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ABSTRACT

We examine the correlation function ξ of the Sloan Digital Sky Survey (SDSS) Lu-

minous Red Galaxy sample (LRG) at large scales (60 < s < 400 h−1Mpc) using the final

data release (DR7). Focusing on a quasi volume-limited (0.16 < z < 0.36) subsample

and utilizing mock galaxy catalogs, we demonstrate that the observed baryonic acoustic

peak and larger scale signal are consistent with ΛCDM at 70− 95% confidence. Fitting

data to a non-linear, redshift-space, template based-model, we constrain the peak posi-

tion at sp=101.7± 3.0 h−1Mpc when fitting the range 60 < s < 150 h−1Mpc (1σ uncer-

tainties). This redshift-space distance sp is related to the comoving sound horizon scale

rs after taking into account matter clustering non-linearities, redshift distortions and

galaxy clustering bias. Mock catalogs show that the probability that a DR7-sized sample

would not have an identifiable peak is at least ∼ 10%. As a consistency check of a fiducial

cosmology, we use the observed sp to obtain the distance DV ≡ [(1 + z)2D2
Acz/H(z)]
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relative to the acoustic scale. We find rs/DV (z = 0.278) =0.1389± 0.0043. This re-

sult is in excellent agreement with Percival et al. (2009), who examine roughly the

same data set, but use the power spectrum. Comparison with other determinations

in the literature are also in very good agreement. The signal of the full sample at

125 < s < 200 h−1Mpc tends to be high relative to theoretical expectations; this slight

deviation can probably be attributed to sample variance. We have tested our results

against a battery of possible systematic effects, finding all effects are smaller than our

estimated sample variance.

Subject headings: cosmology: observation, large-scale structure of universe, distance

scale, galaxies: elliptical and lenticular, cD

1. Introduction

The large scale clustering of matter is a critical test of any cosmological model. An interesting

feature in the auto-correlation-function ξ is the baryonic acoustic peak, a residual from plasma

sound-waves that came to a near stop at the end of the baryon drag epoch (zd ∼ 1010). The baryonic

acoustic signature is strongly imprinted in the Cosmic Microwave Background (CMB) temperature

fluctuations and observations determine its physical size to high precision (< 1.3%; Spergel et al.

2003). Predicted to appear in galaxy clustering measurements, the baryonic acoustic feature can in

principle provide determination of cosmic distances with very small statistical uncertainties (< 1%;

Seo & Eisenstein 2007).

The feature in the galaxy ξ was first measured by Eisenstein et al. (2005) using Luminous Red

Galaxies (LRG) from the Sloan Digital Sky Survey (SDSS; York et al. 2000). Using ∼ 47, 000 LRGs

from the third data release (DR3), they determined the distance to z ∼ 0.35 at 5% accuracy and

constrained cosmological parameters. Similar measurements using later data releases detected a

peak, but as we discuss below, a broader one (Cabré & Gaztañaga 2009; Martinez et al. 2008; Labini

et al. 2009; Sanchez et al. 2009). This apparent peculiarity may raise concerns about the utility

of the baryonic acoustic peak in distance determination and the consistency of ΛCDM models in

large-scale galaxy clustering.

Padmanabhan et al. (2007) (DR3; Abazajian et al. 2005) and Blake et al. (2007) (DR4; Adelman-

McCarthy et al. 2006) showed in their photo-z analysis of the power spectrum of the LRGs a hint

of excess power at large scales. Blake et al. (2007) suggest a few possible causes for this excess
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power: residual systematic errors, cosmic variance, large-scale galaxy biasing mechanisms, and new

early Universe physics. Cabré & Gaztañaga (2009) used Data Release 6 (DR6; Adelman-McCarthy

& Sloan Digital Sky Survey 2008; ∼ 75, 000 LRGs, ∼ 1 h−3Gpc3 in comoving-volume) to probe for

possible systematics in data analysis, showing that the strong large-scale signal at s > 130 h−1Mpc

is persistent for various choices of weighting schemes and galaxy sample selection. Martinez et al.

(2008) confirmed this stable, but wider baryonic acoustic feature in DR7 (Abazajian & Sloan

Digital Sky Survey 2009). ΛCDM models predict a ξ that crosses over from positive correlations

to negative correlations at scales of rc ∼ 140 h−1Mpc (Peebles 1980, Gabrielli et al. 2002). Labini

et al. (2009) reanalyzed DR7, pointing out that there was no obvious cross-over to anti-correlations

at this scale.

Other studies that investigate large-scale clustering and the baryonic acoustic feature of the

SDSS LRGs and the 2dF Galaxy Redshift Survey (Colless et al. 2003) include Cole et al. (2005),

Tegmark et al. (2006), Hütsi (2006), Percival et al. (2007), Sanchez et al. (2009), Percival et al.

(2009), and Reid et al. (2009).

The purpose of this study is to measure the LRG two-point correlation function on large scales,

compare it with the predictions of a ΛCDM model, and derive constraints on the baryon acoustic

oscillation scale. We obtain precise uncertainty estimates on ξ by using a large suite of mock

catalogs drawn from N-body simulations. In the course of our study, we examine the differences

in ξ at large scales among the different SDSS data releases; we show that the differences between

the DR3 and DR7 (the latter contains ∼ 105, 000 LRGs, ∼ 1.6 h−3Gpc3) results do not arise from

known systematics in the data analysis. Further, focusing on a quasi volume-limited subsample

we demonstrate that the stronger large-scale signal in the final data release is consistent with

the ΛCDM framework. We also analyze the position of the baryonic acoustic feature, explaining

systematics, and relate our measurement to the cosmic distance DV (Equation 8).

In §2 we discuss the SDSS data set. In §3 we explain our methods and mock catalogs. In §4.1
we show that we can reproduce results from Eisenstein et al. (2005) while sampling a similar DR3

sample. In §4.2 and §4.3 we apply the same technique to calculate the large-scale ξ of DR7 volume

limited subsamples and compare to LRG mock catalogs. In §4.2 we also investigate the chances of

identifying a baryon acoustic peak in an SDSS-sized sample. In §4.4 we test the robustness of the

baryonic acoustic feature and large-scale signal in ξ to systematic errors in calibration, suggesting

that SDSS photometric calibration errors should not affect the final results. In §4.5 we determine

the location of the peak of the baryonic acoustic feature, and its uncertainty. In §4.6 we use the

peak position to determine the ratio between the acoustic scale at the drag epoch rs to an effective

distance DV at redshift of z = 0.278. In the appendices we discuss technical aspects of the selection

function, systematic uncertainties and correlation estimators.

In the following, unless otherwise indicated, all calculations assume a flat ΛCDM model with
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present day matter density ΩM0 = 0.25 and a present Hubble expansion rate H0 = 100h km s−1

Mpc−1. When running mock simulations h = 0.7, but otherwise h = 1 when converting redshifts

to comoving distances. When analyzing the DR3 we use the same cosmology as Eisenstein et al.

(2005), ΩM0 = 0.3.

2. Data

The SDSS is the largest volume LRG survey to date, having imaged the sky at high Galactic

latitude in five passbands u, g, r, i and z (Fukugita et al. 1996, Gunn et al. 1998) using a 2.5m

telescope (Gunn et al. 2006). The images are processed (Lupton et al. 2001, Stoughton et al. 2002,

Pier et al. 2003, Ivezić et al. 2004) and calibrated (Hogg et al. 2001, Smith et al. 2002, Tucker

et al. 2006), allowing selection of galaxies, quasars (Richards et al. 2002) and stars for spectroscopy

(Eisenstein et al. 2001; Strauss et al. 2002) with twin fiber fed double spectographs. Targets are

assigned to plug plates according to a tiling algorithm ensuring nearly complete samples (Blanton

et al. 2003).

The SDSS LRG sample developed by Eisenstein et al. (2001) serves as a good tracer of matter

as they are associated with massive halos. The LRG’s high luminosity enables us to obtain a large

volume, and their spectral uniformity make them relatively easy to identify.

The SDSS LRG sample covers 19% of the sky (distribution is shown in Figure 1). The sample

includes a large quasi-volume-limited region to a redshift of z ∼ 0.36, and is flux-limited thereafter

extending to z ∼ 0.47. The peak at z ∼ 0.36 is associated with the passage of the 4000Å break

into the r-band.

From the full sample DR7-Full (0.16 < z < 0.47, −23.2 < Mg < −21.2) we subsample for two

main purposes: comparison with previous studies, focus on volume-limited regions.

To avoid the effects of the flux limited region, we focus much of our analysis on subsamples of DR7

similar to those chosen by Zehavi et al. (2005). DR7-Dim (0.16 < z < 0.36, −23.2 < Mg < −21.2)

is produced by subsampling DR7-Full at z 6 0.36. This quasi-volume-limited subsample is not a

dimmer sample than DR7-Full, but rather is called “Dim” as a moniker to distinguish from the

overlapping brighter subsample DR7-Bright (0.16 < z < 0.44, −23.2 < Mg < −22.8). We also

include results for another volume limited subsample DR7-Bright2, which is a brighter subsample

of DR7-Dim (0.16 < z < 0.36, −22.6 < Mg < −21.6).

All subsamples are summarized in Table 1. In addition to various cuts in redshift and absolute

magnitude Mg, we also analyze a sample limited to the earlier release DR3 analyzed by Eisenstein

et al. (2005).
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Figure 2 shows the comoving number density as a function of redshift n(z) for each sample. DR7-

Full (black) is the full sample, from which we subsample DR3 (cyan). DR3 covers only the sky area

of DR7-Full which was also covered by DR3. For most calculations in DR3 we apply the fiducial

cosmology chosen by Eisenstein et al. (2005). It yields a similar (but noisier) n(z) and comoving

volume density to the DR7-Full, differing somewhat due to the different cosmologies (flat ΛCDM,

with ΩM0 = 0.25 in DR7 and ΩM0 = 0.3 in DR3). Our subsample agrees in detail with Eisenstein

et al. (2005) with only < 350 mismatches out of ∼ 47, 000 galaxies (0.7%). For a more thorough

discussion of LRG selection please see Appendix A.1. The figure also displays the radial selection

function n(z) of subsamples DR7-Dim (green), DR7-Bright (blue) and DR7-Bright2 (red).

In Appendix A.2 we show, using mock catalogs, that features in n(z) up to z < 0.36 cause a

negligible change in the ξ noise properties of the sample relative to a volume-limited one.

For reasons described in §3.2 we only use the Northern Galactic Cap for subsamples DR7-Dim

and DR7-Bright. For DR7-Full we make use of both caps, as in DR3. As explained in Appendix

B.3, we verified that the resulting ξ does not change when excluding the Southern Galactic Cap

region.

A physical constraint when obtaining spectra, known as fiber-collisions, is dealt with here when

analyzing the data. Due to the physical size of the fibers of the spectrometer, one can not obtain

spectra simultaneously of two targeted objects that reside within 55′′ of each other. We count

∼ 2% of targeted LRGs were missed due to fiber-collisions. To account for this we up-weight LRGs

with spectra which are within 55′′ proximity of LRGs without. For more details of our method for

fiber-collision correction, its impact on ξ, as well as accounting for holes and boundary effects of

the survey, please refer to Appendix A.1.

