos that host
rich groups or clusters. This latter trend likely reflects
the relatively late formation of these massive halos, which
leaves less time for satellites to merge onto central galax-
ies and thus lowers the satellite threshold M1. Physical
effects that shape the M1/Mmin relation are discussed by
Zentner et al. (2005) using analytic descriptions of halo
and galaxy merger rates.
Our results are consistent with previous measurements

of these trends (Z05; Zheng, Coil & Zehavi 2007). Z05
found a slightly larger scale factor of ≈ 23, likely be-
cause of slight differences in the HOD parameteriza-
tions and the corresponding definitions of the halo mass
scales. Zheng, Coil & Zehavi (2007) found, for that same
early SDSS sample but using the current HOD model,
M1 ≈ 18Mmin, in excellent agreement with our results for
the final SDSS sample. These results are also in agree-
ment with predictions of galaxy formation models. In
particular, the scale factor in the Mmin−M1 scaling rela-
tion is in good agreement with the predictions presented
by Zheng et al. (2005).
Returning to Figure 7, open circles in the right-hand

panel show the values of bg(> L) corresponding to our
best-fit HOD models. These bias estimates necessarily
depend on the priors associated with our HOD model-
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Fig. 10.— Luminosity dependence of galaxy clustering and the HOD. The left panel shows the measured wp(rp) and the best-fit HOD
models for all luminosity-threshold samples. The samples are each staggered by 0.25 dex, starting from the Mr < −20.5 sample, for clarity.
The right panel shows the corresponding halo occupation functions, 〈N(Mh)〉, color-coded in the same way. The occupation functions shift
to the right, toward more massive halos, as the luminosity threshold increases. The separation of central and satellite galaxies is shown
for the rightmost occupation function, corresponding to the brightest sample, as the dashed and dotted curves, respectively. For the six
fainter samples, we have chosen models with sharp central-galaxy cutoffs (σlog M ≈ 0) that have ∆χ2 < 1 relative to the best-fit model
listed in Table 3. The three brightest samples require smooth cutoff profiles to fit the number density and clustering data.

TABLE 3
HOD and Derived Parameters for Luminosity Threshold Samples

Mmax
r logMmin σlogM logM0 logM ′

1 α logM1 bg fsat
χ2

dof

-22.0 14.06± 0.06 0.71± 0.07 13.72 ± 0.53 14.80± 0.08 1.35 ± 0.49 14.85± 0.04 2.16± 0.05 0.043 ± 0.003 1.8
-21.5 13.38± 0.07 0.69± 0.08 13.35 ± 0.21 14.20± 0.07 1.09 ± 0.17 14.29± 0.04 1.67± 0.03 0.094 ± 0.004 2.3
-21.0 12.78± 0.10 0.68± 0.15 12.71 ± 0.26 13.76± 0.05 1.15 ± 0.06 13.80± 0.03 1.40± 0.03 0.146 ± 0.007 3.1
-20.5 12.14± 0.03 0.17± 0.15 11.62 ± 0.72 13.43± 0.04 1.15 ± 0.03 13.44± 0.03 1.29± 0.01 0.204 ± 0.009 2.7
-20.0 11.83± 0.03 0.25± 0.11 12.35 ± 0.24 12.98± 0.07 1.00 ± 0.05 13.08± 0.03 1.20± 0.01 0.218 ± 0.012 2.1
-19.5 11.57± 0.04 0.17± 0.13 12.23 ± 0.17 12.75± 0.07 0.99 ± 0.04 12.87± 0.03 1.14± 0.01 0.229 ± 0.010 1.0
-19.0 11.45± 0.04 0.19± 0.13 9.77± 1.41 12.63± 0.04 1.02 ± 0.02 12.64± 0.04 1.12± 0.01 0.332 ± 0.014 1.8
-18.5 11.33± 0.07 0.26± 0.21 8.99± 1.33 12.50± 0.04 1.02 ± 0.03 12.51± 0.04 1.09± 0.01 0.339 ± 0.015 0.9
-18.0 11.18± 0.04 0.19± 0.17 9.81± 0.62 12.42± 0.05 1.04 ± 0.04 12.43± 0.05 1.07± 0.01 0.320 ± 0.022 1.4

Note. — See § 2.3 for the HOD parameterization. Halo mass is in units of h−1M⊙. Error bars on the HOD parameters
correspond to 1σ, derived from the marginalized distributions. M1, bg and fsat are derived parameters from the fits; M1 is the
mass scale of a halo that can on average host one satellite galaxy above the luminosity threshold, bg is the large-scale galaxy bias
factor, and fsat is the fraction of satellite galaxies in the sample. For all samples, the number of degrees-of-freedom (dof) is 9 (13
measured wp values plus the number density minus the five fitted parameters).

ing, principally that 〈N(Mh)〉 has the form defined by
equation (6) and that 〈N(Mh)〉 is independent of a halo’s
large-scale environment (no “assembly bias”). However,
these priors allow us to use constraints from smaller scale
clustering and the galaxy number density, greatly reduc-
ing the error bars on bg(> L) and reducing the sensitivity
to cosmic variance in the large-scale clustering. Given the
significant finite-volume variations that remain even in
SDSS DR7 (§3.2), we consider these HOD-based bg(> L)
values to be our most robust estimates of the luminosity
dependence of galaxy bias, despite their dependence on
an assumed model.
To obtain HOD-based bias factors for luminosity-bin

samples, we have taken the central and satellite occupa-
tion functions for each bin to be simply the difference
of the occupation functions for the bracketing threshold
samples, yielding the open circles in the left panel of Fig-
ure 7. Figure 13 compares the wp(rp) predicted by these

threshold-difference HODs to the observed wp(rp) from
Figure 6; after fitting the luminosity-threshold correla-
tion functions, there are no parameter adjustments made
to fit the luminosity-bin data. The agreement is generally
good. For the faintest luminosity bin −19 < Mr < −18
on large scales, the model slightly overpredicts the ob-
served wp(rp) (with χ2 = 20 for 13 data points). This
tension could indicate that our HOD model does not
allow a good description of galaxies in this luminosity
range, or it could be that our jackknife method underes-
timates the cosmic variance uncertainties for this small-
volume sample. We have already noted that the HOD
model of the bracketing Mr < −18.0 sample overpre-
dicts its observed large-scale clustering (Figure 10), and
that this sample appears to have significant finite-volume
effects (Figure 9). We revisit this overprediction in §4.5
below, where we separately examine the clustering of red
and blue galaxies in this luminosity bin.
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Fig. 11.— Uncertainties in the HOD fits for the Mr < −19.5,
−21.0, and −21.5 luminosity-threshold samples (left to right). For
each model, the figure shows 〈N(Mh)〉 for ten randomly selected
models that have ∆χ2 < 1 relative to the best-fit model.

4. DEPENDENCE ON COLOR

4.1. Auto-Correlation of Blue and Red Galaxies

Galaxy luminosity and color have been shown to be
the two properties most predictive of galaxy environment
(Blanton et al. 2005). Figure 2 qualitatively illustrated
the clustering differences between blue and red galax-
ies. To study this difference quantitatively, we divide
our sample into “blue” and “red” galaxies according to
the well-known color bimodality in the color-magnitude
plane (e.g., Strateva et al. 2001; Baldry et al. 2004). Fol-
lowing Z05, we use a magnitude-dependent color cut de-
fined by

(g − r)cut = 0.21− 0.03Mr. (13)

