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ABSTRACT

We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1
dimensions, which improves on past implementations of this technique. The need for cluster finder
algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 1013.5

solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints
from galaxy cluster number counts. We build the VT in photometric redshift shells and use the
two-point correlation function of the galaxies in the field to both determine the density threshold for
detection of cluster candidates and to establish their significance. This allows us to detect clusters in
a self consistent way without any assumptions about their astrophysical properties. We apply the VT
to mock catalogs which extend to redshift 1.4 reproducing the ΛCDM cosmology and the clustering
properties observed in the SDSS data. An objective estimate of the cluster selection function in terms
of the completeness and purity as a function of mass and redshift is as important as having a reliable
cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth
table. We show that the VT can produce a cluster catalog with completeness and purity > 80% for
the redshift range up to ∼ 1 and mass range down to ∼ 1013.5 solar masses.
Subject headings: Cosmology: observations – Galaxies: clusters: general – Methods: data analysis

1. INTRODUCTION

Today we recognize that galaxies constitute a very
small fraction of the total mass of a cluster, but they are
nevertheless some of the clearest signposts for detection
of these massive systems. Furthermore, the extensive ev-
idence for differential evolution between galaxies in clus-
ters and the field – and its sensitivity to the underlying
cosmological model – means that it is imperative to quan-
tify the galactic content of clusters. Perhaps even more
importantly, optical detection of galaxy clusters is now
inexpensive both financially and observationally. Large
arrays of CCD detectors on moderate telescopes can be
utilized to perform all-sky surveys with which we can de-
tect clusters to z ∼ 1, and even further with IR mosaics.
Forthcoming projects such as the Dark Energy

Survey (DES, darkenergysurvey.org), Pan-STaRRS
(pan-starrs.ifa.hawaii.edu) and the Large Synoptic
Survey Telescope (LSST, lsst.org) will map thousands
of square degrees to very faint limits (∼29th magnitude
per square arcsecond) in at least five filters, allowing the
detection of clusters through their weak lensing signal
as well as directly through the visible galaxies. Com-
bined with ever more efficient cluster-finding algorithms,
these programs will expand optical cluster detection to
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redshifts greater than unity. Prospects for utilization of
such data to address one of the most important scien-
tific problems of our time by measuring the cosmolog-
ical parameters with improved precision are outstand-
ing. In fact, given the statistical power of these sur-
veys, clusters have become one of the strongest probes for
dark energy (e.g., Haiman et al. 2001; Holder et al. 2001;
Levine et al. 2002; Hu 2003; Rozo et al. 2007, 2010) .
Two unavoidable challenges imposed by these projects
are to produce optimal cluster catalogs – with high com-
pleteness and purity – and to determine their selection
function as a function of cluster mass and redshift.
To see how to proceed, we must understand the

strengths and important limitations of techniques in
use today, especially with respect to the characteriz-
ability of the resulting catalogs. We focus on photo-
metric techniques rather than on cluster finding in red-
shift space, which also has a long story, starting with
Huchra & Geller (1982), and has been succesfully ap-
plied to spectroscopic redshift survey data such as 2dF-
GRS (Eke et al. 2004) and DEEP2 (Gerke et al. 2005).
Although the VT uses redshift information, it is a photo-
metric technique and this motivates a discussion focused
on this class of cluster finders.
The earliest surveys relied on visual inspection of vast

numbers of photographic plates, usually by a single as-
tronomer. The true pioneering work in this field did
not appear until the late fifties, upon the publication
of a catalog of galaxy clusters produced by Abell (1958),
which remained the most cited and utilized resource for
both galaxy population and cosmological studies with
clusters for over forty years. Abell, Corwin, & Olowin
(1989, hereafter ACO) published an improved and ex-
panded catalog, now including the Southern sky. These
catalogs have been the foundation for many cosmological
studies over the last decades, even with serious concerns
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about their reliability. Despite the numerical criteria laid
out to define clusters in the Abell and ACO catalogs,
their reliance on the human eye and use of older technol-
ogy and a single filter led to various biases. These old
catalogs suffered as much from being black and white as
they did from being eye-selected. Even more disturbing,
measures of completeness and contamination in the Abell
catalog disagree by factors of a few. Unfortunately, some
of these problems will plague any optically selected clus-
ter sample, but the use of color information, objective
selection criteria and a strong statistical understanding
of the catalog can mitigate their effects.
Only in the past twenty years has it become possible

to utilize the objectivity of computational algorithms in
the search for galaxy clusters. These more modern stud-
ies required that plates be digitized, so that the data
are in machine readable form. The hybrid technology of
digitized plate surveys blossomed into a cottage indus-
try. The first objective catalog produced was the Edin-
burgh/Durham Cluster Catalog (EDCC, Lumsden et al.
1992), which covered 0.5 sr (∼ 1, 600 square degrees)
around the South Galactic Pole (SGP). Later, the APM
cluster catalog (Dalton et al. 1997) was created by ap-
plying Abell-like criteria to select overdensities from the
galaxy catalogs. The largest, most recent, and the last
of the photo-digital cluster survey is the Northern Sky
Optical Survey (NoSOCS; Gal et al. 2000, 2003, 2009;
Lopes et al. 2004). This survey relies on galaxy catalogs
created from scans of the second generation Palomar Sky
Survey plates, input to an adaptive kernel galaxy density
mapping routine. The final catalog covers 11,733 square
degrees, with nearly 16,000 candidate clusters, extending
to z ∼ 0.3. A supplemental catalog up to z ∼ 0.5 was
generated by Lopes et al. (2004) using Voronoi Tessella-
tion and Adaptive Kernel maps.
With the advent of CCDs, fully digital imaging in