All data used in this study may be obtained on the World Wide Web.2

3. Method

3.1. Clustering Estimator and Random Points

To measure the two-point correlation function we use the Landy & Szalay (1993) estimator:

ξ(s) =
DD(s) − 2DR(s) + RR(s)

RR(s)
, (1)

2http://cosmo.nyu.edu/∼eak306/SDSS-LRG.html
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which compares the normalized number of data pair counts to randomly distributed points. The

quantity s refers to the mean redshift space separation for each bin. If we define r to be the ratio of

the number of random points to data and NDD(s) to be the total number of galaxy pairs separated

by values (s − ds/2, s + ds/2] (where ds is the width of the bin), then the normalized number of

pairs are DD = NDDr2, DR = NDRr, and RR = NRR. Here, DR and RR stand for data-random

and random-random pairs, respectively. The random points account for the effects introduced by

survey boundary, holes within the data set, and sector incompleteness.

Additionally, in our counting of pairs, we apply weights to each galaxy. Appendices A and B.2

discuss the details of distributing the random points and the pair-count weighting. In Appendix

B.3, we also compare this estimator to other known methods, showing excellent agreement with

the method proposed by Hamilton (1993) on large scales, and substantial differences with those

proposed by Davis & Peebles (1983) and Peebles & Hauser (1974).

3.2. LRG Mock Catalogs

We use mock galaxy catalogs produced from the LasDamas simulations (McBride et al. 2009;

in prep) to measure the uncertainty covariance matrix, as well as to investigate systematic errors

in the two-point-correlation estimators. These mock catalogs provide 160 light-cone redshift-space

realizations of an SDSS-sized volume, with appropriate number densities and clustering properties

for comparison to the observed data.

The LasDamas simulations are designed to model the clustering of SDSS DR7 in a wide luminosity

range. In this suite of simulations galaxies are artificially placed in dark matter halos specifically

using the formalism of the halo occupation distribution (HOD; Berlind & Weinberg 2002) with

parameters chosen to match an observational SDSS sample. For complete details see McBride et

al. (2009, in prep.); for distribution visit the World Wide Web.3

We use the “gamma” release of mock LRG catalogs produced from simulations. The Oriana

simulation consists of 40 N -body dark matter simulations; each realization contains 12803 particles

of mass 45.73×1010h−1M� in a box of length 2400 h−1Mpc. The softening parameter is 53h−1kpc.

The simulations assume a flat ΛCDM cosmology with total matter density ΩM0 = 0.25, baryon

density Ωb0 = 0.04, Hubble expansion rate H0 = 70 km s−1Mpc−1, σ8 = 0.8, and spectral index

ns = 1. The HOD parameters are adjusted to reproduce the observed number density as well as

the projected two-point-correlation function wp(rp) at projected separations 0.3 < rp < 30 h−1Mpc,

well below the scales we consider here. The choice of HOD affects the resulting ξ(s) shape on small

3http://lss.phy.vanderbilt.edu/lasdamas/
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scales, but on large scales the HOD choice primarily affects the amplitude as expected from local

galaxy bias arguments (Fry & Gaztanaga 1993; Coles 1993; Scherrer & Weinberg 1998; Narayanan

et al. 2000).

The LasDamas team has divided the sky into two alternative footprints: one can use either the

SDSS Northern Galactic and Southern Galactic Caps together, or only the Northern. We use the

latter option because in that case each simulation produces four samples (as opposed to two in the

former) resulting in twice as many realizations. In summary, we analyze 40 × 4 = 160 LasDamas

mock catalogs for each of the luminosity subsamples DR7-Bright and DR7-Dim. We note that the

angular distribution of galaxies in these mocks is similar to the angular distribution of the data,

aside from the observational incompleteness. In Appendix A.1 we explain how we account for the

incompleteness within the observational data.

Our only manipulation of the catalogs provided by McBride et al. (2009; in prep) is in the radial

direction, where we randomly subsample to match the SDSS comoving volume density n(z), to

better represent the Poisson noise. This subsampling reduces the number of LRGs in DR7-Dim by

15% and in DR7-Bright by 7%. In Appendix A.2 we show that this subsampling does not noticeably

affect either ξ or its uncertainties. For more details regarding the radial selection function, please

refer to that Appendix.

3.3. Covariance Matrix and χ2 Fitting

In our analysis we use the standard χ2 fitting algorithm based on a covariance matrix, which is

constructed from the LasDamas mock realizations.

Because the uncertainties in the ξ values for the bins are interdependent, we build a covariance

matrix Cij to measure the dependence of the ith bin on the jth. We construct Cij from the individual

mock realizations as follows:

Cij =
1

Nmocks − 1
·

Nmocks
∑

k=1

(

ξi − ξk
i

)(

ξj − ξk
j

)

, (2)

where ξm is the correlation value for the mth bin of the mock mean and ξk
m is the same for the kth

mock realization. In all calculations here, Nmocks = 160.

We can then estimate χ2 for our observational result ξobs relative to models ξmodel using:

χ2(~θ) =

Ns
∑

i,j=1

(

ξobs
i − ξmodel

i (~θ)
)

C−1
ij

(

ξobs
j − ξmodel

j (~θ)
)

, (3)

where ~θ are parameters of the model, and Ns is the number of separation bins used.
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4. Results

Here we present our results and analysis of the redshift space angle-averaged ξ(s) of the SDSS

LRGs in two releases: DR3 and DR7. In §4.1 we show that we can reproduce the DR3 LRG

selection as well as the ξ(s) results of Eisenstein et al. (2005). Differences between DR3 and DR7

are, therefore, not due to systematic differences in our analysis from that of Eisenstein et al. (2005).

In §4.2 we use mock catalogs to show that the large scale clustering of DR7 LRGs is consistent with

the concordance ΛCDM model at the 70−95% confidence level. Furthermore, in §4.3, we investigate

a bright subsample, which has a strong large-scale signal relative to our ΛCDM predictions, not

seen in the other subsamples. In §4.4, we investigate a possible observational bias, and show the

robustness of the baryonic acoustic feature and large-scale clustering to this effect. In §4.5 we

measure the peak position of the baryonic acoustic feature. We use this last measurement in §4.6
to determine the ratio rs/DV and compare results to other studies.

4.1. Reproducing the DR3 ξ(s)

To demonstrate consistency with previous studies, we first compare our analysis of an earlier data

release, DR3, with that of Eisenstein et al. (2005). For this analysis we create a DR3 LRG sample

with the same criteria used by Eisenstein et al. (2005), and a corresponding random sample. In

this subsection we assume ΩM0 = 0.3 in calculations.

In Figure 3 we reproduce the redshift-space ξ of the SDSS LRGs first measured by Eisenstein et al.

(2005). There is good agreement between our results (green diamonds) and theirs (red crosses).

To investigate the minute remaining differences, we also test using their random catalogs with our

data set and vice-versa. We conclude that the remaining subtle variations are due to Poisson noise

in the random catalogs. As previously presented in Eisenstein et al. (2005), we obtain a narrow

peak at an apparent separation s > 100 h−1Mpc (see §4.5 for our analysis of peak position value),

and a steep slope that flattens at ∼ 135 h−1Mpc.

The dashed lines in Figure 3 display our result for the final data release DR7 (sample DR7-Full),

which runs through the same galaxy selection algorithm and data analysis as DR3. The thick

blue dashed line uses the same cosmology as in DR3; for the thin black dashed line we alter that

cosmology to ΩM0 = 0.25, ΩΛ0 = 0.75. The binning in all cases is the same chosen by Eisenstein

et al. (2005), with the exception that for DR7 we extend the signal a bit further. In both DR7

cases the resulting position of the baryonic acoustic feature is in fair agreement (§4.5). However,

we clearly see stronger power on large scales, yielding a wider peak. In the next section we examine

the significance of this strong large-scale signal relative to our ΛCDM model predictions.
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4.2. Consistency of SDSS LRGs Clustering with ΛCDM

We test the DR7 LRG clustering against a ΛCDM model by comparing the observed ξ to those

yielded by the LasDamas mock LRG catalogs (§3.2). We run the same analysis as before on each

subsample of DR7: DR7-Dim and DR7-Bright (see Table 1 and Figure 2). We also analyze DR7-

Full, which has the disadvantage of being flux limited at z > 0.36 but can probe larger-scale modes.

We find that DR7-Dim is in clear agreement with the model used in the simulations. DR7-Bright

also has a strong signal at s > 150 h−1Mpc.

We first investigate the quasi-volume limited subsample DR7-Dim showing the SDSS results

compared to the 160 LasDamas mock realizations. This subsample has a similar ξ(s) to DR7-Full

at most radii s < 145 h−1Mpc (see Figure 4 for direct comparison). Our results are presented

in Figure 5. The mock mean is indicated by the green solid line and the SDSS results are the

diamonds. The light gray shaded region represents the area containing 68.2% of the realizations

lying closest to the mean (that is, the 1σ uncertainties). The dark gray area is the same for 95.4%

(2σ uncertainties). The dotted blue lines indicate the strongest and weakest signal of all mocks at

each separation (not one realization in particular).

The observed signal is clearly within the 1–2σ significance level at all scales. To quantify the

significance of the strong signal at large scales (s > 130 h−1Mpc) we reproduce this last result to

s < 400 h−1Mpc (top inset; larger separation binning). Although the expected signal at the largest

scales is very small relative to the noise, in the top inset we include data as far out as possible

without significantly reducing pair counts due to edge effects. For a discussion regarding edge

effects, please refer to Appendix B.3.

We also show in Figure 5 a histogram of the mean correlation on large scales 〈ξ〉s=[130,400]h−1Mpc

(bottom inset; red dashed line is SDSS, green dot-dashed is the mock mean), where the brackets

denote an average over all separation bins in the indicated range. To further quantify the significance

of the large-scale signal, we measure the χ2 difference between the observed ξ and the mock mean

using Equations 2 and 3. In the last equation we limit our bins to those between 130 < s <

400 h−1Mpc. Using the 10 bins in the top inset (d.o.f= 10) we measure a normalized value of

χ2/d.o.f = 0.721. We have tried several definitions for the significance of large-scale power and all

agree that there is a 1.5σ consistency with respect to the ΛCDM plus HOD model used here.

Figure 6 shows several hand-picked mock realizations to demonstrate the effects of variance. We

caution the reader to avoid interpreting these particular realizations as “typical”. Instead, we have

chosen them to demonstrate the variety of signals that could be reasonably expected from a survey

the size of SDSS DR7-Dim. Whereas some realizations (e.g., green-dotted and red-solid lines) have

a similar clustering signal to that observed (symbols), others do not show evidence of the baryonic

acoustic feature (e.g. the orange dashed and cyan dot-dashed lines).
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Visually examining at all 160 DR7-Dim realizations, we find that at least 17 (∼ 10%) of the

mocks have no peak at the expected s ∼ 100 h−1Mpc. We examine ξ results and define a peak-less

realization as one with no sign of a peak within 95 < s < 120 h−1Mpc. We took a liberal approach,

so this result should be considered a lower bound; i.e realizations with subtle peaks were counted

as having a peak. If we ask how many of the mocks have very clear signs of a peak, we find about

75 out of the 160 do. This designation is subjective, of course. It is also difficult to compare these

numbers with theoretical expectations, e.g. using random Gaussian field statistics is not enough

as weak peaks in the Gaussian case (corresponding to the linear density field) are washed out by

nonlinear motions.