This tilted cut, shown below in Figure 18, appro-
priately separates the red E/S0 ridgeline from the
blue cloud, following the division into two populations
as a function of luminosity. An identical color cut
is used by Swanson et al. (2008) and McBride et al.
(2010), while other works (e.g., Blanton & Berlind 2007;
Skibba & Sheth 2009) use a very slightly modified divi-
sion. Our results are not sensitive to the exact choice of
the cut.
While color most directly measures stellar population

age, it can also be viewed as a proxy of morphology,
where blue galaxies are mostly spirals, and red galax-
ies tend to be spheroid dominated. (The two classifica-
tion schemes are certainly not identical, however; see,
e.g., Choi, Park & Vogeley 2007; Bamford et al. 2009;
Blanton & Moustakas 2009; Skibba et al. 2009). Fig-
ure 14 shows ξ(rp, π) separately for blue and red galax-
ies, for a representative case of the −20 < Mr < −19
volume-limited sample. The difference between the two
populations is striking. The red galaxies exhibit a sub-
stantially higher clustering amplitude and much stronger
finger-of-God distortions on small scales, as seen in the
elongation along the π direction for small rp separations.
These differences reflect the expected color-density re-
lation, with red galaxies residing in more massive ha-

los that have a stronger bias and higher velocity disper-
sions. The large-scale coherent distortion is more appar-
ent in the blue sample. In linear theory, the coherent
distortion depends on the parameter β ≈ Ω0.6

m /b (Kaiser
1987; Hamilton 1998), as a lower bias implies a larger
gravitational perturbation for a given galaxy overden-
sity. The blue galaxies have lower bias and less finger-
of-God distortion, hence stronger large-scale distortion.
The ξ(rp, π) diagram of the full −20 < Mr < −19 sample
(Figure 5) is, of course, intermediate between these two.
Figure 15 shows the corresponding projected correla-

tion functions, wp(rp). The correlation function for the
red sample has a higher amplitude and steeper slope com-
pared to the blue sample, in agreement with previous
SDSS measurements (e.g., Z05). Fitting power laws re-
sults in a correlation length of r0 = 6.63± 0.41 h−1 Mpc
and slope γ = 1.94 ± 0.03 for the red galaxies, versus
r0 = 3.62 ± 0.15 h−1 Mpc and γ = 1.66 ± 0.03 for the
blue (see Table 4). These trends are similar for all the
luminosity samples, but the differences in clustering are
weaker with increasing luminosity, as is shown in § 4.3.

4.2. Cross-Correlation of Blue and Red Galaxies

When examining the auto-correlation of red and blue
galaxies separately, the blue-red galaxy pairs are dis-
counted. Another useful measurement is then the cross-
correlation between blue and red galaxies. In the large-
scale, linear bias approximation, where δred = bredδm and
δblue = bblueδm, the cross-correlation must be the geo-
metric mean of the auto-correlations. To the extent that
halos have correlation coefficient r ≡ ξhm/

√
ξmmξhh = 1

with the matter distribution, the geometric mean re-
sult should hold throughout the two-halo regime, even
if the halo bias is scale-dependent and the matter field
is non-linear. On small scales, in the one-halo regime,
the cross-correlation encodes information on the mixing
of galaxy populations within the halos. Any tendency
of red or blue galaxies to segregate from one another
will be reflected as a deviation of the cross-correlation
function from the geometric mean. For example, if some
halos contained only red galaxies while other halos con-
tained only blue galaxies, this would depress the number
of one-halo pairs and push the cross-correlation function
below the geometric mean. However, the prediction of
the cross-correlation function has a number of subtleties;
we discuss these issues and provide some simplified esti-
mates in Appendix A. We also show in this Appendix
that the cross-correlation function of two galaxy popu-
lations is mathematically determined if one knows the
auto-correlation of the individual populations and of the
combined population; nonetheless, the cross-correlation
presents this implicit information in a more intuitive
form.
We measure the cross-correlation function of the blue

and red galaxy samples in an analogous way to the auto-
correlations, using the Landy-Szalay estimator. Specif-
ically, we use equation (1) with D1D2 replacing DD,
R1R2 replacing RR andD1R+D2R replacing 2DR, with
the subscripts denoting the two cross-correlated subsam-
ples. Error bars are obtained similarly via jackknife re-
sampling. Filled green circles in Figure 15 show the re-
sulting cross-correlation function for the −20 < Mr <
−19 sample. On large scales, as expected, we find that
the cross-correlation result follows the geometric mean of
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Fig. 12.— Panel (a): characteristic mass scales of halos hosting central galaxies and satellites as a function of the sample threshold
luminosity. Open symbols show the Mmin values, while filled symbols are the M1 values. The solid curve is a simple parametrized fit to
Mmin as a function of threshold luminosity (eq.[11]). The dotted curve denotes the solid curve scaled up by a factor of 17, representing
the M1 ≈ 17Mmin scaling relation. Panel (b): ratio of halo mass to median central galaxy luminosity as a function of halo mass. The solid
curve is derived from the fit in panel (a) (see eq.[12]).

Fig. 13.— HOD predictions of the projected correlation function
of luminosity-bin samples. The HOD for each bin is set to the
difference of the HODs for the bracketing luminosity thresholds
(see Fig. 10), with no further adjustments to fit the luminosity-bin
data. Points show the wp(rp) data from Fig. 6, and curves show
the model predictions. The samples are each staggered by 0.5 dex,
starting from the −21 < Mr < −20 sample, for clarity.

the blue and red auto-correlations. On small scales (for
rp . 2 h−1 Mpc) we find that the cross-correlation falls
below the geometric mean, possibly indicating a slight
segregation of blue and red galaxies within the halos.
This deviation is significant given the small error bars
on these scales. Note, however, that this is very far from
suggesting a full segregation into “red halos” and “blue
halos”. That extreme case would lead to no one-halo
contribution, making the projected cross correlation ap-
proximately flat for rp < 2 h−1 Mpc.

We find similar behavior for the cross-correlation of
red and blue galaxies in all of our luminosity subsam-
ples. However, the depression of the cross-correlation
below the geometric mean is stronger for the relatively
faint samples and smaller for brighter galaxies (consis-
tent with Z05, who showed the cross-correlation function
for an Mr < −21 galaxy sample). Our results are also
in agreement with Wang et al. (2007), who investigated
in detail the cross-correlation between galaxies of differ-
ent luminosities and color using an earlier SDSS sample,
and with Ross & Brunner (2009), who measured angular
clustering of an SDSS photometric sample.
Using an SDSS group catalog, Weinmann et al. (2006)

find that the colors of satellite galaxies are correlated
with those of their central galaxy. However, this trend,
which they termed “galactic conformity”, is found to
have roughly the same strength independent of luminos-
ity, so its connection to our findings is unclear. It is
known that the fraction of red galaxies that are satel-
lites becomes larger with decreasing luminosity (e.g.,
Z05; see also related discussions in the following sub-
sections). Thus, the luminosity-dependent suppression
of the cross-correlation function in the one-halo regime
may be simply related to the relative paucity of blue
galaxies compared to red ones within large halos (see
also van den Bosch et al. 2008b; Hansen et al. 2009). In
future work, we will investigate detailed HOD modeling
of the cross-correlation results and study the implication
of these measurements for the distribution of red and
blue galaxies within dark matter halos.

4.3. Joint Dependence on Color and Luminosity

We now turn to the luminosity dependence of clus-
tering within the red and blue galaxy populations indi-
vidually, using the luminosity-dependent color division
of equation (13). Figure 16 shows projected correlation
functions for the volume-limited luminosity-bin samples,
separately for the red (left panel) and blue (right panel)
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Fig. 14.— Contours of the galaxy correlation function as a function of tangential separation rp and line-of-sight separation π for the
−20 < Mr < −19 sample, evaluated separately for red galaxies (left) and blue galaxies (right). Contours are the same as in Fig. 5.

galaxies. Figure 17 shows the correlation length r0 and
slope γ of power-law fits to these samples. Because some
of the samples are quite small, making jackknife esti-
mates of the covariance matrix noisy, we fit using the
diagonal error bars only, which is enough to capture the
trends visible in the wp(rp) plots. Figure 17 also shows r0
and γ from diagonal fits to the full luminosity-bin sam-
ples. The differences between the different color samples

Fig. 15.— Projected correlation functions of red and blue galax-
ies in the −20 < Mr < −19 luminosity bin. Red triangles and
blue squares show the auto-correlation functions of the red and
blue subsamples, respectively, while open black circles show the
auto-correlation of the full sample. Filled green circles show the
projected cross-correlation function of the red and blue galaxies.
The black solid line shows the geometric mean of the red and blue
auto-correlations for comparison.