astronomy became a reality. These detectors provided
an order-of-magnitude increase in sensitivity, linear re-
sponse to light, small pixel size, stability, and much easier
calibration. The main drawback relative to photographic
plates was (and remains) their small physical size, which
permits only a small area (of order 15′) to be imaged by a
larger 40962 pixel detector. Realizing the vast scientific
potential of such a survey, an international collabora-
tion embarked on the Sloan Digital Sky Survey (SDSS,
sdss.org), which included construction of a specialized
2.5 meter telescope, a camera with a mosaic of 30 CCDs,
a novel observing strategy, and automated pipelines for
survey operations and data processing. Main survey op-
erations were completed in the fall of 2005, with over
8,000 square degrees of the northern sky image in five
filters to a depth of r′ ∼ 22.2 with calibration accurate
to ∼ 1−2%, as well as spectroscopy of nearly one million
objects.
With such a rich dataset, many groups both internal

and external to the SDSS collaboration have generated
a variety of cluster catalogs, from both the photometric
and the spectroscopic catalogs, using techniques includ-
ing:

1. Voronoi Tessellation (Kim et al. 2002)

2. Overdensities in both spatial and color space
(maxBCG, Annis et al. 1999; Koester et al. 2007b;

Hao 2009)

3. Subdividing by color and making density maps
(Cut-and-Enhance, Goto et al. 2002)

4. The Matched Filter and its variants (Kim et al.
2002)

5. Surface brightness enhancements (Zaritsky et al.
1997, 2002; Bartelmann & White 2002)

6. Overdensities in position and color spaces, includ-
ing redshifts (C4, Miller et al. 2005)

7. Friends-of-Friends (FoF, Berlind et al. 2006)

Each method generates a different catalog, and early
attempts to compare them have shown not only that
they are quite distinct, but also that comparison
of two photometrically-derived cluster catalogs, even
from the same galaxy catalog, is not straightforward
(Bahcall et al. 2003).
In addition to the SDSS, smaller areas, but to much

higher redshift, have been covered by numerous deep
CCD imaging surveys. Notable examples include the
Palomar Distant Cluster Survey (PDCS, Postman et al.
1996), the ESO Imaging Survey (EIS, Lobo et al. 2000),
and many others. None of these surveys provide the
angular coverage necessary for large-scale structure and
precision cosmology studies, and have been specifically
designed to find rich clusters at high redshift. The largest
such survey to date is the Red Sequence Cluster Survey
(RCS, Gladders & Yee 2005), based on moderately deep
two-band imaging using the CFH12K mosaic camera on
the CFHT 3.6m telescope, covers ∼ 100 square degrees.
This area coverage is comparable to X-ray surveys de-
signed to detect clusters at z ∼ 1 (Vikhlinin et al. 2009).
Any cluster survey must make many different math-

ematical and methodological choices. Regardless of the
data set and algorithm used, a few simple rules should be
followed to produce a catalog that is useful for statistical
studies of galaxy populations and for cosmological tests:

1. Cluster detection should be performed by an ob-
jective, automated algorithm to minimize human
biases.

2. The algorithm utilized should impose minimal con-
straints on the physical properties of the clusters,
to avoid selection biases. Any remaining biases
must be properly characterized.

3. The sample selection function must be well-
understood, in terms of both completeness and pu-
rity, as a function of both redshift and mass. The
effects of varying the cluster model on the determi-
nation of these functions must also be known.

4. The catalog should provide basic physical prop-
erties for all the detected clusters, including es-
timates of their distances and some mass proxy
(richness, luminosity, overdensity) such that spe-
cific subsamples can be selected for future study.

One of the most popular and commonly used meth-
ods today is the Voronoi Tesselation (VT, Ramella et al.
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2001; Kim et al. 2002; Lopes et al. 2004). Our imple-
mentation of this technique is described in detail in
§2. Briefly, it subdivides a spatial distribution into a
unique set of polygonal cells, one for each object, with
the cell size inversely proportional to the local density.
One then defines a galaxy cluster as a high density re-
gion, composed of small adjacent cells. Voronoi Tesse-
lation satisfies the above criteria for generating statis-
tical, objective, cluster samples. It requires no a pri-
ori assumption on galaxy colors, the presence of a red
sequence, a specific cluster profile or luminosity func-
tion. Mock catalogs have been used to test the effi-
ciency of the detection algorithm. These attractive qual-
ities have led to its employment in numerous projects
beginning almost 20 years ago (van de Weygaert & Icke
1989; Ikeuchi & Turner 1991; van de Weygaert 1994;
Zaninetti 1995; El-Ad et al. 1996; Doroshkevich et al.
1997). Ebeling & Wiedenmann (1993) used VT to
identify X-ray sources as overdensities in X-ray pho-
ton counts. Kim et al. (2002), Ramella et al. (2001)
and Lopes et al. (2004) looked for galaxy clusters us-
ing VT. van Breukelen & Clewley (2009) included the
VT as one of two methods in their 2TecX detection
algorithm, an extension of their work on clusters in
UKIDSS (van Breukelen et al. 2006). Barkhouse et al.
(2006) used the VT to detect clusters on optical images
of X-ray Chandra fields. Diehl & Statler (2006) applied
a modified version of the VT algorithm to X-ray data.
Here we improve on past implementations of this tech-

nique focusing on optical data. We build the VT in pho-
tometric redshift shells and use the two-point correlation
function of the galaxies in the field to determine the den-
sity threshold for detection of cluster candidates and to
establish their significance. This allows us to detect clus-
ters in a self consistent way using a minimum set of free
parameters and without any assumptions about the as-
trophysical properties of the clusters. We provide a list
of member galaxies for each cluster and use the num-
ber of members as a proxy for mass. We apply the VT
on mock catalogs that accurately reproduce the ΛCDM
cosmology and the clustering properties observed in the
SDSS data. By comparing the VT cluster catalog with
the truth table, we measure the completeness and purity
of our cluster catalog as a function of mass and redshift.
We show that our implementation of the VT produces a
reliable cluster catalog up to redshift ∼ 1 and down to
∼ 1013.5 solar masses.
The paper is organized as follows: §2 is dedicated to a

detailed presentation of the algorithm; §3 describes the
method used to compute the selection function of the
cluster catalog; in §4 we discuss the completeness and
purity results and show our ability to recover the mass
function of the mock catalog at redshift close to unity;
§5 presents a summary of this work. The work on the
relation between the two-point correlation function and
the VT cell areas distribution – fundamental for the de-
velopment of our method – is detailed in the Appendix.