To verify the fraction of feature-less realizations, we also checked the mock realizations in another

independent mock LRG catalog. In the Horizon-Run mock catalog (Kim et al. 2009), LRG positions

are determined by identifying physically self bound dark matter sub-halos that are not tidally

disrupted by larger structures. After adjusting their mock galaxy catalogs to fit the SDSS radial

function n(z), we ran the same analysis as for LasDamas and found that, of their 32 realizations, 5

showed no sign of the baryonic acoustic feature, comparable to the result obtained with LasDamas

mock catalogs.

4.3. Bright Subsample DR7-Bright

Figure 4 also shows that the correlation function of DR7-Full (dashed line) is stronger than

DR7-Dim (green diamonds) at scales of 150 < s < 200 h−1Mpc. To help understand the difference

between these samples we examine another subsample, DR7-Bright.

The correlation function ξ of the brighter volume limited sample, DR7-Bright (blue crosses),

is stronger on all scales than DR7-Full and DR7-Dim, which is expected, as bias is known to be

a function of luminosity (see e.g. Zehavi et al. 2005). For example, Figure 7 shows the relative

redshift-space bias ratios, defined as

b ≡
√

ξDR7−Bright/ξDR7−Dim, (4)

showing that DR7-Bright is biased by a factor of 1.14 on most scales relative to DR7-Dim, in

agreement with the mock catalogs (by design, of course, at scales rp < 30 h−1Mpc). The gray

bands show one and two σ distributions of the mock results when relating each of the DR7-Bright

samples to the same realization DR7-Dim mock sample. The dotted lines are the outermost values

for each bin. According to these uncertainties, the relative bias of DR7-Bright is significantly

stronger (by at least 2σ) than DR7-Dim up to s ∼ 40 h−1Mpc.

As discussed in §4.5, Figure 4 shows good agreement in the baryonic acoustic peak position
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among the DR7-Full and DR7-Dim. However, the relative strengths of the large-scale signal is

worth investigating. Figure 8 is similar to Figure 5 for DR7-Bright. The figure and its insets show

that its signal is significantly stronger than the mock values on scales s > 130 h−1Mpc.

The bottom inset of Figure 8 is the histogram of 〈ξ〉s=[130,500]h−1Mpc for the mocks, compared to

the SDSS value (red vertical dashed line). We perform the same χ2 comparison as in DR7-Dim,

but this time for scales up to 500 h−1Mpc (see Appendix B.3 for a justification of the larger scale).

This test yields χ2/d.o.f = 2.5 for 11 degrees of freedom (separation bins of top inset), showing an

unlikely fit with the model used here.

We note that this result does not rule out all possible ΛCDM and HOD models, because we have

compared to only one choice of parameters designed to fit statistics on smaller scales (see §3.2 for

details).

We also split DR7-Bright into two subsamples (as indicated in Table 1): DR7-Bright-Near

(0.16 < z < 0.36; ∼ 16, 500 LRGs) and DR7-Bright-Far (0.36 < z < 0.44; ∼ 13, 800 LRGs). Each

produce noisy results for ξ, so we can not draw concrete conclusions regarding large-scale clustering

and the baryonic acoustic feature. For example, we find, as shown in Cabré & Gaztañaga (2009),

that the distant subsample DR7-Bright-Far has no clear sign of a baryonic acoustic feature.

To examine the effect of the luminosity cuts on the strong signal in DR7-Dim in the range

120 < s < 155 h−1Mpc, we exclude the DR7-Bright-Near subsample from DR7-Dim by creating in

the same volume (0.16 < z < 0.36) a subsample including only galaxies dimmer than Mg = −21.8.

This dimmer subsample (45, 426 LRGs, −21.8 < Mg < −21.2) and DR7-Bright-Near yield low S/N

results, so we cannot conclude significant differences.

In summary, we find that the apparent strong signal is consistent with sample variance in all cases.

We conclude that, given the current measurement uncertainties, effects of potential systematics,

such as different sample redshifts, volumes or intrinsic brightness of the galaxy tracers, are sub-

dominant and not statistically significant.

4.4. Effects of Systematic Calibration Errors

Given the large scales and small signals we are probing here, we need to test whether our results

are sensitive to systematic errors in the calibrations as a function of angle. Eisenstein et al. (2001)

cautions that the number count of LRG targets is sensitive to small variations in color cuts, espe-

cially in the g and i bands. Since the SDSS targeting catalog is known to have calibration errors at

the 1% level, the true color cuts applied vary across the survey (Padmanabhan et al. 2008). Such

a variation might introduce an artificial clustering signal in our analysis.

11



To test the possible effect of these errors on ξ, we subsample the LasDamas DR7-Bright sample

in a spatially varying fashion, and analyze the correlation function of the resulting sample (using

the original, un-subsampled random catalogs). In detail, the subsampling factor varies from 95–

100% in sinusoidal waves along the declination direction with a wavelength of 10 deg. This choice

is motivated by the fact that the targeting catalog is separately calibrated in each stripe, which

spans 2.5 deg and are (very roughly) parallel to lines of constant declination.

Comparing the resulting ξ with the full mock catalogs, we find insignificant effects for individual

mock realizations and no difference when averaging over all 160. We tested this both on the full

DR7-Bright and on a subsample DR7-Bright-Far (0.36 < z < 0.44; see Table 1). Effects are

significant only when enhancing the subsampling factor amplitude from 5% to 15%, well above

the expected systematic uncertainties due to calibration. Even at this unrealistic uncertainty, the

baryonic acoustic feature is noticeable, on average, though with a weaker amplitude.

Notably, we cannot obtain the strong large-scale signal as observed in Figure 8 using any realistic

level of calibration uncertainty.

4.5. Baryonic Acoustic Peak Position

Here we measure the baryonic acoustic peak position sp. We first construct a model:

ξmodel(s) = β · ξ(α · s), (5)

where the template ξ is based on the mock mean, β represents a bias term and α represents a

change in length scale. We minimize χ2 over α and β (see Equations 2 and 3), using the observed

ξ at scales near the peak. After β and α are determined we use a spline interpolation on the (very

smooth) best-fit model to pinpoint sp. This procedure is run on the observed ξ and, as explained

below, for the individual mock realizations.

The advantage of using this approach over linear models is that clustering nonlinearities, clus-

tering bias and redshift distortions are already taken into account in the simulations, as well as the

angular mask and radial selection. A disadvantage is that we are not self-consistently altering the

cosmology for each model. However, in §4.6, when using sp to determine cosmological distances,

we expect the uncertainties in assumptions we make to be small relative to the data uncertainties.

Figure 9 displays our result for DR7-Dim using ξ = ξ160, the mock mean over all 160 realizations.

The upper left panel shows the distribution of the best-fit peak position for the mocks and the

observations. The vertical red line is the best-fit for the observations, the vertical green line is

for the mean mock catalog. The upper right panel exhibits the distribution of χ2 per degree of

freedom. The vertical red line marks the results from the observations and the histogram is that of
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75 clear-peaked mocks. The bottom left panel is the normalized covariance matrix Cij/
√

CiiCjj.

The bottom right panel compares the best-fit model ξmodel (blue solid line) to the observations

(symbols), and the red arrow points to the fit peak value.

The mean peak value for the mocks (green line on the top left panel) is smock
peak = 106.31 ± 3.19

h−1Mpc, where the 1σ uncertainties (68.2% C.L) are calculated from mock realizations only with

clear signs of a peak (about 75 out of the 160). The individual mock sp results are shown as the

histogram on the upper left panel and their normalized χ2 result in the upper right plot. We obtain

the uncertainty on the observations by scaling these uncertainties for this mock catalog distribution

by sp/s
mock
p .

Using the observed DR7-Dim sample between 60 < s < 150 h−1Mpc we find the peak to be at

sp= 101.74 ± 3.05 h−1Mpc (3%) where these 1σ uncertainties are scaled from our mock catalog

results. We caution that these uncertainties rely on the chosen fiducial cosmology of our mocks

and can potentially vary – although we expect such variations to be small within observationally

motivated ΛCDM models (see Appendix B.3 for details).

For this fit, we find χ2/d.o.f. = 1.26, where we use d.o.f.= 19 (the number of data points used

minus two fitting parameters β, α). Thus, the fit is within expectations. The bottom right panel of

Figure 9 shows a best fit that undershoots the data at all points. This appears to be a poor fit only

because one’s eye does not account for the strong covariances among the bins (see Cij in lower left

panel of Figure 9).

If we limit ourselves to the region 60 < s < 135 h−1Mpc we find sp = 105.0 ± 3.1 h−1Mpc.

Although both results are consistent, the dependence of sp on fitting range indicates that this

sample is still limited in its power to constrain sp. We also changed the lower limit to various

values between [55, 75] h−1Mpc, constraining the upper bound to 150 h−1Mpc, and find sp does

not vary more than 1.35 h−1Mpc. If the lower limit is increased to 80 h−1Mpc we obtain sp

= 100.7 ± 3.3 h−1Mpc, and increasing to 85 h−1Mpc our mechanism for detecting of the peak

position breaks down, due to not using the full dip feature around 80 h−1Mpc.

We perform the same analysis on 24 jackknife subsamples of the observed sample. They are

obtained by dividing the RA-Dec map into NJK = 24 regions with equal number of LRGs and

excluding one region, each in turn. For each jackknife subsample we calculate ξ and run it through

the peak finder algorithm to obtain spi
. The jackknife uncertainty σJK is obtained by:

σ2
JK =

NJK − 1

NJK

NJK
∑

i=1

(

spi
− sJK

p

)2
, (6)

where sJK
p is the jackknife mean. We measure σJK = 3.3 h−1Mpc. As a test, we jackknife a random

(but with an apparent strong baryonic acoustic feature) mock realization, and obtain similar results.
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A more in depth analysis of jackknife uncertainties would include testing for different values NJK

and geometries for multiple realizations. Our simple test shows jackknife uncertainties of sp similar

to that obtained by sample variance of the mocks. We trust the sample variance of sp estimated

from mock catalogs, as this is obtained by measuring a suite of realistic mocks of the full DR7-Dim

volume.

Another template we test is ξ = ξ75, the mock mean of 75 handpicked realizations with a clear

peak. ξ160, used before, yields the expected peak given a DR7-Dim size sample, where ξ75 produces

the same given a realization with a clear peak (as in the case of the observations). In Figure 10

we show the correlation functions of ξ75 (dashed bright green) and ξ160 (solid black). As expected,

both have roughly the same clustering at all scales, except that the latter has a weaker peak.