are particularly distinct for the fainter samples, and they
decrease with increasing luminosity.
These plots display the same general trends seen in

previous sections: the large-scale clustering amplitude
increases with luminosity for both red and blue popula-
tions, and red galaxies generically have higher clustering
amplitude and a steeper correlation function. Within the
individual populations, however, the luminosity trends
are remarkably different. The projected correlation func-
tions of the blue galaxies are all roughly parallel, with
slopes 1.6 ≤ γ ≤ 1.8, and the amplitude and correla-
tion length increase steadily with luminosity. For the
red galaxies, on the other hand, the shape of wp(rp) is
radically different for the two faintest samples, −18 <
Mr < −17 and −19 < Mr < −18, with a strong inflec-
tion at rp ≈ 3 h−1 Mpc indicating a high-amplitude one-
halo term. These two samples have the strongest small-
scale clustering, matched only by the ultra-luminous,
−23 < Mr < −22 galaxies. The large-scale clustering (at
rp ≈ 5 − 10 h−1 Mpc) shows no clear luminosity depen-
dence until the sharp jump at the −23 < Mr < −22 bin,
though it is consistent with a weak but continuous trend
at lower luminosities. Power-law fits to the two faintest
samples yield γ = 2.5 and 2.2, respectively, though we
caution that power laws are poor fits to the measure-
ments and that r0 is not a unique indicator of clustering
amplitude when comparing fits that have different slopes.
We also caution that the−18 < Mr < −17 sample is very
small, containing only about 5000 blue galaxies and 1000
red galaxies; we have not used it in earlier sections but
include it here to show the extension of the luminosity
trends to the faintest galaxies we can effectively study.
The strong clustering of intrinsically faint red

galaxies has been previously observed (Norberg et al.
2002; Hogg et al. 2003; Z05; Swanson et al. 2008;
Cresswell & Percival 2009). We build on these studies,
confirming this intriguing clustering signal and present-
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Fig. 16.— Projected correlation functions for different luminosity-bin samples, shown separately for red galaxies (left) and blue galaxies
(right). For clarity, the brightest and faintest blue samples have been omitted from the plot, as their correlation functions are noisy.

Fig. 17.— Luminosity and color dependence of the galaxy correlation function. The plots show the correlation lengths (left) and
slopes (right) corresponding to the real-space correlation function obtained from power-law fits to projected correlation functions using the
diagonal errors. These are shown for the blue, red and full populations of the luminosity-bin samples. Points are plotted at the luminosity
of the bin center, divided by L∗, which is taken to be Mr = −20.5.

ing its most significant measurement obtained with the
largest redshift sample available. The red galaxy samples
analyzed here include ∼ 25, 000 galaxies below L∗, about
6, 000 of them in the two faintest bins, more than triple
the size of the samples studied in Z05. The strong clus-
tering is an indication that most of the faint red galaxies
are satellites in fairly massive halos (Berlind et al. 2005;
Z05; Wang et al. 2009). We present HOD models of a
few of these samples in §4.5 below but defer a detailed
examination of this population to future work.

4.4. Auto-Correlation of Finer Color Samples

The large size of the DR7 main galaxy sample al-
lows us to measure wp(rp) for narrow bins of color in
addition to the broad “blue” and “red” classifications
used in §4.1-§4.3 and in most earlier work. Figure 18
shows the cuts we adopt to divide galaxies into “bluest”,
“bluer”, “redder” and “reddest” populations. We also
define an intermediate population of “green” galaxies,
located near the minimum of the observed color bimodal-
ity along the red/blue dividing line, associated with
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Fig. 18.— A color-magnitude diagram for the SDSS galaxies,
showing g − r colors vs. r-band absolute magnitudes. A random
subset of the galaxies is plotted, sparsely sampled by a factor 10.
The tilted lines denote the different color samples used. The solid
lines denote the division into “bluest”, “bluer”, “redder”, and “red-
dest” subsamples, respectively with increasing color. The dashed
lines mark the boundary of the “green” population along the main
red-blue dividing line (Eq. 13). The dotted lines indicate the “red-
seq” galaxy population along the locus of the red sequence. The
latter two populations are not independent of the previous ones:
The “green” galaxies include some of the “bluer” and “redder”
galaxies. Similarly, the red sequence “redseq” population is com-
prised of some of the “redder” and “reddest” galaxies.

the so-called “green valley” galaxies (e.g., Wyder et al.
2007; Loh et al. 2010). We include all galaxies within
∆(g − r) = 0.05 of the tilted dividing line of Eq. 13
(analogous to the “green” galaxy population studied by
Coil et al. 2008). In addition, we add a sample of galaxies
along the cusp of the red sequence galaxies, denoted as
“redseq”, defined as all galaxies within ∆(g−r) = 0.03 of
the redder/reddest dividing line. Note that the last two
classes are not distinct populations: the “green” sample
contains a subset of the redder and bluer samples, while
the “redseq” sample contains a subset of the the redder
and reddest samples. Details of the individual samples
are given in Table 4.
Figure 19 shows the projected correlation functions of

all these color samples, for the representative luminos-
ity bin −20 < Mr < −19. We find a continuous trend
with color, in both amplitude and slope: the redder the
color of the sample, the higher and steeper the correla-
tion function. We find the same trends in the other lumi-
nosity bins, although the dependence on color is weaker
at higher luminosities, as seen already for the red/blue
division in Figure 17.
The steady trend of wp(rp) with color at fixed luminos-

ity is consistent with the findings of Hogg et al. (2003),
who investigated the density of galaxy environments as
a function of luminosity and color. The trend across our
three red samples indicates that redder galaxies within
the red sequence populate denser regions, again consis-
tent with Hogg et al. (2003). Hogg et al. (2004) exam-
ined the color-magnitude diagram as a function of envi-
ronment and did not find a significant shift of the red se-

TABLE 4
Color subsets of the volume-limited −20 < Mr < −19

sample

Sample Ngal n̄ r0 γ χ2

dof

All 44,348 1.00380 4.89 ± 0.26 1.78 ± 0.02 3.79
Red 18,892 0.42761 6.63 ± 0.41 1.94 ± 0.03 5.07
Blue 25,455 0.57616 3.62 ± 0.15 1.66 ± 0.03 1.66

Reddest 10,278 0.23264 7.62 ± 0.42 2.07 ± 0.03 1.87
Redseq 7,542 0.17071 7.23 ± 0.28 1.95 ± 0.03 1.06
Redder 8,614 0.19497 5.48 ± 0.43 1.91 ± 0.04 1.84
Green 5,543 0.12546 5.06 ± 0.42 1.79 ± 0.05 1.35
Bluer 11,156 0.25251 4.14 ± 0.21 1.69 ± 0.04 0.89
Bluest 14,299 0.32365 3.15 ± 0.15 1.71 ± 0.05 1.10

Note. — All samples use 14.5 < mr < 17.6. czmin =
8, 050 km s−1 and czmax = 19, 250 km s−1. n̄ is measured in
units of 10−2 h3 Mpc−3. The number of degrees-of-freedom
(dof) is 9 (11 measured wp values minus the two fitted param-
eters). The subsamples are defined using tilted color cuts as
described in the text.