2. ALGORITHM

We present the VT cluster finder in 2+1 dimensions.
The method is non-parametric and does not smooth the
data, making the detection independent of the cluster
shape. It uses all galaxies available, going as far down in
the luminosity function as the input catalog permits. It

does not rely on the existence of features such as a unique
brightest cluster galaxy or a tight ridgeline in the color-
magnitude space. It works in shells of redshift, treating
each shell as an independent 2-dimensional field.
Central to the VT algorithm is the background over

which an overdensity must rise to be identified as a clus-
ter. In contrast to earlier implementations of the VT
algorithm (Ebeling & Wiedenmann 1993; Ramella et al.
2001; Kim et al. 2002; Lopes et al. 2004), we do not as-
sume a Poissonian background. We use a more realistic
assumption that the angular two-point correlation func-
tion of the background galaxy distribution is represented
by a power-law (e.g. Connolly et al. 2002). Another im-
provement over earlier works on VT-based cluster find-
ers is the use of photometric redshifts instead of magni-
tudes (Ramella et al. 2001; Lopes et al. 2004) or colors
(Kim et al. 2002). This eliminates the need for a perco-
lation step and allows for a cluster finder which is not
based on astrophysical properties of clusters (the lumi-
nosity function or color-magnitude relation), but on the
characteristics of the large scale clustering process. This
makes the VT a cluster finder subject to different sys-
tematics from color-based methods.
The fundamental inputs required for cluster detection

using the VT are the coordinates RA, Dec and red-
shift of each galaxy and the redshift error σz(z) for the
full galaxy sample. The input catalog is sliced in non-
overlapping 1-σz wide redshift shells. Note that the ve-
locity dispersion of a typical cluster is much smaller than
realistic values of σz . For each shell an estimate of the
parameters (A,γ) of the two-point correlation function is
required. This can be obtained directly from the data.
We then build a Voronoi diagram and compare the

distribution of cell areas with the distribution expected
from a background-dominated field. Since small cell size
implies high density, this allows us to establish a size
threshold below which the distribution is dominated by
cluster members. The most significant clumps of contigu-
ous cells smaller than this threshold are listed as clusters.
This procedure is repeated on all redshift shells and the
results are merged into a unique list of cluster candidates.
The merge proceeds as follows. From the input galaxy
catalog we extract 3-dimensional boxes centered at the
coordinates of each candidate. We run the VT on those
boxes to confirm the detection. This recursive procedure
eliminates the edge effects at the interface between suc-
cessive shells, reduces the number of fake detections due
to projection effects and eliminates multiple detections.
In the resulting cluster catalog, we report position, red-

shift, redshift error, galaxy density contrast, significance
of detection, richness, size and shape parameters of the
clusters. We also provide a list of members with the local
density of their respective cells and flags indicating the
central galaxy (the galaxy found in the highest density
cell).
Although it is possible to build Voronoi diagrams on a

sphere, we use a rectangular coordinate system, which is
easier to implement. This implies that we must process
small sky areas at a time to avoid distortions due to
tangential projection. We have tested different area sizes
and concluded that boxes of 3× 3 degrees are adequate.
A buffer region is implemented to avoid edge effects and
the effective area is the central 1 × 1 square degree box.
Clusters found in the buffer regions are rejected prior



4 Soares-Santos et al.

to the merging of the shells’ candidate lists. The size
of the buffer zone corresponds to the angular scale of
a large cluster at the lowest redshift (a 1 degree scale
corresponds to ∼ 3 Mpc at z = 0.05).
In the following, we detail each step of the cluster de-

tection process and explain how each of the above quanti-
ties are derived, justifying the choices made in designing
the algorithm.

2.1. VT construction

The Voronoi diagram of a 2-dimensional distribution
of points is a unique, non-arbitrary and non-parametric
fragmentation of the area into polygons. A simple al-
gorithm to perform such fragmentation is the following
(see Fig. 1): starting from any position P1, we label its
nearest neighbor P2 and walk along the perpendicular
bisector between those points. We stop when we reach
for the first time a point Q1 equidistant from P1, P2 and
any third point P3. We now walk along the perpendicu-
lar bisector between P1 and P3 until we reach the point
Q2 and identify the next point P4 by the same criterion.
Successive repetition of this process will eventually bring
us back to Q1 after a finite number of steps. The set
of points Qi are the vertices of a polygon, the Voronoi
cell, associated with P1. If this process is repeated for
each point Pi we will have built the Voronoi tessellation
corresponding to this point field.

P1 P2

P3

Q1

P4

Q2

Fig. 1.— A portion of a typical Voronoi tessellation is shown
together with its dual Delaunay mesh (solid and dashed lines, re-
spectively) to illustrate the Voronoi diagram building process. For
each generator set Pi, there is one and only one set of Voronoi cells
given by the vertices Qi. See text for details.