The position of the baryonic acoustic feature is nearly the same (107.01 h−1Mpc for ξ75 versus

106.31 h−1Mpc for ξ160), and they have roughly the same width. The bottom panel shows the

residual ξ75 − ξ160. When fitting each template to the data we use the same covariance matrix

constructed from all 160 realizations.

When using ξ75 we obtain for the data between 60 < s < 150 h−1Mpc sp= 102.03±2.77 h−1Mpc,

very similar to that obtained when using ξ160. The χ2/d.o.f is 1.21. This shows that the choice of

template ξ160 or ξ75 does not effect the end result in a DR7-Dim size sample.

Besides sample variance, another source of uncertainty in sp is due to random-shot noise. In

Appendix B.1 we show that choices of different random catalogs (ratio of r ∼ 15.6 random points

per data) yield slightly different sp. To reduce this effect we choose for our final results to use

r ∼ 50.

We also test the effect of dilution on sp, i.e., choosing a different cosmology when converting

redshifts to comoving distances (Padmanabhan & White 2008). In all above results we apply a flat

cosmology with ΩM0 = 0.25. When using a different value ΩM0 = 0.30 (but maintaining mocks

as before) we obtain sp = 100.40 h−1Mpc at χ2/d.o.f.= 1.05. As this result is well within the

1σ variance and systematics explained above, we conclude that the choice of cosmology does not

change our results, but may need to be considered when variance is reduced in future surveys.

We find that the ξ for the DR7-Bright subsample, in the same binning used for DR7-Dim, is quite

noisy and not useful to measure sp. Although DR7-Bright covers a larger volume than DR7-Dim,

its density is over four times lower yielding a sample with less than half the number of galaxies,

severely increasing noise in our measurement.

We applied the same algorithm (same DR7-Dim covariance matrix) on DR7-Full and DR3 and

find consistency with these results. A more in-depth analysis would involve building a new co-

variance matrix for DR7-Full, as it has a larger volume than DR7-Dim. We do not perform this

analysis, because the LasDamas mocks do not extend to that volume. DR3 has fewer LRGs than
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DR7-Dim resulting in a noisier signal, so we do not find reason to do further analysis.

4.6. Relating Peak Position sp to Cosmic Distance DV

As Bashinsky & Seljak (2004) describe, the peak position sp is closely related to rs, the physical

comoving sound-wave radius at the end of the baryon drag epoch. rs is determined to high precision

in physical units from CMB measurements (e.g., Komatsu et al. 2009), whereas we determine sp

in redshift space. Therefore, we can compare the two to measure the relationship between redshift

and distance, as proposed by Eisenstein et al. (1999).

There are three important effects we must consider in such a determination. First, the relationship

between the redshift space peak position sp and rs is sensitive to non-linear clustering, redshift

distortions and galaxy bias, the dominant effect being a broadening of the peak (Eisenstein et al.

2007b; Crocce & Scoccimarro 2008; Smith et al. 2008; Angulo et al. 2008; Seo et al. 2008; Eisenstein

et al. 2007a; Kim et al. 2009) and a dominant shift towards small scales that is below current

statistical uncertainties.

Second, the measured sp is necessarily associated with a fiducial cosmology used to interpret the

redshifts and angular positions in terms of comoving distances. The fiducial cosmology we assume

is the same concordance flat cosmology as the mocks used ([Ωfid
M0,Ω

fid
b0 , hfid] = [0.25, 0.04, 0.7]).

Technically this means that we use cosmological assumptions in two steps of our algorithm: selection

of LRGs by magnitude cuts, and converting observed redshifts to comoving distances. For more

details please refer to Appendix B.3

Third, we need to specify what “distance” we seek to measure, since the definition of cosmological

distance within the context of general relativity is not unique. The relevant distance measures in

this context are the angular diameter distance DA(z) and the Hubble constant H(z) at redshift z

(Hogg 1999). The former would be ideally constrained by measuring sp in a thin shell at radius

z, and H(z) by measuring the line-of-sight clustering (Matsubara 2004). These measurements

individually are hard to perform with the current data set (for attempts in DR6 please refer to

Okumura et al. 2008, Gaztañaga et al. 2009). Instead, we will constrain a combination of the two

following the standard approach in the literature (see Equation 8 below).

To account for the above effects, the standard interpretation of the acoustic peak in the correlation

function is as follows (with an analogous argument made for the power spectrum; Percival et al.

2007). First we assume the proportionality:

rs = γsp. (7)

Mock catalogs can be used to determine γ, as long as the assumed cosmology is not far from the

15



true one. We do so here for the LasDamas mock catalogs, whose cosmological parameters are

well-motivated from the CMB and other constraints. We calculate rfid
s (zd) = 159.75 Mpc for the

mocks using Equation 1 from Blake & Glazebrook (2003), and calculate the sound speed cs and

the end of the drag epoch zd = 1012.13 using Equations 4 and 5 from Eisenstein & Hu (1998). We

insert Θ2.7 = 2.725/2.7 as the temperature ratio of the CMB in their Equation 5. Using smock
p from

§4.5 and h = 0.7 we obtain γ = 1.052.

Second, we construct the “distance” quantity:

DV ≡
[

(1 + z)2D2
Acz/H(z)

]
1
3 . (8)

This quantity is designed in such a way that the ratio DV (〈z〉)/sp(〈z〉) is approximately indepen-

dent of the choice of the fiducial cosmological model (Eisenstein et al. 2005; Percival et al. 2007;

Padmanabhan & White 2008).

Third, we can rearrange these relationships to obtain:

DV (〈z〉)
rs

=
DV (〈z〉,fid)

γsp(〈z〉)
(9)

where sp(〈z〉) is understood to be the inferred sp from §4.5 given the fiducial cosmology. Measuring

sp thus yields the ratio of the distance at redshift 〈z〉 to the acoustic scale. Given the acoustic

scale rs in Mpc from the CMB, we then can determine the distance DV (〈z〉) to that redshift. As

Equation 8 shows, this distance measurement constrains a combination of the angular diameter

distance DA and the Hubble expansion rate H(〈z〉).

Given the results in §4.5 for DR7-Dim, we find rs/DV =0.1389± 0.0043 at 〈z〉 = 0.278, with 1σ

uncertainties of around 3%. This value is in excellent agreement with the analysis of the power

spectrum of a similar sample by Percival et al. (2009). Combining our result with the sound-horizon

rs = 153.3 Mpc obtained from WMAP5 CMB (Komatsu et al. 2009) we find DV (0.278) =1103± 43

Mpc.

Figure 11 presents our result compared with those obtained by other studies, as well as predictions

of flat ΛCDM cosmologies. Our data point is the black diamond where we choose to use the mean

sample redshift 〈z〉 = 0.278. The red and orange crosses are the values published in Percival

et al. (2009) and Percival et al. (2007): rs/DV (z = 0.2) = 0.1981 ± 0.0071, rs/DV (0.275) =

0.1390 ± 0.0037, rs/DV (0.35) = 0.1094 ± 0.0040 where the small red crosses results are indicated

in Table 3 of Percival et al. (2009). The cyan cross is rs/DV (0.35) = 0.1097 ± 0.0039 obtained

by Reid et al. (2009) when analyzing the P(k) of the reconstructed halo density field of DR7

LRGs. The blue square is the result obtained by Eisenstein et al. (2005) (DV (0.35) = 1370 ± 64

Mpc, if we use the CMB rs value as before). We also add the result obtained by Sanchez et al.

(2009) (purple triangle) who analyze the DR7 LRG ξ. Using only LRG clustering they obtain
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DV (0.35) = 1230 ± 220 Mpc. They show that when combining ξ with CMB measurements they

obtain a tighter constraint DV (0.35) = 1300 ± 31 Mpc. We plot the latter where we use rs from

CMB for plotting purposes.

Our result is in perfect agreement with that obtained by Percival et al. (2009) at z = 0.275. Please

keep in mind that both results, as well as those obtained by other above studies that analyze the

SDSS LRGs, are not independent, as we use roughly the same data set. We are encouraged,

nevertheless, that our consistency check yields a result in agreement with Percival et al. (2009).

We comment that if we use the median redshift zmed = 0.287 rather than the mean 〈z〉 we obtain

rs/DV (z = 0.287) = 0.1349 ± 0.0043 and DV (zmed) = 1136 ± 35 Mpc.

When comparing these results to cosmological predictions, we assume a flat ΛCDM, and fix ωM ≡
ΩM0h

2 = 0.1358. This constraint is motivated by its low (2.7%) uncertainty in the WMAP5 CMB

temperature measurements (Komatsu et al. 2009). DV depends both on ΩM0 and h independently,

thus its values vary. Meanwhile, rs depends on ωM (and Ωbh
2) so it is kept constant. The 1σ results

of rs/DV indicate that, constraining wM from CMB, the preferred region of the matter density lies

in the range ΩM0 = [0.25, 0.34], and h = [0.63, 0.73] in agreement with CMB and others. This is

consistent for both choices of redshift (mean or median). If we would plot median redshift result

(z = 0.287) in Figure 11 it would appear along the ΩM0 = 0.28 line. We defer a full analysis of the

cosmological implications.

Our ξ results for DR7 LRGs as well as the covariance matrix may be be obtained on the World

Wide Web.4

5. Discussion

The nature of the baryonic acoustic peak and larger scales in ξ(s) have also been discussed in

previous studies. Cabré & Gaztañaga (2009) used DR6 (77, 000 LRGs) and found a similar level of

clustering to ours and examined various possible data analysis systematic effects that might cause

the strong signal (the positive ξ at scales larger than 150 h−1Mpc). We followed similar steps with

the addition that we revisit DR3 to reproduce results from Eisenstein et al. (2005). In agreement

with Cabré & Gaztañaga (2009), we show in our Appendix B that data analysis systematics have

no significant effects on these results.

The main difference between DR3 and DR7 is the sky coverage. DR7 covers over twice as much

sky and, as opposed to the DR3, is continuous. The latter should not be an important issue due

4http://cosmo.nyu.edu/∼eak306/BAF.html
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to the fact that the random points used in the ξ estimator take into account boundary effects and

holes within the RA-Dec plane. The mock catalog tests we conduct suggest that sample variance

is a possible explanation for the difference between the large-scale signals of the two data sets.

Martinez et al. (2008) also present a wide baryonic acoustic feature and large-scale clustering in

the ξ for SDSS LRGs (DR7). It is worth noting that their definition of Mg is slightly different than

the one used here and in Eisenstein et al. (2005). Also, as described in Appendix A.1, we correct

for data angular incompleteness where they did not. Nevertheless, our DR7-Full ξ results are in

fair agreement with their DR7-LRG.

We show that sample variance affects not only the shape of the signal at large scales (hence helping

explain the broadness of the baryonic acoustic feature), but also the probability of detecting a peak:

we found that at least 10% of the mock realizations lack a baryonic acoustic signal. Nevertheless,

we show, in agreement with other studies mentioned here, that the SDSS LRG sample contains

a baryonic acoustic feature which is stable within most redshift and Mg cuts, as well as possible

observational bias. Larger surveys are underway to better measure this new holy grail for cosmic

distances. For example, the Baryon Oscillation Spectroscopic Survey (BOSS) is estimated to map

1.5 million LRGs in a much larger volume than the DR7, up to z ∼ 0.7 (Schlegel et al. 2009).