Fig. 19.— Projected correlation functions for various color sub-
samples of the −20 < Mr < −19 volume-limited sample. Color
cuts are as defined in the text and shown in Fig. 18.

quence location with density, but examining their results
in detail does reveal mild changes in the locus for bulge-
dominated galaxies. The trends observed in Hogg et al.
(2003, 2004) are subtle, but they appear consistent with
our results.
Coil et al. (2008) have carried out an analysis similar

to ours at z ∼ 1, using projected correlation functions
of fine color bins in the DEEP2 galaxy survey. They
find qualitatively similar results for blue galaxies and
for the difference between blue and red galaxy cluster-
ing, but they find no significant change in the ampli-
tude or slope of wp(rp) among their red samples (see
their figure 12). The difference from our results could
be a consequence of details of sample definition, or pos-
sibly a consequence of color-dependent incompleteness
in DEEP2 (e.g., Gerke et al. 2007), though Coil et al.
(2008) account for this in their analysis. The difference
could also be an evolutionary effect reflecting the buildup
of galaxies on the red sequence. One plausible explana-



22 Zehavi et al.

tion is that variations in star formation history and dust
content scatter galaxies within the red sequence at z ∼ 1,
when the universe is younger, while evolution to z = 0
allows galaxy populations to separate more cleanly, yield-
ing a tighter correlation between color, stellar population
age, and environment.
The clustering of the green galaxies falls between that

of the blue and red galaxy samples and clearly follows
the continuous trend with color in both amplitude and
slope. We do not find the apparent break in the green
galaxies’ projected correlation function seen in DEEP2
(Coil et al. 2008), where the clustering amplitude is sim-
ilar to that of blue galaxies on small scales and to that of
the red galaxies on large scales. Loh et al. (2010) inves-
tigate the clustering properties of “green valley” galaxies
using UV imaging from GALEX matched to SDSS spec-
troscopy, and find that the clustering of green galaxies is
intermediate between that of the blue and red galaxies,
in qualitative agreement with our results. However, they
find that the green galaxies have a large-scale clustering
amplitude similar to that of the blue galaxies (in contrast
with Coil et al. 2008). When fitting an overall power-law
to the projected correlation function, they find the green
galaxies’ clustering amplitude to be between that of the
blue and red samples, with a similar slope to that of the
red galaxies, while we find the green galaxy population
to be intermediate in both amplitude and slope.

4.5. Modeling the Color Dependence

To model the color dependence of wp(rp) presented in
§4.4, we adopt a simplified HOD model based on the pa-
rameterized form of the mean occupation function spec-
ified in equation (6) for luminosity-threshold samples.
For the −20 < Mr < −19 luminosity bin, we set the
central galaxy occupation function to the difference of
the Mr < −19 and Mr < −20 modeling results shown
in § 3.3. For simplicity, we also fix the slope of the
satellite occupation function, α, to 1. We also assume
that the occupation number of satellites at fixed halo
mass follows a Poisson distribution and is independent
of the central galaxy occupation number. The model-
ing is thus a one-parameter family, in which only M ′

1
is varied to fit wp(rp), changing the relative normaliza-
tion of the central and satellite occupation functions with
color. The overall normalization is determined by match-
ing the observed number density of galaxies in the color
bin. In this simple model, the relative fraction of blue
and red satellites has no dependence on halo mass. Dif-
ferent modeling approaches and more detailed parame-
terizations are possible, of course (e.g., Scranton 2002;
Cooray 2005; Z05; Ross & Brunner 2009; Simon et al.
2009; Skibba & Sheth 2009), but this form is sufficient
to explain the main trends of the color dependence. We
note that our model guarantees that the sum of central
galaxy occupation functions of independent color sam-
ples equals that of the full −20 < Mr < −19 bin sample.
By construction, the sum of the satellite mean occupa-
tion functions, each of which follows a power law with
soft cutoff, slightly differs in shape from the bin-sample
satellite occupation, which is the difference of two power
law curves with soft cutoffs. We have verified, however,
that the sum in our fits is close to the satellite mean oc-
cupation function of the overall bin sample, especially in
the range where the occupation number is close to unity

TABLE 5
HOD and Derived Parameters for −20 < Mr < −19

Fine-Color Subsamples

Sample logM ′
1 fnorm fsat logMmed

χ2

dof

Reddest 12.11 ± 0.06 0.10 0.75± 0.03 12.61 ± 0.07 1.3
Redseq 12.39 ± 0.05 0.11 0.62± 0.03 12.15 ± 0.09 1.2
Redder 12.67 ± 0.04 0.18 0.46± 0.02 11.80 ± 0.02 1.0
Green 12.87 ± 0.05 0.14 0.34± 0.02 11.70 ± 0.01 0.9
Bluer 13.11 ± 0.03 0.33 0.24± 0.01 11.65 ± 0.01 0.5
Bluest 13.36 ± 0.05 0.47 0.15± 0.01 11.62 ± 0.01 2.0

Note. — The shape of the mean occupation function for central
galaxies is assumed to be the difference of those of Mr < −19 and
Mr < −20 samples. The mean occupation function for satellites
follows a modified power law. The relative normalization of the mean
occupation functions for central and satellite galaxies is determined
by M ′

1. The overall normalization fnorm is obtained from matching
the observed number density (see text). Halo mass is in units of
h−1M⊙. The satellite fraction, fsat, and the median mass of host
halos, Mmed, are derived parameters. For all samples, the number
of degrees-of-freedom (dof) is 12 (13 measured wp values minus one
fitted parameter).

and the contribution to the small scale clustering signal
is dominant.
Figure 20 presents the results of this modeling. Points

with error bars in the upper-left panel are the wp(rp)
measurements for fine color bins repeated from Figure 19,
with 0.25-dex offsets added between bins to improve vi-
sual clarity. The curves show the model predictions cor-
responding to the best-fit HODs, exhibited in the upper-
right panel. Going from bluer galaxies to redder galaxies,
the number of central galaxies steadily decreases and the
number of satellite galaxies steadily increases. Although
the central-to-satellite ratio is the only tunable param-
eter in our simplified HOD model, this is sufficient to
explain the main trends observed in Figure 19: going
from bluer to redder galaxies, the large-scale amplitude
of wp(rp) increases, the correlation function steepens,
and the inflection at the 1-to-2-halo transition becomes
stronger. Table 5 lists the best-fit HOD parameters and
χ2 values. We find χ2/d.o.f. of 0.5 − 1.3 for most of
the color samples, the exception being the bluest sam-
ple, which has χ2/d.o.f.∼ 2. The fits can be improved by
adding flexibility to the HOD model; for example, the fit
for the bluest galaxies can be improved by allowing the
slope of the satellite occupation function and the halo
concentration to change.
The lower panels of Figure 20 display the trends of

satellite fraction more clearly. In the lower-right panel,
we scale each occupation function by a constant factor so
that the central galaxy components have the same nor-
malization. The amplitude of the satellite occupation
function increases steadily going from the bluest galax-
ies to the reddest galaxies. The lower-left panel plots the
satellite fraction fsat of each color bin against the median
halo mass of galaxies in that bin. The satellite fraction
rises from ∼ 15% for the bluest bin to ∼ 75% for the
reddest bin, and the median halo mass increases as the
fraction of galaxies that are satellites in massive halos
grows. Green-valley galaxies have occupation functions
intermediate between the red and blue galaxies, consis-
tent with the idea that they are a transitional population
(e.g., Coil et al. 2008; Martin et al. 2007).
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Fig. 20.— HOD models of the correlation function in fine color bins of the −20 < Mr < −19 sample. The top-left panel shows the
measured wp(rp) and the best-fit HOD models. Offsets of 0.25 dex are added for visual clarity, with the bluest galaxies at the bottom.
The top-right panel presents the corresponding mean occupation functions, 〈N(Mh)〉, color-coded in the same way, with dashed and dotted
lines showing contributions of central and satellite galaxies, respectively. The bottom-right panel shows the same halo occupation functions
normalized so that their central galaxy occupation functions coincide. The bottom-left panel shows the satellite fraction versus median
halo mass for these color subsamples. Each colored “streak” shows results for models acceptable at the ∆χ2 < 1 level; since the models
have only one adjustable parameter, the uncertainty on this parameter produces a 1-dimensional locus in this 2-dimensional plane.