However, there are several more robust and efficient
computational algorithms to build a Voronoi diagram
from a given distribution. In our code we use the so-
called Divide & Conquer algorithm implemented in the
Triangle library (Shewchuk 1996). The D&C is based on
recursive partition and local triangulation of the points
and then on a merging stage. The total running time,
for a set of n points is O(n logn).

There are no arbitrary choices in building the VT. The
cell edges are segments of the perpendicular bisectors
between neighbor points and each vertex is an intersec-
tion of two bisectors. This implies that the cells will be
smaller in the high-density regions and since each cell
contains one and only one point, the inverse of the cell
area gives the local density. The VT cluster finder takes
advantage of this fact in the process of detection.

2.2. Cluster candidate detection

Each realization of a given point process will result
in a distinct unique tessellation, but the distribution of
Voronoi cell areas will be the same. The case of the Pois-
son point process has been extensively investigated and
it has been shown (Kiang 1966) that the resulting dis-
tribution of Voronoi cell areas is well fitted by a gamma
distribution

p(x) =
βα

Γ(α)
xα−1 exp−βx (1)

with β = α = 4 (only for the Poisson case) and x being
the cell area normalized by the mean area of all cells.
Here we extend Kiang’s formula to a more general case.
Consider a random distribution of points in a plane

with two-point correlation function given by w(θ) =
Aθ1−γ , where the variable θ is the separation between
point pairs and the parameters A and γ are respectively
the amplitude and slope of the power-law. The Poisson
distribution is the particular case where A → 0. A gen-
eral relation between the statistics of the point field and
the VT areas distribution remains as a conjecture yet to
be proved, but in the case of a point field generated from
the above two-point correlation function, the gamma dis-
tribution still holds with the values of α and β modified.
We have proven this fact and obtained the relation be-
tween α, β and the parameters A, γ numerically. Using
the simulated annealing method described in the context
of materials science (Rintoul & Torquato 1997) we gen-
erate test fields spanning a wide range of A, γ pairs. On
each test field we applied the VT algorithm and obtained
the corresponding distribution of cell areas, fitting Eq. 1
to obtain the corresponding pair α, β. These two param-
eters are not independent. They are related by a simple
relation: β = α − 0.26. See the Appendix for a detailed
discussion of these results.
Information about the background is given to the VT

code via the two input parameters A, γ. These will de-
pend on the redshift shell and, ideally, they should be
estimated directly from the data being considered. High
accuracy in the parameters are not required, though.
Note that no free parameters are introduced by A and γ,
since they can be completely determined from the global
input galaxy catalog. Clusters and groups present in
the field when the two-point correlation function is mea-
sured do not affect the cluster finder. On the contrary,
our method is based on the idea that the clustering pro-
cess resulting in the power-law described by A and γ also
results in the formation of clusters, which are found in
the high density end of the VT cell distribution.
Taking the differential probability distribution (1) as a

function of the normalized cell density, δ = 1/x, our goal
is to identify a density threshold δ∗ above which the con-
tribution of the clusters starts to dominate over the back-
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ground. A schematic example is shown in Fig. 2. To the
background distribution given by A = 0.005 and γ = 1.7
(upper panel, dashed line), we add a cluster contribution
of 10% given by a simple Gaussian (upper panel, dotted
line). As a result, the total distribution is distorted by
the presence of the clusters. To perform the detection,
we take the corresponding cumulative distributions. For
the background, the cumulative distribution is given by,

P (δ) =
Γ(α, β/δ)

Γ(α)
(2)

and depends on the input parameters A, γ through α
and β. The maximum of the difference between the
background (dashed) and the total (solid) distributions
corresponds to the point where the total distribution in-
creases faster than the background. This point is a nat-
ural choice for the threshold δ∗ (vertical line).

cluster dominated

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

∆

P
D
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

∆

C
D
F

Fig. 2.— Differential and cumulative distributions of normal-
ized cell densities illustrating the process of detection in the VT
cluster finder. The dashed lines correspond to a background distri-
bution with A = 0.005 and γ = 1.7. The solid lines correspond to
the distributions distorted by an artificial Gaussian-shaped cluster
contribution (dotted line). The vertical line is the threshold for
detection δ∗. All cells above the threshold are selected as cluster
member candidates.

In the example above an artificial cluster contribution
with a particular shape was added to illustrate the prin-
ciple of detection. In the actual process, we work only
with the cumulative distributions. Once the threshold is
computed we select all the cells with δ ≥ δ∗. We then
take the clumps of contiguous selected cells as cluster
candidates.
Setting the threshold at the point of maximum differ-

ence between the two distributions leads to the detection
only of the central regions of the most massive clusters
(M > 1014.5M⊙). This is a consequence of the fact that
the two-point correlation function of the field includes
the contribution of clusters, and only the highest den-

sity peaks deviate significantly from the distribution pre-
dicted by Eq. 2. To improve this result, we allow this
to be an adjustable parameter, called scl. By comparing
the two-point correlation function of galaxies measured
by Davis & Peebles (1983) in the 14.5mB CfA redshift
survey with the two-point correlation function of rich
(R ≥ 1) Abell clusters measured by Bahcall & Soneira
(1983), Bahcall (1986) has estimated that ∼ 25% of all
galaxies are associated with clusters and the 10 Mpc
scale structures that surround them. We therefore set
our threshold at the point δ∗ where the cumulative dis-
tribution reaches ∼ 75%. As this fraction must change
with redshift, magnitude limit of the galaxy catalog and
lower mass limit of the cluster catalog, we determine the
exact values of the cumulative distribution used to set δ∗

in each redshift bin, scl(z), by applying the cluster finder
on simulated galaxy catalogs and maximizing the com-
pleteness and purity of the output catalog. This process
does introduce a free parameter that we must tune.