We measure the observed peak position sp to an accuracy of ∼ 3% based on a model constructed

from our mock catalogs results. The main source of this uncertainty is due to sample variance, of

the DR7-Dim subsample used. Fitting data to a redshift space, non-linear model, we also explain

sensitivity of determining the peak position to the range of data points used, as well as shot-noise.

These systematics are shown to be less than 2σ of the sample variance, but should be considered

when the latter is reduced. Our result sp is in very good agreement with that obtained by Hütsi

(2006) who analyzed the wavelength of the Baryonic Acoustic Oscillations in the power spectrum

of the SDSS LRGs of DR4.

We use our measurement of sp to determine the ratio rs/DV (§4.6). Our result agrees very well

with that obtained by Percival et al. (2009) who analyze the oscillations in the power spectrum

and quote results at a very similar redshift. Note that we use shape information in the correlation

function and do not marginalize over cosmological parameters, but rather tested consistency of one

fiducial cosmology. However, our result does not have tighter constraints than that obtained by

their study. This is at least partially due to our examination of a smaller volume (z < 0.36) to better

control systematics (which we test for). It also might be due to our mock catalog uncertainties

being larger than the lognormal approximation used in Percival et al. (2009) or a difference in the

range of scales used, among other things (see Sánchez et al. 2008 for a comparison of the relative

performance of ξ and P(k) estimates).

Regarding claims of the absence of anti-correlations at the largest scales (Labini et al. 2009;
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DR7), we point out that the mock realizations show a large variety of crossover values rc from

positive to negative correlations. In Figure 12 we show all 160 DR7-Dim mocks. Their crossover

points are indicated by short green lines, and that of the mean (white line) by the orange line

at ∼ 140 h−1Mpc. We find ∼ 6% (9) of the mocks do not crossover before 200 h−1Mpc, but this

value should not be taken too seriously as it increases with wider binning, which causes less noisy

results and fewer crossovers. A similar result was showed to us by E. Gaztañaga for DR6 mock

catalogs. The rc values (or sc as we measure in redshift space) are summarized in the histogram in

the inset, showing a wide variety of crossovers between [120, 160] h−1Mpc and even some around

80 h−1Mpc. We comment that the crossovers are defined as the first time the ξ crosses through the

zero value, and we do not account for returns to positive values. Though having different bias in

clustering in respect to matter, galaxies should have the same crossover point between correlation

and anti-correlation. We conclude that sample uncertainties still dominate our ability to perform

such a test for determining rc.

6. Summary and Conclusions

Data sets later than DR3 yield a broader baryonic acoustic peak and stronger large-scale clus-

tering signal than measured by Eisenstein et al. (2005). In this paper we have demonstrated that:

1. Differences between DR3 and DR7 results are not due to known systematic uncertainties in

data analysis. Applying the same methods in the DR7 analysis, we reproduce the same DR3

data set as Eisenstein et al. (2005) and match the same resulting ξ.

2. Large-scale clustering of DR7 results are in agreement with the ΛCDM+HOD model used

here (flat ΩM0 = 0.25). The average ξ at scales 130 < s < 400 h−1Mpc is within 70 − 95%

confidence level according to variation of mock LRG catalogs.

3. The detected baryonic acoustic peak position in DR7 seems stable within most investigated

subsamples and agrees with Eisenstein et al. (2005). When analyzing ξ results between

60 < s < 150 h−1Mpc we find the peak position to be at sp=101.7± 3.0 h−1Mpc. This result

is sensitive up to 1σ to the upper boundary of range chosen for analysis, random sample shot

noise and binning.

4. Using this last result we measure the ratio between the sound-horizon at the end of the baryon

drag epoch rs to DV (Equation 8) at rs/DV (z = 0.278) =0.1389± 0.0043 Mpc. Our result is

in excellent agreement with Percival et al. (2009), who analyzes the power spectrum of roughly

the same sample, and utilizing a different approach of analysis. Inserting rs obtained from
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WMAP5 we calculate DV (0.278) =1103± 43 h−1Mpc. Comparison with other determinations

in the literature are also in very good agreement (see Figure 11).

5. We find a lower bound of 10% of mock realizations that do not show evidence of a sign of a

baryonic acoustic feature. However, given a mock realization with a clear peak, we conclude

that we can measure its peak position value sp within 1σsp ∼ 3h−1Mpc.

6. A bright volume-limited subsample of DR7, DR7-Bright, shows a significantly stronger large-

scale-signal than predicted by our mock catalogs, which is not explained by potential system-

atics.

The differences between DR3 and DR7 in the ξ may be explained in two ways: signal variance

or observational systematics. Our analysis of the LasDamas mock catalogs show that the signal

is still dominated by noise, which yields a variety of large-scale signals, wide and narrow baryonic

acoustic peaks, as well as some featureless.

In §4.4 we test a method of how the sensitivity of LRG selection might affect the correlation

function. Although Eisenstein et al. (2001) cautions that the number count of LRG targets is

sensitive to small variations in color cuts, our test shows robustness of the large-scale clustering,

and of the baryonic acoustic feature in particular. Hogg et al. (2005) also demonstrates consistency

of the survey calibration in its different patches, by examining DR3 SDSS LRG number counts in

different regions of the sky.

Our analysis of the apparent strong large-scale signal of the DR7-Bright subsample compared to

the model used does not have the power to rule out clustering predicted by ΛCDM, as it is tested

against one cosmology, and one HOD model. As explained, the HOD parameters, were fit using only

small-scale clustering, and might not be the best choice on large scales. However, it is reassuring

that even in this case, the largest discrepancies of the data compared to our mocks are not much

larger than at the 2σ-level (in order to rule out the cosmology used, one would have to marginalize

over all possible HOD fits, which we have not done). Furthermore, a large-scale enhancement of

the two-point correlation function for a fixed cosmology may be obtained in models of primordial

non-Gaussianity with parameter fNL > 0, see e.g. Fig. 10 in Desjacques et al. (2009). It will be

interesting to follow up these issues with future surveys that will tighten uncertainties.

In summary, we show in this study that the SDSS LRG DR7 sample is consistent with ΛCDM,

and the baryonic acoustic feature is stable within its various datasets and most subsamples.
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A. Selection Functions

Here we explain the angular and radial selection functions of the SDSS LRG sample, as well as the

mock catalogs. When selecting and weighting LRGs in DR3 and DR7, we followed the procedures

described in Zehavi et al. (2005) for the most part, and explain here a few differences from that

study, none of which affect the end results.

A.1. Angular Mask

The SDSS LRGs cover roughly 20% of the sky, mostly in the Northern Galactic Cap, and partially

in the Southern (Figure 1). After an image of the sky is obtained in the u, g, r, i, z bands, objects

are targeted for a spectroscopic observation to measure their redshifts. Here we refer to targeted

quasars, Main galaxies and LRGs as targeted objects. Zehavi et al. (2005), in their appendix, discuss

reasons that some targeted objects fail to receive spectra, and their method (which is also used

in Eisenstein et al. 2005) of correcting for this small incompleteness. Please refer to their study

for definitions of “sector”, “sector completeness”, “fiber-collisions” and the polygon method with

which the complicated angular geometry is expressed in DR3 and later releases.

We choose a slightly different definition for sector completeness than Zehavi et al. (2005). We

define it as the number of targeted objects (Quasars+LRG+Main) that have obtained spectra (af-

ter fiber-collision corrections) divided by the total number of targeted objects. By “fiber-collision

corrections” in the number of targeted objects which obtained spectra, we mean that before calcu-

lating sector completeness, we up-weight objects with spectra which are within 55 ′′ of objects that

did not. For example, if we find a group of 4 objects in 55′′ proximity and three of them get spectra,

all three are fiber-collision weighted by 4/3. This up-weighting plays two roles in our algorithm:

defining sector completeness and while counting galaxy pairs.

We mentioned above our definition for sector completeness. If, for example, the only objects

which did not get spectra within a sector are due to fiber-collisions, the sector is considered fully

complete. A rare peculiarity occurs due to 55′′ neighbors at straddling the border between sectors,

in which one (or more) obtain spectra and another does not. In these cases some sectors might

have a completeness larger than unity, meaning they obtain a partial completeness fraction from

the neighboring sector. In summary, the average completeness of all sectors is 98% for DR7. If we

define Main+LRG as ’targeted objects’ (excluding quasars) the completeness yields the same, and

if we define targeted objects as LRGs only we obtain 96%. We find that these different definitions

for completeness result in subtle mismatches of the DR3 LRGs compared sample to Eisenstein et al.

(2005), all of which less than 0.7% of the ∼ 47, 000 galaxies, and negligible effects on ξ compared

to shot-noise of random points used. As in Eisenstein et al. (2005) we limit ourselves to sectors
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with > 60% completeness. This results in 29 sectors (that have a non-zero completeness) with a

total area of 13 square degrees (0.16% of targeted sky) and a total of 364 targeted LRGs. As in

Eisenstein et al. (2005) we used the completeness as a probability to exclude random points from

each sector. They also up-weight both data and random points in each sector by the reciprocal of

the completeness value. With the high completeness of the survey we do not expect differences in

the resulting ξ between the methods.

To account for fiber-collisions while pair-counting, we use a slightly different population than

before. LRGs get up-weighted if they are 55′′ neighbors of a targeted LRG (not quasar or Main

galaxy) which did not get spectra. This effectively increases our sample LRG number by ∼ 2.2% for

DR7-Full and ∼ 1.8% in DR3, which is important to take into account when calculating normalized

number of pairs DD, DR and RR.

The LasDamas mock catalogs match the survey geometry as described by the polygon description

in the NYU-VAGC. Since the ”gamma” release mocks do not model fiber collisions nor missing

sectors, completeness is defined to be 100% within the SDSS area. For more details please refer to

McBride et. al (2009; in prep).

A.2. Radial Selection Function

The LRG sample used here is the largest quasi-volume-limited spectroscopic sample of its kind

today. That said, the radial selection function, n(z) is not constant (meaning not volume limited),

as one would expect in a homogeneous universe (up to Poisson noise and radial clustering). Instead

it is quasi-volume-limited up to z ∼ 0.36 and flux limited thereafter. In what follows we show that

the features in the n(z) of DR7-Dim do not affect our results. On a more technical note we discuss

distributing random points in the radial direction.

We test the LasDamas mock catalogs for the features in the observed radial selection function.

The original mocks do not trace the n(z) of the corresponding SDSS redshift and luminosity cuts.