As discussed in §3.3, the trend of clustering strength
with luminosity is explained principally by a rise in the
central galaxy halo mass, and the satellite fraction drops
with increasing luminosity because the halo mass func-
tion steepens at higher masses. In contrast, the trend
with color at fixed luminosity can be explained with a
constant halo mass for central galaxies and a steady in-
crease of satellite fraction with redder color. The in-
crease in typical host halo mass leads to the increase in
the large-scale bias factor and thus the higher clustering
amplitude at large scales. However, increasing fsat drives
the 1-halo term up more rapidly than the bias factor, so
the correlation function steepens for redder galaxies as
well. The success of our simple HOD model does not
rule out a shift in central-galaxy halo mass for redder

galaxies, but explaining the strong observed color trend
solely through the central galaxy occupation would re-
quire placing moderate luminosity red galaxies at the
centers of very massive halos, and it might well be im-
possible to match the clustering and number density con-
straints simultaneously.
Returning to the joint dependence on color and lumi-

nosity (§4.3), Figure 21 presents HOD model fits to the
blue and red galaxy populations for three of the luminos-
ity bins shown in Figure 16. We use the same modeling
approach adopted above for the fine color bins: we dif-
ference the central galaxy occupation functions of two
luminosity-threshold samples to get the central galaxy
occupation function of the luminosity bin, fix the satel-
lite slope to α = 1, and vary only the relative central
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and satellite normalizations within each population to fit
the red and blue wp(rp) measurements. With the other
HOD parameters fixed previously by fitting the correla-
tion functions of the full luminosity-threshold samples,
this modeling has just one adjustable parameter within
each luminosity bin. The model explains the rather com-
plex color-luminosity trends from Figure 16 fairly well, in
particular the fact that the small-scale clustering of red
galaxies increases towards low luminosities, both in abso-
lute terms and relative to the large scale clustering, while
the shape of wp(rp) for the blue galaxies stays roughly
constant. The fraction of red galaxies that are satel-
lites increases sharply with decreasing luminosity, from
33% to 60% to 90% in the three luminosity bins, while
the fraction of blue satellites (13%, 19%, 19%) is smaller
and only weakly dependent on luminosity. The precise
values of the satellite fractions depend on the HOD pa-
rameterization used to fit wp(rp), but the general trend is
robust: most blue galaxies at these luminosities are cen-
tral, and the satellite fraction for red galaxies is higher
and increasing towards faint luminosities.
The largest quantitative failure of this model is its

overprediction of the large-scale wp(rp) for the faintest
red galaxies (and, to a smaller extent, for the faintest
blue galaxies). It could be that our jackknife method
underestimates the errors for this small-volume sample,
and we have already noted (Figure 13) that our HOD
model overpredicts the total (red+blue) galaxy correla-
tion function in this luminosity bin. However, this dis-
crepancy could indicate a limitation of our restricted
HOD parameterization. To investigate this possibil-
ity, we have considered models for the faint red galaxy
population in which we vary the satellite slope α, the
concentration parameter of red galaxies in halos, and,
most notably, the satellite cutoff parameter M0 in equa-
tion (6). The dot-dashed curves in the upper panels of
Figure 21 show an example in which red satellites arise
only in halos above 1013h−1M⊙, reducing the satellite
fraction from 90% in our original fit to 34%, thereby
lowering the large-scale bias factor. The physical moti-
vation for such a model is that gas accretion (and sub-
sequent star formation) by a satellite system might be
shut off only if it enters a halo whose mass is much
larger than the “birth” halo in which it was a cen-
tral galaxy (Simha et al. 2009; see also Font et al. 2008;
Kang & van den Bosch 2008; Skibba 2009). The lower
satellite fraction of this model is more consistent with the
results of Wang et al. (2009), who argue, based on group
catalogs, that 30-60% of faint red galaxies (significantly
fainter than those modeled here) are central rather than
satellite galaxies. The fit to the smallest scale data points
is improved by increasing the galaxy concentration pa-
rameter (van den Bosch et al. 2008a) to twice the dark
matter value, steepening the profile of the 1-halo term.
Visually, the wp(rp) prediction of this model appears not
much better than that of the original model, but the χ2

value drops from 30 to 13 (for 13 data points and four
free parameters), a large statistical improvement. De-
spite its flexibility, this model underpredicts wp(rp) in
the 1-halo regime and overpredicts in the 2-halo regime,
emphasizing how difficult it is to simultaneously repro-
duce the strong small-scale clustering and low large-scale
bias factor of this galaxy sample. This tension could be a

sign of environment-dependent effects on the HOD, but
the expected form of “assembly bias” for low mass ha-
los, putting the redder central galaxies into older, more
clustered halos, would exacerbate rather than reduce the
discrepancies with the data.
Overall, our inferences from HODmodeling accord well

with the theoretical predictions of Berlind et al. (2005),
who compared the results of cosmological SPH simula-
tions to Hogg et al.’s (2003) measurements of galaxy envi-
ronments as a function of luminosity and color. In par-
ticular, Berlind et al. (2005) find that the environment
of satellite galaxies in the simulations is strongly corre-
lated with stellar population age (hence color), and that
for low and intermediate luminosities the environmen-
tal dependence of the overall galaxy population tracks
that of satellite galaxies. Berlind et al. (2005) also find
that the great majority of faint red galaxies in the sim-
ulation are satellites, though the simulation they use to
study this population is small. The success of our simple
HOD models in reproducing the observed color depen-
dence of wp(rp) contrasts with the recent conclusions of
Ross & Brunner (2009), who find that some segregation
of early- and late-type galaxies into separate halos is re-
quired to reproduce their measured angular clustering of
an SDSS photometric galaxy sample, which extends to
smaller separations.

5. CONCLUSIONS AND PROSPECTS

The SDSS galaxy redshift survey allows high-precision
clustering measurements for a broadly selected galaxy
sample with extensive, high quality photometric informa-
tion. We have examined the luminosity and color depen-
dence of the galaxy correlation function in the DR7 main
galaxy sample, which includes approximately 700, 000
galaxies over 8000 deg2, with a median redshift of ∼ 0.1.
This is the largest sample used to date for such stud-
ies, by a factor of several. Furthermore, the DR7 main
galaxy sample is likely to remain the definitive low red-
shift galaxy survey for many years; other ongoing and
planned surveys, including the BOSS survey of LRGs in
SDSS-III (Schlegel et al. 2009), will probe larger volumes
and higher redshifts, but they will not target a wide range
of galaxy types in the present-day universe. Our anal-
ysis focuses on the projected auto-correlation functions
calculated for volume-limited samples defined by lumi-
nosity and color cuts, with measurements tabulated in
Appendix B. We use HOD modeling to interpret these
measurements in terms of the relation between galaxies
and dark matter halos, assuming a ΛCDM cosmological
model with Ωm = 1 − ΩΛ = 0.25, Ωb = 0.045, h = 0.7,
ns = 0.95, and σ8 = 0.8.
The amplitude of wp(rp) increases with increasing

galaxy luminosity, slowly for L < L∗ and rapidly for
L > L∗, where L∗ corresponds to Mr = −20.44
(Blanton et al. 2003c; note that we quote absolute mag-
nitudes for h = 1 throughout the paper). For L ≤ L∗,
wp(rp) is generally well described by a power-law at
rp < 10 h−1 Mpc, while brighter samples show clear and
increasingly strong inflections at rp ≈ 1 − 3 h−1 Mpc.
We find similar trends for samples defined by luminosity
bins and by luminosity thresholds. The large-scale bias
factor of luminosity-threshold samples is well described
by the fitting formula bg(> L) = 1.06 + 0.23(L/L∗)

1.12.
For luminosity-bin samples, we find bg(L) = 0.97 +
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Fig. 21.— HOD model fits to the projected correlation functions of red and blue galaxy populations in three luminosity bins, as labeled.
Points with error bars are taken from Fig. 16. Solid curves in the left hand panels show wp(rp) for the best-fitting models. In the right
hand panels, dashed and dotted curves show the mean occupation functions for central and satellite galaxies in the red (thick line) and
blue (thin line) populations. In the upper panels, dot-dashed lines indicate an alternative fit (varying more parameters) for the faint red
population. See text for details of the modeling procedure.