2.3. Selection of high-significance candidates and
membership assignment

For a given threshold δ∗, we assume that each cluster
candidate has a probability

p(δmin, Ng) = 1− Erf

((

δmin

δ∗
− 1

)

Ng√
2

)

(3)

of being caused by random fluctuations of the back-
ground field. Here δmin is the minimum cell density and
Ng is the number of galaxies in the candidate. Note that
the process of detection implies δmin ≥ δ∗. A confidence
level of 95% is required for a candidate to be accepted.
If a given candidate has p(δmin, Ng) below this level, we
iterate on its cells, dropping the one with lowest density
and recomputing p(δmin, Ng), until this candidate falls
within the acceptable level or runs out of galaxies. As a
result, some cluster candidates will be reduced in size and
others will be eliminated. The final list of candidates is
composed of clusters above the required confidence level.
This cleaning process is necessary as the δ∗ thresold is
set to be permissive; the estimate by Bahcall (1986) that
∼ 25% of all galaxies are associated with clusters was
accompanied by a hypothesis that these galaxies were
distributed in ∼ 30 Mpc scale overdense regions about
clusters, while we aim to detect clusters closer to the
∼ 1Mpc Virial scale. This process results in a list of
cluster members, given by all the galaxies within the fi-
nal VT footprint of the cluster. The galaxy belonging to
the cell of highest density is taken as the central galaxy.
The accuracy of the membership assignment is limited

by the errors in the redshift of the galaxies and width
of the redshift shell. As discussed in section 2.5, the
membership list is improved in the second run of the VT
cluster finder, which is performed in boxes centered at
the central galaxies flagged during this first run.

2.4. Shape measurement

To obtain the cluster shape parameters, we take the
galaxies within the cluster VT footprint and compute the
second moments of the galaxy distribution with respect
to the coordinates (xc, yc) of the central galaxy, using the
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cell densities δ as weights. These second moments are:

mxx =

∑

i δi(xi − xc)
2

∑

i δi

myy =

∑

i δi(yi − yc)
2

∑

i δi
(4)

mxy =

∑

i δi(xi − xc)(yi − yc)
∑

i δi

where the x and y directions are aligned with the RA
and Dec axes, respectively. We use these quantities to
compute the semi-major and semi-minor axes, a and b,
respectively:

a =

[

1

2
(mxx +myy + f)

]1/2

b =

[

1

2
(mxx +myy − f)

]1/2

(5)

where
f = (mxx −myy + 4mxy)

1/2

The position angle is also obtained in terms of the same
quantities,

PA =
180

π
tan−1

(

b2 −mxx

mxy

)

(6)

and is given in degrees.

2.5. Catalog construction

A global list of cluster candidates is made by merg-
ing the results of the individual shells. For each cluster
in that list we extract from the full input galaxy catalog
(not the z shells) a 3-dimensional box centered at its cen-
tral galaxy and with the same size as in the first run: 3×3
square degrees and σz width. These boxes are processed
with the VT algorithm, repeating the steps described in
§2.1-2.4 and a new global list of cluster candidates is con-
structed, taking only the clusters found at the center of
each box.
We perform a matching between the two global lists.

In this matching scheme, candidates are considered the
same cluster if they have more than 50% of shared galax-
ies and multiple matches are not allowed. When a match-
ing occurs, that cluster is eliminated from the list of
candidates available for matching with other candidates.
The clusters found in the first run but undetected in
the second run are eliminated as projection effects. The
primary function of this stage, however, is to deal with
photo-z slice edge effects.
Because the new boxes are allowed to cross the initial

shell boundaries, edge effects in the redshift dimension
are eliminated. Clusters split in several components dur-
ing the initial detection will result in cluster candidates
with a number of shared galaxies after the second run.
For a given pair of candidates found to be the same clus-
ter (i.e., sharing more than 50% of their galaxies), only
the one with the largest number of members is added to
the final cluster catalog. Otherwise, they are said to be
distinct clusters with shared galaxies (which are flagged
in the members list) and both are included in the clus-
ter catalog. Setting the threshold of shared galaxies to

50% is a natural choice between the two extremes where
all candidates would be duplicated or only the clusters
found with the same set of member galaxies would be
accepted.
At this point the detection is completed. We have the

final list of clusters containing RA, Dec, redshift and a
list of member galaxies including the parameters of the
corresponding VT cells. This forms the VT footprint of
the cluster. The cluster redshift is estimated as the me-
dian of the redshift of the cluster members. The quantity
is better estimated in the second run after a cleaner mem-
bership list is obtained, so as to avoid projection effects
along the line of sight.
The output parameters of the VT cluster catalog are:

ID, RA, Dec (coordinates of its central galaxy or the
highest density peak), z (given by the median of all mem-
bers), σz (rms value), δc (density contrast measured at
the final stage of detection), σ (significance of detection),
richness (number of members), size (radius of the cir-
cle enclosing all galaxies), a (semi-major axis), b (semi-
minor axis) and PA (position angle).
We also report a members list containing: ID, host ID

(most likely host cluster), cell density, shared flag (1 if the
galaxy is shared with another cluster, 0 otherwise) and
central flag (1 for central galaxy, 0 for regular members).
Note that we do not list every possible galaxy-cluster as-
sociation in the output. Galaxies not associated to any
cluster are listed with host ID, shared flag and central
flag set to −1. These non-member galaxies can be used,
for instance, to compute the local density of non-member
galaxies around a cluster or to run afterburners to mea-
sure cluster properties such as richness and R200.
Having a list of members generated by the cluster

finder is highly desirable, because properties such as the
optical richness and R200 can be estimated. The lack
of membership assignment in VT implementations us-
ing magnitudes was a drawback and we improve on that
matter. Also, this allows us to compute the algorithm
efficiency as follows.