The top left inset in Figure 13 shows this difference in shape for the DR7-Dim sample, as LasDamas

provides an n(z) with a slight negative slope (cyan; average over 160 realizations). This slope in the

LasDamas mocks is a consequence of applying fixed HOD parameters to a light-cone halo catalog,

as it neglects the evolution of the dark matter halo mass (i.e. lower halo masses as higher redshift

result in fewer artificial galaxies and hence the negative slope). The survey result (thick green

histogram) is the same as in Figure 2. Two features noticeable are the negative slope between

0.16 < z < 0.28, and the positive slope to the peak at z ∼ 0.34. We show that these features

have a negligible effect on ξ and the r.m.s σξ compared to the distribution given by the original

mocks, which is closer to volume limited. To validate this claim, we exclude mock LRGs such that
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they match the SDSS radial selection function. For the DR7-Dim this meant excluding 15% of the

mock galaxies (n(z) average over 160 realization shown as black histogram) and for DR7-Bright it

meant excluding 7%, yielding, on average, a similar number count and volume density as in Table

1. In the main plot of Figure 13 we compare results before and after exclusion of the mock galaxies,

and find that the mean ξ of 160 realizations agrees on all scales. The right inset shows that the

diagonal terms of the covariance matrix σξ ≡
√

Cii is slightly higher for the galaxy-excluded sample

as expected from slightly larger Poisson noise. We conclude that the shape of observed n(z) for the

DR7-Dim sample does not appear to affect the results obtained in this study.

We would also like to address the issue of distributing redshifts to random catalogs, a non-

trivial step in using random-point based ξ estimators, when dealing with non-volume-limited data.

Two popular methods for distributing redshifts (or comoving distances) to random points are

redistributing the actual data redshifts randomly, and assigning random distances, so that the

overall n(z) shape matches that of the data (i.e, using the data n(z) as a probability function). We

test both random point distribution with and without radial weighting.

We show results of both methods of distributing random points in Figure 14. To clarify differences,

in the top panel we plot s · ξ and the ratio between all cases to that chosen in this study (weighted

Data-n(z); ξref ) in the bottom panel. For convenience we define the case of distributing data

redshifts to random points as “Data-Redshift” (diamonds), and the case of distributing random

points to match the data n(z) as “Data-n(z)” (crosses). The data used in this analysis are the

original DR7-Dim mocks averaged over 8 realizations. We compare results without radial weighting

(black) as well as with (bright green, shifted by 2h−1Mpc for visual clarity, shift not calculated

within s · ξ). The radial weighting when pair counting is explained bellow. The figure shows that

“Data-Redshift” is noticeably weaker than “Data-n(z)” until s . 110 h−1Mpc. This is a clear

display of the diminishing of the radial clustering modes. Although this effect is very small relative

to our current 1σ measurements, it could be important when these are reduced in future surveys.

On the larger scales the differences are diminished. The red crosses emphasize the importance

of weighting the random points in the same fashion as the data. Not doing so yields spurious

clustering.

In conclusion, we choose to radially distribute random points to match the same n(z) shape of

the data, using the same weight, and not distributing the data redshifts to the random points, as

to preserve the radial modes.

After deciding to use the survey n(z) to analyze the mock catalogs we have two options of use

of random points: (a) compare all data points to one random set, which has the mean n(z) of the

data; or (b) imitate the observation for each realization by comparing each to a random catalog

with a tailor-made random catalog. By “tailor-made” we refer to the adjustment of the redshifts

z, so that each random catalog yields a similar n(z) to that of the mock data. We applied this
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difference when analyzing DR7-Dim and DR7-Bright and find no difference in the ξ mean results.

As for the r.m.s σξ we find very small differences in both. On scales up to s < 200 h−1Mpc the

DR7-Dim shows fluctuations smaller than 4% where DR7-Bright shows fluctuations below 8%, with

no particular preference for either method. This might be a result of the fact that the transverse

modes dominate the radial ones. For completeness we note that in our mock results we use the

former method, i.e, we apply one random catalog for all the mock data, where the ratio of random

to data is r ∼ 50.

To weight the data approximately according to volume, we need to account for the radial selection

function n(z) (see Appendix A.2 and Figure 2). To do so, we apply the standard weighting technique

(Feldman et al. 1994).

For the SDSS LRGs we calculate n(z) in bins of ∆z = 0.015 and use a spline interpolation to

calculate the radial selection value of each LRG and random point. Each point is then assigned

a radial weight of 1/(1 + n(z) · Pw) where we use Pw = 4 · 104h−3Mpc3, as in Eisenstein et al.

(2005). The weights are applied to both the data and the random catalogs. The choice for ∆z

does not affect the measured ξ (as also shown in Cabré & Gaztañaga 2009). We also examined for

differences between choosing the observed n(z) for weighting and the model used in Zehavi et al.

(2005) and found no difference.

B. Systematics of ξ(s)

Here we address possible data analysis effects on our results. We focus on weighting schemes

both in the radial and in the angular masks. In general, we find that the position and width of

the baryonic acoustic feature does not change much, though we do find small effects in sp due to

Poisson shot-noise.

B.1. Random Shot Noise

When comparing between different ξ results obtained by various systematics, it is important to

differentiate biases from variances obtained by random shot-noise.

Applying five different random catalogs to the observed DR7-Dim, at a ratio of ∼ 15.6 random

points for every data point, and assigning radial weighting (similar to that performed in the analysis)

we show in Figure 15 that the random shot-noise is minimal on most scales of concern. The top panel

shows ξ for five different random catalogs against the same observed sample (black-dotted, green-

dashed, red-dot-short-dashed, orange-long-dashed, blue-triple-dotted-dashed). The bottom panel
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shows the ξ ratios with respect to the first random catalog. For the chosen binning, the baryonic

acoustic region seems to yield less than a 10% difference. We reran our sp algorithm on all random

catalogs and find the peak positions [101.6, 101.8, 103.4] h−1Mpc. This shows that, although the

overall shape seems very consistent when using the different random catalogs, the random-shot

noise has a small effect on pinpointing peak position. This is currently smaller than the survey 1σ,

but should be considered when statistical uncertainties improve. The fitting normalized χ2 range

for all five catalogs is χ2/d.o.f = [1.24 − 1.58]. To reduce this effect on our measurement in §4.5
we used a ratio of number of random to data of ∼ 50. The peak position for is marked by the top

arrow at sp = 101.7 h−1Mpc.

In the region between 50 < s < 90 h−1Mpc we see up to 10% differences, which is expected in a

sharp logarithmic slope. On smaller scales s < 50 h−1Mpc differences yield up to 3% difference in

amplitude.

B.2. Effects of Weighting

In order to optimally measure the correlation function and to account for the fiber collision effects,

we apply weighting algorithms. All differences due to choices about how we weight turn out to be

much smaller than current 1σ variances. Angular weighting schemes (fiber-collision correction and

sector completeness) are explained in Appendix A.1. Here we explain our algorithm for the radial

weighting and show results for both.

Figure 16 shows the effects of various angular and radial weighting schemes on the large-scale ξ

of DR7-Full (for clarity we present s · ξ in the top panel). The weighting schemes compared are:

1. No weighting at all (black)

2. Radial weighting only (cyan; shifted by 1.75 h−1Mpc for clarity)

3. Radial weighting + fiber-collision (red; shifted by 3.5 h−1Mpc )

As mentioned in Appendix A.1, sector completeness is taken into account in the distribution of the

random points. The bottom panel shows the ratio of each of the above options ξi over that chosen

in this study (Fiber-Col+Rad; ξref ). To avoid possible random shot noise (see Appendix §B.1) we

use the same set of random points in each case. The weight is modified for each option for the data

and random as indicated in the plot. The fiber-collision weight for the random set is always w = 1.

We clearly see from the three above options the effect of radial weighting on scales s . 170 h−1Mpc.

We can grossly divide this range into a smaller one of s . 115 h−1Mpc in which the radial weight
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adds some power to the signal, and a larger scale region in which the signal is reduced. The fiber-

collision correction weights (“Fiber-Coll”) are important when dealing with scales s . 40 h−1Mpc

at the few percent level, but not at the scales discussed in this study. Beyond 170 h−1Mpc the

effects of the weighting schemes used here are minimal. Most importantly, as shown in Cabré &

Gaztañaga (2009), the apparent strong ξ signal at large scales, and the baryonic acoustic feature

position are consistent among the various weighting methods.

These weighting effects are not substantial in Figure 14, because the n(z) used there (full DR7-

Dim LasDamas catalog without dilution to match SDSS n(z)) does not have the same complex

features seen in DR7-Full (the mocks used in that figure are instead close to volume-limited).

B.3. Various Systematics

We have checked a few other possible systematics collectively described here.

The SDSS DR7 sample is mostly contiguous, with only 9.8% of the surveyed area not contained

in the main part of the Northern Galactic Cap sample (Figure 1). We examined three choices

for which footprint to use: the full survey (100% of LRG sample), the Northern Galactic Cap

only (90.9%), and the Northern Galactic Cap without the small “island” (90.2%). We found no

significant difference in the resulting DR7 ξ for these samples.

In order to calculate the separation in comoving space between galaxy pairs, we must use the

observed redshifts and assume a certain fiducial cosmology. For most of this study we assumed

a flat ΛCDM model with ΩM0 = 0.25. When analyzing differences between DR3 and DR7-Full

we also tested the cosmology assumed by Eisenstein et al. (2005) ΩM0 = 0.3. We also examine

each cosmology on each subsample and found that the cosmology does not affect the resulting ξ or

the measured sp significantly relative to our other uncertainties. For a direct comparison of both

cosmologies in DR7 see Figure 3.

We also tested how the choice of cosmology affects the selection of LRGs, due to the fact that

Mg is sensitive to cosmology. Within DR7-Dim (0.16 < z < 0.36, −23.2 < Mg < −21.2) we

count 61, 899 LRGs when using ΩM0 = 0.25 and 61, 102 when ΩM0 = 0.30, a 1.3% difference.

When probing the full sample, DR7-Full, we find an agreement in number of LRG selected in the

two cosmologies to better than 1%. This implies that for large range of redshift an approximate

cosmology should not change the number count very much.

As mentioned in §3, the ξ calculation requires the choice of a particular estimator. We tested

the Landy & Szalay (1993) estimator against those proposed by Hamilton (1993), Davis & Peebles

(1983), Peebles & Hauser (1974). Figures 17 and 18 show our ξ and σξ results, when using DR7-
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Dim. In Figure 17 the mock mean (over 160 realizations) are the lines, while the SDSS result are

the symbols. The different colors indicate the different estimators used, where Landy & Szalay

(1993) (black solid, LS93 hereon) and Hamilton (1993)(green triple-dot-dashed, HAM93) are not

distinguishable by eye for the most part. The inset shows the noise-to-signal ratio. Bear in mind

that the spikes around 140 h−1Mpc simply result from the signal crossing zero around that scale.

In Figure 18 the notation is the same when plotting σξ(s) for the different estimators. The inset

in this plot shows the ratio of each estimator relative to that of LS93:

We find the following:

1. Mean value ξ: Averaging over all 160 mocks we see that LS93 and HAM93 agree on all

scales. The inset of Figure 18 shows that Peebles & Hauser (1974) (PH74) deviates from the

latter by 10% at scales of ∼ 75 h−1Mpc and Davis & Peebles (1983) (DP83) does the same at

85 h−1Mpc. We also note that LS93 and HAM93 asymptote faster to zero than the others.