0.18(L/L∗)
1.04, similar to the luminosity dependence

found by Norberg et al. (2001) for bJ -selected galaxies
in the 2dFGRS.
At fixed luminosity, the redshift-space correlation func-

tion of red galaxies exhibits stronger “finger-of-God”
distortions than that of blue galaxies, while the blue
galaxies exhibit stronger large-scale, coherent flow distor-
tions. The projected correlation function of red galaxies
is higher in amplitude and steeper. The cross-correlation
of red and blue galaxies is equal to the geometric mean of
the auto-correlation functions on large scales, but it falls
slightly below the geometric mean for rp . 1 h−1 Mpc.
Adopting fine color bins, we find a continuous trend of
clustering with color: the bluest galaxies have a shal-
low, low-amplitude correlation function, the clustering
of “green valley” galaxies is intermediate between that

of blue and red galaxies, and the reddest galaxies have a
(slightly) steeper correlation function than galaxies that
trace the ridge of the red sequence. We present detailed
results for the −20 < Mr < −19 luminosity bin, but we
find similar trends in other bins where our statistics are
good enough to measure them.
The luminosity dependence of clustering for the red

and blue populations is strikingly different. For blue
galaxies, the amplitude of wp(rp) increases slowly but
steadily with luminosity over the range Mr = −18 to
Mr = −22, with nearly constant shape. For red galax-
ies, there are only weak luminosity trends over the range
−22 < Mr < −19. The −23 < Mr < −22 galaxies
have a much higher correlation amplitude and a strong
break in wp(rp) at rp ≈ 2 h−1 Mpc. Most remarkably,
the small-scale (rp < 2 h−1 Mpc) correlation function of
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the −19 < Mr < −18 red galaxies is equal to that of
the −23 < Mr < −22 red galaxies, a factor of 2 − 3
higher than that of intermediate luminosity red galaxies.
Red galaxies with −18 < Mr < −17 show even stronger
small-scale clustering, though our survey volume for such
low luminosity systems is small.
Our HOD modeling shows that these varied trends in

the amplitude and shape of wp(rp) can, for the most part,
be well explained by the combination of ΛCDM cosmol-
ogy and physically plausible recipes for the relation be-
tween galaxies and dark matter halos. The luminosity
dependence of wp(rp) arises from an overall shift in the
mass scale of the mean occupation function 〈N(Mh)〉.
The halo mass Mmin for hosting central galaxies of lu-
minosity L rises with luminosity. Correspondingly, the
central galaxy luminosity increases with halo mass as
L/L∗ = A(Mmin/Mt)

αM exp(−Mt/Mmin+1), where A =
0.32, Mt = 3.08×1011h−1M⊙, and αM = 0.264. (Specif-
ically, in our HOD parameterization, Mmin is the halo
mass at which the median luminosity of central galaxies
is L.) The massM1 at which halos host an average of one
satellite above luminosity L follows a similar trend: we
find M1 ≈ 17Mmin over most of our luminosity range,
with a smaller factor at the highest luminosities. We
find substantial scatter (≈ 0.3 dex) between halo mass
and central galaxy luminosity for L > L∗, while fits for
lower luminosities are consistent with little or no scatter.
The color dependence of wp(rp) at fixed luminosity can

be well explained by a change in the relative fractions of
central and satellite galaxies. In our best-fit models of
the −20 < Mr < −19 bin, for example, the satellite
fraction rises steadily from 15% for the bluest galaxies
to 75% for the reddest galaxies. Increasing the satel-
lite fraction increases the large-scale bias factor by plac-
ing more galaxies in high mass halos, and it produces a
steeper correlation function with a stronger inflection by
boosting the 1-halo term relative to the 2-halo term. A
modest offset in the halo mass scale for central red and
blue galaxies is physically plausible, but our models are
able to fit the main observed trends without such off-
sets, and it is unlikely that the central-galaxy mass scale
can be the primary driver of the observed color trends in
wp(rp).
Differences in satellite fractions largely explain the dif-

ferent luminosity dependence of wp(rp) for red and blue
galaxies. However, within our standard parameteriza-
tion we are unable to find a statistically acceptable fit
to the clustering of the red −19 < Mr < −18 galaxies.
After adjusting the model to allow red satellites only in
relatively high mass halos (Mh > 1013h−1M⊙, a factor
of 100 above Mmin), we do find a statistically acceptable
fit, but even this model underpredicts the 1-halo term of
wp(rp) while overpredicting the 2-halo term. The diffi-
culty in reproducing wp(rp) for faint red galaxies could
signify a breakdown of our assumption that the HOD is
independent of large-scale environment, but the obvious
forms of environment dependence (redder central galax-
ies in older halos) go in the wrong direction. Clearly
the clustering of the faint red galaxy population merits
further study. While we do not know of any planned red-
shift surveys that will provide better statistics for such
low luminosity galaxies, cross-correlation of photometric
samples with redshift samples of more luminous galax-
ies may allow higher precision clustering measurements

from a larger effective volume.
Our measured luminosity and color trends agree

with those found in earlier studies, most notably the
Norberg et al. (2001, 2002) studies of the 2dFGRS and
the Z05 study of SDSS DR2, but the SDSS DR7 sam-
ple allows measurements of higher precision, greater
detail, and wider dynamic range. Our conclusions
about the luminosity and color dependence of galaxy
halo occupations are generally consistent with those
found in earlier studies (e.g., van den Bosch et al. 2003a;
Collister & Lahav 2005; Yang et al. 2005b; Z05), al-
though the greater precision and dynamic range of our
clustering measurements allows us to examine this de-
pendence in substantially greater detail. Even with
SDSS DR7, the tests in §3.2 reveal significant finite-
volume effects for samples with limiting absolute magni-
tude Mr ≈ −20, which extend just far enough to enclose
the Sloan Great Wall, and for samples with limiting mag-
nitude Mr ≥ −18, which have small total volume. These
effects have a significant influence on the (r0, γ) values of
power-law fits to these samples (and their color-defined
subsamples). They have little impact on the best-fit val-
ues of HOD parameters, though they do affect the χ2

values of HOD fits. The finite-volume uncertainties limit
the strength of our conclusions about the faint red galaxy
population.
Our modeling in this paper derives HOD parameters

for well specified classes of galaxies defined by thresh-
olds or bins in luminosity and divisions in color. The
related formalism of conditional luminosity functions
(Yang, Mo & van den Bosch 2003) seeks to provide a
continuous description of the dependence of the galaxy
luminosity function on halo mass. In a subsequent paper
(Zheng et al., in preparation), we will present a general-
ization of this approach to luminosity-color distributions
and apply it to our wp(rp) data, resulting in a compre-
hensive model that synthesizes the information from all
of the measurements presented here.
Our HOD parameterization is flexible enough to de-

scribe the predictions of galaxy formation models accu-
rately (Zheng et al. 2005), and with an assumed cosmo-
logical model the wp(rp) measurements are themselves
sufficient to provide tight constraints on HOD param-
eters. Studies of other real-space clustering measures,
such as the multiplicity function of groups, the three-
point correlation function, the topology of isodensity sur-
faces, and the void probability function can test the HOD
models presented here, perhaps revealing breakdowns of
this parameterization that would point to new aspects of
galaxy formation physics. Most interesting would be to
find evidence for environmental variations of the HOD,
as this would tie observable galaxy properties to features
of halo formation history that correlate with large-scale
environment at fixed halo mass. Conversely, limits on
environmental variations (e.g., Blanton & Berlind 2007;
Tinker et al. 2008) limit the degree to which galaxy prop-
erties can be driven by quantities such as halo formation
time or concentration.
Uncertainties in cosmological parameters within the

range allowed by other data have little impact on
our conclusions. The largest effect is that changes
to Ωm or σ8 would shift the mass scale of the HOD
(Zheng & Weinberg 2007). The combination of wp(rp)
constraints with dynamical measures that are sensitive
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to the halo mass scale allows novel constraints on these
cosmological parameters. Efforts in this direction are un-
derway, using cluster mass-to-light ratios, galaxy-galaxy
lensing, and redshift-space distortions. We expect these
analyses, together with the cluster abundance analysis
of Rozo et al. (2010), to yield tight independent con-
straints on σ8 and Ωm with several systematic cross-
checks. These constraints, based on the inferred am-
plitude of dark matter clustering, are complementary to
those derived from the large-scale shape of the galaxy
power spectrum (Reid et al. 2010), which can themselves
be sharpened by using HOD modeling to account for the
effects of scale-dependent galaxy bias (Yoo et al. 2009).
The combination of these constraints with those derived
from CMB data, Type Ia supernovae, baryon acous-
tic oscillations, and other cosmological observables will
allow stringent consistency tests of the ΛCDM cosmo-
logical model, at the few-percent level. Inconsistencies
could have profound physical implications, perhaps re-
vealing the signatures of complex inflationary potentials,
isocurvature contributions to CMB anisotropies, dynam-
ical dark energy, or a breakdown of General Relativity
on cosmological scales. Surveys of the next decade will
extend many of these techniques to higher redshifts, but
the SDSS maps of structure in the present-day universe
still have much to teach us about galaxy formation and
the physics of the cosmos.
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APPENDIX

A. THE CROSS-CORRELATION FUNCTION OF GALAXIES

A.1 The Relation Between the Cross-correlation and Auto-correlation Functions of Galaxy Samples

Zu et al. (2008) consider the general case of the relation between the two-point auto-correlation functions of a galaxy
sample and the auto- and cross-correlation functions of its subsamples (see their Appendix). Here we focus on the
specific case of the correlation functions of red, blue and all galaxies. The point we make here is that only three
of the four correlation functions (blue-blue, red-red, all-all auto-correlation functions, and red-blue cross-correlation
functions) are independent. That is, if we measured blue-blue, red-red, and all-all auto-correlation functions, there
would be no new information from the red-blue cross-correlation functions.
To demonstrate that this is the case, we recall that the two-point correlation function represents a galaxy pair count.