3. ALGORITHM EFFICIENCY

The effectiveness of the algorithm is evaluated by mea-
suring the VT catalog completeness and purity as a func-
tion of mass and redshift. These quantities are the se-
lection function needed to understand the catalog. The
completeness and purity are best measured with mock
galaxy catalogs with known relations to dark matter ha-
los. The field can no longer be advanced by placing single
clusters in the center of an image with random back-
grounds.
We apply the algorithm to a mock galaxy catalog and

match the resulting cluster catalog with the correspond-
ing mock truth table of halos – the truth table. This
allows us to define completeness as the fraction of halos
with a VT cluster counterpart and purity as the fraction
of VT clusters with a matching halo. We perform this
in bins of redshift and we also estimate the impact of
redshift errors.

3.1. Mock catalogs

Mock galaxy catalogs are created using the ADDGALS
code (Busha & Wechsler 2008; Wechsler 2004, see also
Gerdes et al. 2010, Appendix A). ADDGALS takes a N-
body simulation light cone and attaches galaxies to its
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dark matter particles to create a deep mock photomet-
ric catalog using an N-body simulation with only mod-
est mass resolution. The resulting galaxy catalog re-
produces the luminosity function, the magnitude depen-
dent 2-point correlation function and the color-density-
luminosity distribution measured from the SDSS data.
The mock catalogs used here were based on the Hub-
ble Volume simulation that modeled a 3-Gpc/h box with
10243 particles in a flat ΛCDM cosmology with ΩM = 0.3
and σ8 = 0.9 (Evrard et al. 2002).
ADDGALS first builds a list of galaxies r-band lu-

minosities drawing from a luminosity function φ(Mr),
and assigns these galaxies to individual dark matter
particles in the simulation. Here, φ(Mr) is the ob-
served SDSS r-band luminosity function at redshift ∼ 0.1
from Blanton et al. (2003) assuming passive evolution of
1.3 magnitudes per unit redshift. These galaxies are
then mapped to individual dark matter particles using
a probability relation P (Rδ|Lr/L∗) that relates to local
dark matter overdensity to the luminosity of a galaxy.
Overdensities of dark matter are computed using the
characteristic radius Rδ, defined as the radius enclosing
1.8× 1013h−1 solar masses of dark matter. The form of
P (Rδ|Lr/L∗) is taken to be a Gaussian plus a log-normal
representing galaxies in the “field”, i.e., unresolved low-
mass halos, and those in higher mass, well-resolved “ha-
los.” The exact form of this relation is

P (Rδl|Lr/L∗) =
(1− p(L))

R
√
2πσc(Lr/L∗)

×

e−(ln(Rδl)−µc(Lr/L∗))
2/2σc(Lr/L∗)

2

+
p(Lr/L∗)√
2πσf (:r /L∗)

e(Rδ−µf (:r/L∗))
2/2σf (Lr/L∗)

2

. (7)

The exact values of the parameters for this function are
determined using a Monte Carlo Markov Chain analysis,
imposing that the observed magnitude dependent 2-point
correlation function is matched.
The next step is to assign galaxy colors. The local

galaxy density is computed for each galaxy in the simula-
tion and in a training set of galaxies from the magnitude-
limited SDSS DR6 catalog using the projected distance
to the 5th nearest neighbor in a bin of redshift as in
Cooper et al. (2007). Each mock galaxy is assigned the
SED of a randomly selected SDSS galaxy with similar
local galaxy density and absolute magnitude Mr. When
doing this matching, we don’t match absolute measure-
ments of the densities, but instead opt for a relative
matching where the SEDs from the densest galaxies in
our training set are matched to the densest galaxies in
the mock. This lets up more robustly assign SEDs to
higher redshift objects where our training set is incom-
plete. The SED is then k-corrected and the appropri-
ate filters are applied to obtain SDSS colors. At high
redshift, color information is extrapolated from low red-
shifts: r-band magnitudes are passively evolved before
selecting the SED from our training-set galaxy which
is then k-corrected assuming that the rest-frame colors
and the color-density-luminosity distribution remain un-
changed.
The resulting catalog reproduces the overall photo-

metric and clustering properties of the SDSS galaxies
at low redshifts (z ∼ 0.3) and extends, using simplified

assumptions, to higher redshifts (z ∼ 1.3) and deeper
magnitudes (r ∼ 24). The brightest cluster galaxies
(BCGs), however are an exception. BCGs luminosities
are tightly correlated with their host halo mass and are
not reproduced by this method. Therefore, a BCG lu-
minosity is calculated for each resolved halo (of mass
∼ 5 × 1013h−1M⊙ and above) using the measurements
from Hansen et al. (2005) before the usual galaxy-to-
dark matter particle assignment begins. The correspond-
ing galaxies are then removed from the initial list of
galaxies and placed at the center of its host halo.
We run our cluster finder on the mock catalog and

compare our results with the truth table. The quanti-
ties featured in the truth table are R.A., Dec., redshift
and M200, plus list of member galaxies of each halo. In
this paper, we refer to the truth table as the halo cat-
alog, and to the VT output as the cluster catalog. The
quantities we use as inputs are: R.A., Dec., and photo-
metric redshift. We generate photometric redshifts from
the true redshifts, using a Gaussian distribution of width
σz(1 + z). We test four different values of σz , namely
0.015, 0.03, 0.045 and 0.06 to access the impact of the
photometric redshift errors in our cluster finder.
The discussion so far was restricted to a perfect volume

limited galaxy catalog. A real galaxy catalog, however,
will have an irreducible level of contamination and in-
completeness. Here we mimic the effects of these two
quantities in the mocks by assuming that the input
galaxy catalog has a completeness function given by a
Fermi-Dirac distribution

Cg(r) =
f0

1 + exp((r − µ)/σ)
(8)

where µ is the magnitude limit of the catalog, f0 is a nor-
malization constant and the parameter σ controls how
fast the completeness falls when the magnitude limit is
reached. The parameters f0 and σ are taken from pro-
cessing of the SDSS data with the 2DPHOT package
(La Barbera et al. 2008). We found that f0 = 0.99 and
σ = 0.2 are typical values. We degrade the mock catalogs
using µ = 23.5, interpreting Cg(r) as the probability that
a galaxy of magnitude r is detected. Similarly, from the
SDSS data we infer that a small fraction of contaminants,
due to misclassified stars, can be present in the input cat-
alog. The fraction of misclassified objects increases expo-
nentially for magnitudes above µ−1.5. We take this fact
into account by generating false galaxies randomly above
this limit and drawing from (8) the probability that this
object is actually added to the catalog.