2. r.m.s σξ: The r.m.s of the signal varies among the estimators on various scales. PH74 yields

the same σξ as LS93 up to scales of ∼ 40 h−1Mpc before it starts strongly branching off. This

is clearly seen in the main plot of Figure 18, and indicated in the other plots by the strong

variation of the observed result. Both HAM93 and DP83 have a larger variance than LS93

at scales smaller than 10 h−1Mpc. HAM93 later matches the LS93 on all larger scales very

well, where DP83 breaks off at ∼ 60 h−1Mpc.

We conclude that the Landy & Szalay (1993) and Hamilton (1993) estimators agree in signal for

each realization on large scales, and perform much better than the other two as their variance is

smaller, and converge much more quickly to zero. In particular, the other two estimators yield very

large uncertainties on large scales for individual realizations. We also find that Hamilton (1993)

does not perform as well as Landy & Szalay (1993) on smaller scales s < 10 h−1Mpc. Our analysis

of DR7-Dim agrees with the other samples DR7-Bright, DR7-Bright-Near, and DR7-Bright-Far.

Here we use ratio of random points to data of r ∼ 15.6 for the SDSS and r ∼ 10 for mocks. Kerscher

et al. (2000) shows Landy & Szalay (1993) to be the estimator with the best performance relative

to the true ξ in periodic box measurements, and Labini et al. (2009) shows similar comparison

results to ours.

To test the importance of binning, we use the Landy & Szalay (1993) on all 160 mock DR7-

Dim realizations and find a strong dependence of the variance on the bin size, as expected. We

test various bin widths ∆s between ∆s = [0.55, 10] h−1Mpc noting that variance changes strongly,

where the lowest ∆s yields the noisiest σξ, due to the higher shot-noise in each bin. For most of

our analysis, including the baryonic acoustic feature, we used ∆s = 4.44 h−1Mpc. We find that

peak position sp is not altered by more than 1σ for any choice of bin size.
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We also check for boundary limits in our survey, to get an idea of at what point our ξ estimates

are encountering the edges of the survey. We show in Figure 18 a negative slope for σξ all the

way to s < 400 h−1Mpc. A region we definitely want to avoid in analysis is one in which σξ has a

positive slope, which indicates an upper limit to the effective scaling given the survey volume. For

this reason in the top panel of Figure 19 we continue this plot for DR7-Dim (black solid) and DR7-

Bright-Near (green triple-dotted-dashed) to 800 h−1Mpc . These subsamples (both limited to the

range 0.16 < z < 0.36) have a declining σξ to 500 h−1Mpc, and a slightly positive slope thereafter.

In the second plot from the top we show the normalized data-data pairs DD of DR7-Dim and

DR7-Bright-Near (same notation), as well as the random-random pairs RR count of DR7-Dim

(blue dot-dashed). The dip feature at ∼ 500 h−1Mpc mentioned before appears here as the peak at

that scale. In the third plot from top we differentiate the previous results by s to better see where

the number of pairs stop growing with radius. We see a clear crossover between 500− 600 h−1Mpc.

The bottom two plots of Figure 19 can be considered “sanity checks”, as we verify basic statistics.

Given a periodic box we expect the number of random points N around a given a point at radius

s in a spherical shell of width ds to be: N = 4πs2dsn where n is the mean density. RR(s), is

expected to go as ∼ N(s) · NR/2, where NR is the number of random points, and 2 takes into

account double counting. Hence d ln(RR)/d ln(s) should yield 2. Deviations from this result are

due to boundary effects. In the fourth from top plot we present d ln(x)/d ln(s), where x is RR

(blue dot-dashed) and DD (solid black). The important result from this plot is the deviation of

d ln(RR)/d ln(s) from 2 at large-scales. A 5% difference is noticed at 50 h−1Mpc. At the baryonic

acoustic feature scale the deviation from 2 is ∼ 10%, at 200 h−1Mpc by ∼ 23% and at 400 h−1Mpc

by 60%. Although this panel indicates our volume is far from ideal for analysis of 400 h−1Mpc, the

LS93 estimator appears to be valid as it corrects for these boundary effects by comparing number

of data pairs to number of expected random points given boundary conditions. We performed the

same test for random points within a volume of DR7-Bright (red dot-dashed) where we extend the

measurement to 500 h−1Mpc.

In the bottom plot we determine how many cubes of length s would fit into the volume con-

tained within DR7-Dim (black solid) and DR7-Bright (red three-dot-dashed). Our choice of

s = 400 h−1Mpc yields 10.31 for the former and 18.65 for the latter. For DR7-Bright up to

s = 500 h−1Mpc we count 9.55 cubes. As for the peak position at s = 101 h−1Mpc, we count 641

cubes for the DR7-Dim volume and 1159 for a DR7-Bright volume.

All the plots in Figure 19 indicate that our choice of s < 400 h−1Mpc is a fair one within the

given sample, and does not depend too much on edge effects.

We also test for uncertainties σξ of the observed DR7-Dim and DR7-Bright against those pre-

dicted by Gaussianity plus shot noise (Bernstein 1994) at large scales,
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σ2
ξ (s) =

2

(2π)3V

∫

d3k [P (k) + n̄−1]2 j0(ks)2, (B1)

where V is the volume of the survey (see Table 1), P (k) the galaxy power spectrum, and j0 the spher-

ical Bessel function of zeroth order. We first test this formula against the variance derived from the

mock catalogs for both Dim and Bright samples, and find that at 50 < s < 100 h−1Mpc the variance

is consistent with Eq. B1. At smaller scales non-Gaussian contributions to the uncertainties quickly

make Eq. (B1) an underestimate of the uncertainties, whereas at scales s > 100 h−1Mpc contribu-

tions to Eq. (B1) from edge effects (not included there) become important, e.g. making the total

uncertainty about 20% larger than given by Eq. (B1) at 300 h−1Mpc. Since edge effects depend

only on the geometry and density of the sample, we can extract their value from this comparison

and apply it to the data, which has the same characteristics (but different two-point function).

From the measured two-point function in the data we use Eq. (B1) including the edge effects

variance to compute Gaussian uncertainties for a model that matches the observed ξ. We find

uncertainties that are very close to those in the mock catalogs at s > 150 h−1Mpc, the main reason

being that discreteness contributions are significant. This suggests that had we changed cosmology

and HOD to give a better fit to ξ at largest scales, we would have gotten very similar uncertainties,

and thus similar ∼ 2σ deviations away from zero-crossing for the Bright sample.
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Ž. 2003, AJ, 125, 1559

Reid, B. A., Percival, W. J., Eisenstein, D. J., Verde, L., Spergel, D. N., Skibba, R. A., Bahcall,

N. A., Budavari, T., Fukugita, M., Gott, J. R., Gunn, J. E., Ivezic, Z., Knapp, G. R., Kron,

R. G., Lupton, R. H., McKay, T. A., Meiksin, A., Nichol, R. C., Pope, A. C., Schlegel, D. J.,

Schneider, D. P., Strauss, M. A., Stoughton, C., Szalay, A. S., Tegmark, M., Weinberg, D. H.,

York, D. G., & Zehavi, I. 2009, ArXiv e-prints

Richards, G. et al. 2002, AJ, 123, 2945

Sánchez, A. G., Baugh, C. M., & Angulo, R. 2008, MNRAS, 390, 1470

Sanchez, A. G., Crocce, M., Cabre, A., Baugh, C. M., & Gaztanaga, E. 2009, ArXiv e-prints

Scherrer, R. J. & Weinberg, D. H. 1998, ApJ, 504, 607

Schlegel, D., White, M., & Eisenstein, D. 2009, ArXiv e-prints

33



Seo, H.-J. & Eisenstein, D. J. 2007, ApJ, 665, 14

Seo, H.-J., Siegel, E. R., Eisenstein, D. J., & White, M. 2008, ApJ, 686, 13

Smith, J. A., Tucker, D. L., et al. 2002, AJ, 123, 2121

Smith, R. E., Scoccimarro, R., & Sheth, R. K. 2008, Phys. Rev. D, 77, 043525

Spergel, D. N. et al. 2003, ApJS, 148, 175

Stoughton, C. et al. 2002, AJ, 123, 485

Strauss, M. A. et al. 2002, AJ, 124, 1810

Tegmark, M. et al. 2006, Phys. Rev. D, 74, 123507

Tucker, D. L. et al. 2006, Astronomische Nachrichten, 327, 821

York, D. et al. 2000, AJ, 120, 1579

Zehavi, I., Eisenstein, D. J., Nichol, R. C., Blanton, M. R., Hogg, D. W., Brinkmann, J., Loveday,

J., Meiksin, A., Schneider, D. P., & Tegmark, M. 2005, ApJ, 621, 22

This preprint was prepared with the AAS LATEX macros v5.0.

34



Fig. 1.— Angular Selection Function : SDSS DR7 LRG sky coverage. For plotting purposes we

present one tenth of the 105, 831 DR7-Full galaxies. The solid blue line is the Galactic plane.
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Fig. 2.— Radial selection function: Comoving number density n(z) of the full DR7 (DR7-Full;

black) and its subsamples DR7-Dim (green), DR7-Bright (blue), DR7-Bright2 (red) and DR3

(cyan).
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Fig. 3.— DR3 and DR7 ξ(s): Our DR3 results (green diamonds) show excellent agreement on the

scales investigated here with those published by Eisenstein et al. (2005) (red crosses and uncertainty

bars). The remaining discrepancies are consistent with shot-noise in the random catalogs. The

dashed lines are our results for DR7-Full which shows a stronger clustering signal at 135 < s <

180 h−1Mpc . In the thick blue dashed line we used the same ΩM0 = 0.3 flat cosmology as the

DR3 results, and thin black dashed line ΩM0 = 0.25. Both cosmologies agree very well at scales

discussed here 80 < s < 200 h−1Mpc. In our DR3 result we use number ratio of random to data

points r ∼ 50 and for DR7 ∼ 15.6. 37



Fig. 4.— DR7 Subsample ξ(s): Comparing DR7-Full (thick dashed line) to subsamples DR7-Dim

(green diamonds with uncertainty bars), DR7-Bright (blue crosses) and DR7-Bright2 (red squares).

The peak position appears consistent for all subsamples. For the uncertainties of DR7-Dim and

DR7-Bright please refer to Figures 5 and 8, respectively.
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Fig. 5.— DR7-Dim ξ(s): Results from SDSS (black diamonds) and from the LasDamas mock catalogs.

The mock mean ξmock is the green solid line and the uncertainties in the mean are small vertical green lines.