The total number of pairs of all galaxies in the parent sample is simply the sum of the numbers of red galaxy pairs,
blue galaxy pairs, and red-blue galaxy pairs. That is,

1

2
n2
all(1 + ξall) =

1

2
n2
blue(1 + ξblue) +

1

2
n2
red(1 + ξred) + nbluenred(1 + ξcross), (A1)

where nall, nred, and nblue are the mean number density of the parent sample and the red/blue subsamples, ξall, ξblue,
and ξred are the two-point auto-correlation functions, and ξcross is the red-blue two-point cross-correlation function. The
factor of 1/2 in front of the auto-correlation terms is to avoid the double count of auto-pairs. Since nall = nred+nblue,
the above identity reduces to

n2
allξall = n2

blueξblue + n2
redξred + 2nbluenredξcross. (A2)

The same relation holds for projected correlation functions wp. Equation (A2) shows that the red-blue cross-correlation
function can be derived from the three auto-correlation functions.
As a test of this relation, we predicted the red-blue cross-correlation function based on the measured all-all, red-red,

and blue-blue auto-correlation functions for the −20 < Mr < −19 volume-limited galaxy sample. The prediction
agrees essentially perfectly with the measured cross-correlation function shown in Figure 15, with deviations much
smaller than the 1σ error bars.

http://www.sdss.org/
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TABLE B6
Projected Correlation Function Measurements of Magnitude Bins Samples

rp -23 – -22 -22 – -21 -21 – -20 -20 – -19 -19 – -18 -18 – -17

0.17 2307 (510) 536.1 (25.4) 297.9 (9.9) 269.0 (18.3) 268.4 (46.7) 211.6 (64.7)
0.27 1200 (208) 359.0 (12.4) 231.5 (7.8) 208.7 (16.3) 212.1 (37.0) 203.9 (67.3)
0.42 713.4 (100.0) 238.6 (6.5) 166.4 (6.6) 152.2 (13.1) 153.7 (31.0) 158.1 (58.7)
0.67 527.2 (62.0) 148.7 (4.8) 117.2 (5.4) 108.8 (11.2) 109.8 (22.1) 114.4 (46.8)
1.1 274.1 (25.6) 99.1 (3.2) 79.3 (4.3) 73.1 (7.9) 75.1 (18.0) 79.4 (34.1)
1.7 155.6 (15.4) 65.6 (2.2) 55.8 (3.6) 48.5 (6.8) 47.1 (12.0) 53.0 (20.8)
2.7 109.7 (10.7) 47.2 (2.0) 40.4 (3.3) 33.8 (5.2) 31.4 (7.6) 36.7 (13.9)
4.2 92.0 (5.9) 34.0 (1.8) 29.3 (3.1) 24.2 (4.0) 18.0 (4.0) 21.7 (9.9)
6.7 56.1 (3.8) 23.6 (1.5) 20.9 (2.7) 16.2 (3.3) 9.43 (2.50) 12.9 (6.2)
10.6 33.2 (3.1) 14.9 (1.3) 13.9 (2.0) 9.94 (2.03) 5.95 (1.68) 2.43 (3.10)
16.9 19.4 (2.3) 8.30 (0.92) 7.87 (1.32) 5.00 (1.53) 3.73 (1.31) 0.23 (3.04)
26.8 10.3 (1.7) 4.08 (0.72) 4.59 (1.09) 2.47 (1.68) 1.82 (1.11) -0.93 (1.71)
42.3 5.21 (1.26) 2.68 (0.54) 3.40 (0.85) 1.11 (1.28) 0.23 (1.15) -4.89 (1.85)

Note. — The first column provides the pair-weighted projected separation of the bin.
Subsequent columns provide the projected correlation function values, wp(rp), for the volume-
limited samples corresponding to the specified absolute magnitude Mr bins. The diagonal
terms of the error covariance matrices are given in parentheses.

There is thus, in theory, no new information provided by the cross-correlation function, when one has measured
the three individual auto-correlation functions. In practice, the relation in equation (A2) and that for projected two-
point correlation functions can be used for a consistency check. Furthermore, for understanding the mixture among
different galaxy populations, the cross-correlation function is more readily interpreted than the consistency relation
itself. For example, segregation of “red” and “blue” halos would produce a distinctive suppression of the 1-halo term
of the cross-correlation function, while its effect on the auto-correlation functions (boosting the red and blue auto-
correlations relative to the all auto-correlation) might be difficult to disentangle from changes in satellite occupation
slopes, concentration parameters, and so forth.

A.2 The Relation Between the Cross-correlation Function and the Geometric Mean of the Auto-correlation Functions

The two-point cross-correlation function of two populations (e.g., red and blue galaxies we study here) is often
compared to the geometric mean of the two-point auto-correlation functions to infer the information about the mixing
of the the two populations. On large scales, where the two-halo term dominates the correlation functions, the cross-
correlation function is guaranteed to be the geometric mean of the auto-correlation functions.17 On small scales, where
the one-halo term dominates, it is not obvious what we can infer if there are deviations of the cross-correlation function
from the geometric mean. We show here that the situation becomes even less clear for projected correlation functions.
As an example, consider the two-point auto-correlation functions of red and blue galaxies, ξred and ξblue, and their

cross-correlation function ξcross. Under the assumption that these correlation functions are positive, we have
(
∫

√

ξred(rp, π)ξblue(rp, π)dπ

)2

≤
∫

ξred(rp, π)dπ

∫

ξblue(rp, π)dπ (A3)

from the Cauchy-Schwartz inequality. Even if we had ξcross =
√
ξredξblue on all scales, the above inequality would

mean that the projected correlation functions satisfy

wp,cross ≤
√
wp,redwp,blue. (A4)

The equality only holds for the case where both galaxy populations trace the same dark matter distribution and ξred
and ξblue are parallel to each other, which is true on large scales but not on small scales.

B. CORRELATION FUNCTION MEASUREMENTS

The following tables present the projected correlation function values that are used in this work, together with the
diagonal error bars on the measurements. Table B6 and Table B7 present the measurements from the volume-limited
luminosity samples described in § 3. The tables include the projected correlation functions measured for the samples
defined by magnitude bin and thresholds, respectively. Table B8 and Table B9 present the measurements for the blue
and red subsamples, respectively, analyzed in § 4. The full error covariance matrices, obtained from the jackknife
resampling, are available upon request.

17 This statement relies on the fact that the host halo populations are tracing the same dark matter distribution. One can construct a
physically absurd but mathematically acceptable model with zero cross-correlation by superposing the halo populations of two independent
N-body simulations in a single cube, populating one with red galaxies and the other with blue.
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TABLE B7
Projected Correlation Function Measurements of Magnitude Threshold Samples

rp -22.0 -21.5 -21.0 -20.5 -20.0 -19.5 -19.0 -18.5 -18.0

0.17 2615 (491) 1028 (68) 586.2 (19.5) 455.7 (11.3) 366.1 (9.3) 307.0 (9.2) 322.5 (17.0) 313.3 (25.9) 294.3 (34.7)
0.27 1189 (202) 731.7 (34.0) 402.9 (11.7) 296.9 (6.9) 264.3 (7.6) 228.5 (8.3) 231.1 (15.3) 230.2 (24.9) 221.5 (32.1)
0.42 728.0 (96.3) 392.6 (17.1) 258.7 (6.7) 197.0 (5.1) 184.0 (6.6) 159.3 (7.2) 162.4 (12.8) 165.4 (21.1) 161.4 (27.6)
0.67 491.4 (55.3) 228.6 (10.9) 163.2 (4.7) 134.1 (4.1) 128.6 (5.5) 110.4 (5.6) 114.6 (10.3) 118.3 (17.5) 114.7 (22.0)
1.1 272.8 (23.2) 144.6 (6.4) 105.5 (3.0) 89.4 (3.3) 84.7 (4.3) 72.9 (4.2) 75.5 (7.7) 79.7 (13.2) 75.5 (16.5)
1.7 154.4 (14.5) 94.3 (3.7) 68.9 (2.2) 61.1 (2.6) 59.4 (3.6) 49.8 (3.4) 50.6 (6.0) 53.8 (10.5) 48.6 (11.5)
2.7 111.5 (10.4) 70.5 (2.7) 50.2 (2.1) 44.0 (2.3) 42.9 (3.3) 34.6 (2.9) 35.0 (4.7) 37.4 (7.8) 32.4 (7.7)
4.2 94.5 (5.6) 48.6 (2.3) 35.5 (1.8) 31.2 (2.0) 30.9 (3.1) 24.6 (2.5) 24.2 (3.6) 25.9 (5.8) 19.7 (4.4)
6.7 56.8 (3.8) 33.1 (1.8) 24.5 (1.6) 21.3 (1.8) 21.9 (2.7) 16.7 (2.4) 15.3 (2.9) 17.4 (4.5) 10.8 (2.8)
10.6 35.1 (3.2) 20.9 (1.5) 15.3 (1.3) 13.7 (1.5) 14.6 (2.1) 10.7 (1.9) 9.20 (1.78) 10.6 (2.6) 6.35 (1.93)
16.9 22.0 (2.2) 11.6 (1.2) 8.54 (0.94) 7.65 (1.07) 8.24 (1.32) 5.73 (1.28) 4.11 (1.29) 5.31 (1.42) 3.62 (1.34)
26.8 11.4 (1.6) 6.04 (0.95) 4.11 (0.71) 4.09 (0.88) 4.88 (1.06) 2.82 (1.13) 1.81 (1.39) 3.56 (1.76) 2.14 (1.23)
42.3 5.89 (1.21) 3.28 (0.64) 2.73 (0.54) 3.21 (0.70) 3.58 (0.85) 1.39 (0.91) 0.72 (1.24) 0.96 (1.02) 0.56 (1.26)

Note. — The first column provides the pair-weighted projected separation of the bin. Subsequent columns provide the projected
correlation function values, wp(rp), for the volume-limited samples corresponding to the specified absolute magnitude Mmax

r thresholds.
The diagonal terms of the error covariance matrices are given in parentheses.

TABLE B8
Projected Correlation Function Measurements of Blue Galaxy Samples

Corresponding to Magnitude Bins

rp -23 – -22 -22 – -21 -21 – -20 -20 – -19 -19 – -18 -18 – -17

0.17 273.8 (40.0) 131.7 (8.0) 108.4 (8.5) 87.6 (8.5) 59.2 (10.8)
0.27 160.2 (19.6) 101.1 (5.4) 89.7 (6.9) 72.1 (6.6) 78.2 (11.7)
0.42 132.5 (11.6) 80.3 (3.9) 64.8 (4.4) 52.1 (6.9) 60.9 (10.1)
0.67 111.6 (350.0) 77.7 (7.0) 58.1 (3.0) 48.8 (4.1) 44.9 (4.7) 46.2 (9.6)
1.1 164.5 (129.8) 66.4 (4.4) 45.3 (2.3) 37.9 (2.8) 34.1 (4.8) 40.3 (8.1)
1.7 55.6 (62.6) 47.0 (2.5) 37.2 (2.0) 27.9 (2.9) 24.6 (3.6) 31.5 (8.5)
2.7 20.9 (36.9) 28.7 (1.9) 27.9 (1.8) 20.1 (2.5) 18.0 (2.9) 25.2 (8.5)
4.2 98.9 (32.8) 23.8 (1.6) 20.7 (1.7) 16.1 (2.2) 11.8 (2.0) 17.9 (7.5)
6.7 56.9 (16.8) 15.6 (1.1) 14.5 (1.6) 11.1 (1.9) 7.26 (1.74) 10.6 (4.7)
10.6 32.7 (13.8) 10.6 (1.0) 10.4 (1.4) 7.17 (1.40) 4.27 (1.20) 1.95 (2.50)
16.9 25.6 (8.4) 6.08 (0.79) 6.33 (1.09) 3.75 (1.15) 2.87 (0.93) -1.01 (2.12)
26.8 15.7 (7.1) 3.41 (0.61) 3.77 (0.84) 1.57 (0.96) 1.26 (0.70) -0.68 (1.27)
42.3 13.6 (4.0) 2.07 (0.51) 2.95 (0.68) 0.33 (0.71) 0.15 (0.72) -3.64 (1.15)

Note. — The first column provides the pair-weighted projected separation of the bin.
The subsequent columns provide the projected correlation function values, wp(rp), for the
blue galaxy samples corresponding to the specified absolute magnitude Mr bins. The diag-
onal terms of the error covariance matrices are given in parentheses.

TABLE B9
Projected Correlation Function Measurements of Red Galaxy Samples Corresponding

to Magnitude Bins

rp -23 – -22 -22 – -21 -21 – -20 -20 – -19 -19 – -18 -18 – -17

0.17 3158 (1061) 821.7 (45.5) 570.9 (24.4) 724.0 (63.0) 1623 (311) 3182 (1439)
0.27 1300 (268) 542.0 (24.1) 433.1 (17.5) 570.7 (51.3) 1197 (252) 2839 (1437)
0.42 875.7 (135.5) 339.6 (12.3) 305.1 (14.7) 390.7 (39.3) 852.6 (203.1) 2034 (1218)
0.67 633.7 (82.3) 201.7 (7.8) 206.5 (11.4) 257.5 (31.9) 525.5.9 (138.8) 1329 (909)
1.1 350.4 (35.0) 132.4 (5.1) 125.8 (8.6) 157.1 (21.2) 313.6 (106.9) 749.7 (592.2)
1.7 164.3 (18.4) 83.4 (3.5) 82.0 (6.8) 95.0 (17.3) 165.2 (61.3) 385.6 (296.9)
2.7 127.3 (13.1) 60.3 (2.9) 56.8 (5.5) 61.3 (12.0) 91.6 (29.4) 166.3 (106.1)
4.2 107.0 (7.5) 42.2 (2.6) 39.6 (4.8) 39.3 (8.2) 42.1 (11.5) 33.4 (22.9)
6. 61.3 (4.2) 29.2 (2.2) 28.0 (4.1) 25.1 (6.1) 14.5 (6.3) 15.8 (18.5)

10.6 35.6 (3.5) 18.2 (1.7) 17.8 (2.9) 14.1 (3.3) 9.93 (3.82) -4.73 (7.73)
16.9 20.7 (2.5) 9.74 (1.21) 9.30 (1.68) 6.97 (2.42) 6.43 (3.32) 14.5 (15.0)
26.8 10.2 (1.8) 4.68 (0.92) 5.47 (1.48) 4.23 (3.20) 2.99 (3.01) -5.02 (7.43)
42.4 4.69 (1.18) 3.22 (0.68) 3.85 (1.08) 2.53 (2.40) 0.29 (3.04) -15.6 (9.6)

Note. — The first column provides the pair-weighted projected separation of the bin. The
subsequent columns provide the projected correlation function values, wp(rp), for the red galaxy
samples corresponding to the specified absolute magnitude Mr bins. The diagonal terms of the
error covariance matrices are given in parentheses.
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