The variance for one realization is presented by the gray bands: 68.2% light gray (1σmock), and 95.4% by

dark (2σmock). The blue dotted lines are the outermost result of all mocks in each separation bin (not one

realization in particular). Top Inset: Same format as main figure extending the results with wider bins to

larger scales. Bottom Inset: Significance of large-scale clustering - we average ξ in bins [130, 400]h−1Mpc

. The observed 〈ξ〉 (red thick dashed line) is clearly within 2σ of the mock realizations (black histogram),

with a χ2 fitting on 10 d.o.f yielding χ2/d.o.f = 0.72. The mock mean result is the thin green dot-dashed

line. 39



Fig. 6.— DR7-Dim ξ(s) Mock Realizations: Hand-picked LasDamas mocks (lines) compared with

the SDSS result (diamonds). The green (dotted) and red (solid) show fairly good agreement on

most large-scales with observation, though their peak position appear to be in different locations.

The orange (dashed) and cyan (dot-dashed) mocks show example realizations without a baryonic

acoustic feature. Using a liberal approach, we counted a minimum bound of 10% (17) from the

full set of 160 mocks with no sign of a peak.
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Fig. 7.— Relative Bias: Comparing redshift-space bias ratio bDR7−Bright/bDR7−Dim ≡
√

ξDR7−Bright/ξDR7−Dim between the two subsamples for both the observed LRGs (symbols) as

well as the LasDamas mock mean (dot-dashed lines). The average observed value is taken between

0 − 60 h−1Mpc indicated in thick dashed line valued at 1.14. The gray bands indicate the one

and two σ distribution of the relative bias between each DR7-Dim sample and its same realiza-

tion DR7-Bright sample. The dotted lines are the outer values for each bin. Mock uncertainty

calculations indicate that this bias estimate is significant (above 2σ) at s < 40 h−1Mpc.
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Fig. 8.— DR7-Bright ξ(s): Same format as Figure (5) for the brighter sample. The insets here

extend to 500 h−1Mpc. The observed subsample shows a significantly stronger signal at large scales

than produced by our ΛCDM+HOD model.
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Fig. 9.— Measuring the Baryonic Acoustic Peak Position sp in DR7-Dim Sample: Top Left Panel-

sp histogram of 75 mock realizations with clear sign of a peak. Vertical red (thick dark) solid

line is observed value and green (thin bright) is that of mock mean. σ = 3.05 h−1Mpc is the

68.2% CL around the mock peak smock
p = 106.31 h−1Mpc normalized to the observation by σ ∼ sp.

Top Right Panel- χ2 histogram for mock realization fits to model, where the red line indicates

that of the observation at χ2 = 23.9 for 19 d.o.f. Bottom Right Panel- Fitting the observed ξ(s)

(black diamonds) to model βξ(α · s) (blue line), where ξ is the mock mean. Red arrow indicates

sp=101.7 h−1Mpc and is the same as in the top left panel. Indicated also are best-fit α and β

parameters. Black vertical lines are
√

Cii. Bottom Left Panel- Cij/(σiσj).
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Fig. 10.— Baryonic Acoustic Peak Position in DR7-Dim mocks: Top Panel- The line for the 75

clear-peaked mocks ξ75 (bright green dashed) shows a more predominant peak than that of the

full catalog ξ160 (solid black). Both means show roughly the same peak position, and width. The

vertical lines are 1σ uncertainties of the mean. Bottom Panel- Residual ξ75 − ξ160 as function of

scale.
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Fig. 11.— rs(zd)/DV (z) Result: We obtain rs/DV (z = 0.278) of 0.1389± 0.0043 (black diamond;

1σ uncertainty) in good agreement with the z = 0.275 result presented by Percival et al. (2009)

(red crosses). Other results (Sanchez et al. 2009: purple triangles, Reid et al. 2009: cyan crosses,

Percival et al. 2007: orange crosses; Eisenstein et al. 2005: blue square) are indicated. These points

are not all independent as they use similar samples. The solid lines show predictions of various flat

ΛCDM cosmologies constraining ΩM0h
2 = 0.1358 and varying ΩM0 and h, where the top (blue) line

is ΩM0 = 0.19, h = 0.84 and the bottom (purple) line is ΩM0 = 0.37, h = 0.60. Intermediate steps

shown are ΩM0 = 0.22, 0.25, 0.28, 0.31, 0.34. Our result clearly agrees with ranges ΩM0 = [0.25, 0.34]

and h = [0.63, 0.73].
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Fig. 12.— ξ(sc) = 0: Here we show all 160 DR7-Dim mock realizations. Those with a crossover

point sc (crossover marked in vertical green lines) are blue solid lines, and the ∼ 6% without are

in thick red. The mean value is the solid white line, and its sc ∼ 140 h−1Mpc is indicated by the

vertical orange line. In the inset we show a histogram of all sc values, where the dotted orange line

is the mean value.
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Fig. 13.— Radial selection effect on ξ and σξ in DR7-Dim: Left inset shows n(z) of LasDamas

mock catalogs (light cyan line; n(z)1) which has a slight negative slope, and that observed in the

SDSS sample (thick green line). n(z)2 (thin black line) is the reduced mock catalog that fits the

SDSS n(z). In the main plot the mean ξ over 160 mock DR7-Dim realizations for the different

selection functions. Cyan diamonds are results of n(z)1 and the black crosses are for n(z)2. Both

ξ(s) are radially weighted with their respective n(z), and are in very good agreement. Right inset

shows the same for the r.m.s σξ, indicating a slightly stronger variance for the latter sample, as it

has slightly higher Poisson shot-noise. 47



Fig. 14.— Random point distribution effects on ξ in DR7-Dim: Results for average over 8 mock

realizations when using original mock n(z)1 (Figure 13). In each realization we distribute radial

distances to random points differently: diamonds- data point redshifts distributed randomly to

random catalog (Data-Redshift), crosses- random n(z) matches data but otherwise independent

redshift distribution (Data-n(z)). Radial weighting schemes: Black- no weighting , Green- both

data and random are weighted radially in same manner (shifted to right by 2h−1Mpc for clarity),

Top Panel- To clarify differences we plot s · ξ(s). Bottom Panel- Ratio of each case ξi to weighted

Data-n(z) (ξref ). We clearly see that Data-Redshift (diamonds) yield the lowest result, hence

diminishing the radial clustering mode. This is noticeable in range to 50 < s < 130 h−1Mpc after

which results agree with most of the other options. Weighting causes no effect in this case as the

n(z) used is close to volume-limited.
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Fig. 15.— Random Shot-Noise: We run the same algorithm on the observed DR7-Dim, using five

different random catalogs, each in turn. The ξ results are given in the top panel, where the five

random sets are represented by: black-dotted, green-dashed, red-dot-short-dashed, orange-long-

dashed, blue-triple-dotted-dashed lines. To facilitate differences the bottom panel shows the ratio

of each ith catalog ξi in respect to the first random catalog ξ1. The inset has the same format as

the bottom panel for smaller scales. The bottom arrows in both panels pin-point the peak position

found, according to our algorithm. We see that four random catalogs result in same sp within

1 h−1Mpc where a fifth is ∼ 2 h−1Mpc larger than the smallest obtained value. These results are

for a ratio of random to data points of r =NR/ND ∼ 15.6. To reduce this effect in our main analysis

we use r ∼ 50 (its result is marked by top arrow at sp = 101.7 h−1Mpc).
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Fig. 16.— Weighting Effects on ξ: We compare different weighting schemes on the observed DR7-

Full. wD and wR indicate the weight used on data and random points respectively, where black

(diamonds) indicates no weight used (w = 1), cyan (triangles) indicates radial weight (Radial;

shifted by 1.75 h−1Mpc for clarity) and red (crosses) indicates radial+(fiber-collision correction)

(Fiber-Collision+Radial; shifted by 35 h−1Mpc). All options take into account sector completeness

corrections. For clarity we plot in the top panel s · ξ(s) and on the bottom the ratio of each

weighting option ξi over that chosen in this study (Fiber-Coll+Radial; ξref ). The inset is the same

for smaller scales. 50



Fig. 17.— ξ Estimators at Large Scales of DR7-Dim: Comparing estimators proposed by LS93

(Landy & Szalay 1993; black), HAM93 (Hamilton 1993; green), DP83 (Davis & Peebles 1983; blue,

symbols shifted for clarity) and PH74 (Peebles & Hauser 1974; red, symbols shifted). The lines are

mock mean values, and the symbols are those observed (see legend). The uncertainty bars on the

symbols are the r.m.s of the mocks. Although the observed results appear in reverse order than

the mock mean, we verified by looking at particular mock realizations that some are in this order

as well. Inset: shows the Noise to Signal σξ/ξ. The strong spikes are due to sensitivity at the

signal zero crossing. Refer to Figure 18 for σξ(s) of the different estimators. We find that LS93 and

HAM93 agree very well on large scales, and asymptote quicker to zero than the other two. The

ratio of random to data points used for SDSS is r ∼ 15.6 and for mocks r ∼ 10.
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Fig. 18.— Estimator Variance: Main Plot: Same as Fig. 17 showing the r.m.s σξ =
√

Cii where Cij

is the covariance of ξ. PH74 and DP83 show poor variance performance on large-scales. HAM93

agrees very well with LS93 on large scales but has a larger variation on . 10 h−1Mpc. Inset:

Comparing estimators to Landy & Szalay (1993). The ratio of random to data points used for

SDSS is r ∼ 15.6 and for mocks r ∼ 10.
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Fig. 19.— LRG and random point statistics up to s = 800 h−1Mpc. a) signal r.m.s σξ for DR7-Dim

(black solid line) and DR7-Bright-Near (green triple-dot-dashed). b) Normalized data-data pairs

DD for DR7-Dim and DR7-Bright-Near (same notation) and random-random of DR7-Dim (blue

dot-dashed) c) Same as (b) only derivative dx/ds. where x =DD,RR. d) Examining boundary

effects in pair counting. A periodic box would yield dln(RR)/dln(s) = 2. Hence deviations from 2

(dotted line) are effects of boundary. e) Counting the number of cubes of length s fit in the survey

volume, for DR7-Dim (solid black) DR7-Bright (red triple-dotted-dashed).
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Table 1. SDSS LRG Samples

Sample # of LRGs zmin zmax 〈z〉 Mg,min Mg,max 〈Mg〉 Area Volume Density

(deg−2) (h−3 Gpc3) (10−5 h3 Mpc−3)

DR3a 47, 063 0.16 0.47 0.327 −23.2 −21.2 −21.70 3, 807 0.722 6.50

DR7-Full 105, 831 0.16 0.47 0.324 −23.2 −21.2 −21.72 7, 908 1.58 6.70

DR7-Dim 61, 899 0.16 0.36 0.278 −23.2 −21.2 −21.65 7, 189 0.66 9.40

DR7-Bright 30, 272 0.16 0.44 0.338 −23.2 −21.8 −22.02 7, 189 1.19 2.54

DR7-Bright-Near 16, 473 0.16 0.36 0.284 −23.2 −21.8 −22.01 7, 189 0.66 2.50

DR7-Bright-Far 13, 799 0.36 0.44 0.402 −23.2 −21.8 −22.03 7, 189 0.53 2.60

DR7-Bright2 32, 861 0.16 0.36 0.282 −22.6 −21.6 −21.85 7, 189 0.66 5.00

aCalculations of DR3 performed using ΩM0 = 0.3.
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