3.2. Membership matching

The evaluation of completeness and purity requires a
well defined matching scheme between the cluster cat-
alog and the truth table. We use a membership-based
matching method. Membership matching has been used
in evaluating completeness and purity of both photomet-
ric and spectroscopic catalogs (White & Kochanek 2002;
Eke et al. 2004; Gerke et al. 2005; Koester et al. 2007a).
Unlike cylindrical matching, which has been largely em-
ployed in this kind of study, this method is parameter-
free, unambiguous and provides the means to evaluate
the efficiency of the cluster finder as a function of halo
mass regardless of the observable proxy for mass. This
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allow us to distinguish the aspects relevant to the clus-
ter finding problem from aspects connected to the mass-
observable proxy calibration, which is a problem per se
and is better addressed by a separate set of post-finding
algorithms.
The inputs for the matching code are the halo catalog

and the cluster catalog. The first is ranked by mass while
the latter is ranked by the number of galaxies, both in
descending order and in bins of redshift. It is critical to
do the ranking in bins of redshift for both the halos and
the clusters. In the case of halos, the mass function is
evolving, so the masses will be changing at fixed rank.
In the case of the clusters, the flux limit forces a chang-
ing luminosity limit with redshift, so the ranks will be
changing at fixed mass. If this is not taken into account,
a massive cluster at high-z (z ∼ 1) will get a much lower
rank than a massive cluster at low-z (z ∼ 0.1).
After ranking, the first step is to fit a rank-mass rela-

tion R(M) to the cluster catalog, provided rank, and the
matched halo catalog provided mass. We use the fitting
formula

R(M) =

(

M

Mp

)α

exp

(

exp

(

M0 −M

Me

)

− M

M1

)

(9)

This relation has no motivation other than a global fit-
ting function, valid at all redshifts provided that the
ranking is performed as described above. For our mock
catalogs, the best fit parameters for this fitting function
areMp = 2.26×1017, Me = 1.40×1014, M0 = 1.85×1013,
M1 = 1.85 × 1014 and α = −1.15. We then invert the
relation above to compute an “observed mass” for each
cluster and proceed to the matching. If the proxy used to
rank the clusters has a tight correlation with mass, the
ranking will be accurate and the observed mass will show
a tight correlation with the true mass for the matched
pairs. It is important to notice, that the use of rank-
ing instead of observed mass, does not require the mass-
observable relation to be calibrated. Moreover, neither
mass information nor the ranking is used in the matching
process, which is membership-based.
A match takes place if a fraction of member galax-

ies is shared by a halo-cluster pair. The best match is
the object sharing the largest fraction of galaxies. We
require unique matching, in which a given halo/cluster
is not allowed to be associated with more than one clus-
ter/halo. As both lists are ranked by number of galaxies,
uniqueness is imposed by eliminating a matched object
from the list of available objects for future matches down
the list. We also require two-way matching, where the
best matching pair is found when the matching is per-
formed in both directions, halos-to-clusters and clusters-
to-halos.
We note that this approach to cluster-halo matching is

quite general and can be applied to any cluster-finding
algorithm that produces a list of cluster members. It will
be developed in more detail as a framework for compar-
ing different algorithms establishing their usefulness for
cosmological tests (Gerke et al. 2011).

3.3. Completeness & Purity

Completeness is defined as the fraction of halos hav-
ing a counterpart in the cluster catalog. Purity in turn
is defined as the fraction of objects in the cluster cata-

log that correspond to a true halo. In both cases, only
unique two-way matches are considered. Allowing for
non-unique matching, where each cluster may have more
than one matching halo and vice-versa, would be a more
permissive approach. For instance, purity would not be
affected by a halo being split in two components and com-
pleteness would not be affected by two halos appearing
as a single cluster.
We count the number of matched objects in bins of

mass and redshift. Therefore,

C(M, z) =
Nmatched(M, z)

Nhalos(M, z)
(10)

P (M, z) =
Nmatched(M, z)

Nclusters(M, z)
(11)

Note that C(M, z) can be computed using the true mass
of the halos, being totally independent of the mass proxy
used to rank the clusters. The true mass of the clus-
ters, however, is available only for the matched objects.
Therefore P (M, z) has to be computed using the ob-
served mass and does depend on the ranking. We fit a
power law to the Mobs−Mtrue relation from the matched
objects and use it to transform the scale in the P (M, z)
plots and show both completeness and purity as a func-
tion ofMtrue. This cannot be performed before the rank-
mass relation fitting step, which is part of the matching
process. This method allow us to evaluate the efficiency
of any cluster finder imposing minimum requirements,
namely a list of members for each cluster. The selection
function can be defined in terms of completeness and pu-
rity as

f(M, z) =
C(M, z)

P (M, z)
. (12)

This is a simplified definition. For cosmological studies
with real data, f(M, z) should be defined and evaluated
in a likelihood analysis that includes the scatter in the
mass-observable relation after calibration. Here, how-
ever, we simply want to compare the observed cluster
number counts Nobs(M, z) to the predictions from the
ΛCDM cosmological model NΛCDM(M, z). In this case,
the selection function is easily taken into account:

Nobs(M, z) = f(M, z)NΛCDM(M, z). (13)

This comparison allows us to develop a feel for how well
we can recover the true cluster number counts using the
VT catalog and our ability to perform a cosmological test
using VT clusters as a probe.
The method described above is very simplified with

respect to the procedures involved in an actual measure-
ment of the mass function. This would require a mea-
surement of the mass-observable relation and its scatter.
We do not perform this because the VT cluster cata-
log provides only Ngals, the number of galaxies on the
membership list, as a mass proxy. This Ngals was not
optimized to have a tight relation with mass, as for ex-
ample the λ estimator of Rozo et al. (2009). Measuring
and optimizing a mass proxy is a necessary step if the
VT is to be used in performing cosmological tests. But
this problem is better addressed by a separate algorithm,
specifically designed to provide a calibrated mass proxy
including the mean relation and the scatter.
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4. RESULTS AND DISCUSSION

In Fig. 3 we show the completeness and purity as a
function of mass and redshift for different Gaussian σz

values. The photometric redshift errors have a strong im-
pact on both completeness and purity. For σz = 0.015,
completeness lies above 80% for all redshift bins and
masses above ∼ 1013.5M⊙. Purity however, drops sig-
nificantly at the low mass end. We attribute this to the
fact that the range 1013.5−1014M⊙ is at the lower bound-
ary of the halo catalogs associated with the mock catalog.
ADDGALS will populate some fraction of real dark mat-
ter clumps in the simulation even if they are below the
threshold for detection in the halo catalog. A fraction of
these halos were populated with galaxies by ADDGALS,
but were not listed in the truth table. We have no means
to determine the exact fraction at this point and there-
fore we interpret the purity curve as a lower limit.
In the high-redshift regime, completeness and purity

do not change much with σz. The lowest redshift bin,
however, shows the lowest purity and completeness in
almost all cases. This might be due to the large angular
size of clusters at low-z, as at z ∼ 0.1 the target area
of 1 square degree corresponds to only a few times the
typical R200. However, even in this case the VT catalog
achieves completeness and purity above ∼ 80% at all
masses. Since we are most interested in a reliable catalog
at high redshifts, we consider the cluster finder efficiency,
as shown in Fig. 3, very good.
Note that the behavior of purity is qualitatively differ-

ent in the last panel, σz = 0.060. This may be connected
to low redshift clusters leaking to high redshift shells at
higher rates than the high redshift ones fall towards low
redshift.
Testing the effect of changes in the cluster finder free

parameters on the completeness and purity functions, we
find that:

1. Changing the fraction of shared galaxies required
to consider two candidates as the same cluster in
the range 40− 60 percent has less than 1% impact
on the results. We fix this value at 50%.

2. The selection function is very sensitive to scl(z).
Setting scl(z) too high (> 0.97) leads to fragmenta-
tion of clusters, which affects purity at all masses,
and failure to detect low contrast clusters, which
affects completeness at the low mass end. Setting
scl(z) below 0.75 causes merging of clusters and
affects completeness. An optimal value for scl(z)
in the range 0.75 − 0.97 has to be found at each
redshift bin.

3. The confidence level threshold has little effect on
the detection. The final list of clusters shows less
than 10% difference when this parameter varies in
the range 90 − 99.5 percent. But it affects the se-
lection function by modifying the membership list.

Fig. 4 illustrates our ability to recover the true cluster
number counts of the input catalog. We take the case
σz = 0.015(1+z) and the redshift bin 0.9 < z < 1.1. For
a given mass bin Mi we divide the number of VT clus-
ters detected by the selection function term f(Mi, z). We
then sum the corrected counts through all bins of mass
> M (red solid line). The curve for the truth table is

done by counting all the halos above M (black dotted
line). We finally plot (blue dashed line) the values ex-
pected in a ΛCDM cosmology (e.g., Evrard et al. 2002)
for comparison.
There is a remarkable agreement between the three

curves. The tilt of the measured curve with respect to the
truth table may be interpreted as low mass clusters being
misplaced towards more massive bins, due to our neglect
of the scatter in the mass-observable relation. As pointed
out in §3.3, the method used here does not take into
account crucial steps involved in an actual measurement
of the mass function. This issue must be addressed with a
full program of mass calibration and is beyond the scope
of this paper. The result shown in Fig. 4 encourages
the pursuit of such a program, though. Our results show
that the VT is a reliable cluster finder in the redshift and
mass range of interest, as seen in the completeness and
purity curves. Application of this algorithm on SDSS
data is underway and will be presented in a forthcoming
paper (Soares-Santos et al. 2010).

5. SUMMARY

In this paper we present an improved implementation
of the Voronoi Tessellation cluster finder. Improvements
with respect to earlier works include:

1. The use of photometric redshifts instead of magni-
tudes.

2. A more realistic assumption that galaxy fields
have two-point correlation function described by a
power-law, and not by a Poisson distribution.

3. Implementation of a membership assignment
scheme.

The VT cluster finder in 2+1 dimensions was tailored
to fulfill the requirements of upcoming cosmological ex-
periments aiming at using clusters as probes for dark en-
ergy. The main challenges towards this goal include the
construction of reliable cluster catalogs up to high red-
shifts (z ∼ 1) and down to low mass limits (∼ 1013.5M⊙)
and the measurement of the selection function as a func-
tion of M and z. To achieve these goals using the VT
we:

1. Adapted the VT algorithm to use photometric red-
shift shells and take advantage of the relation that
we have discovered between the two-point correla-
tion function of the galaxy field and its distribution
of VT cell areas.

2. Defined the selection function in term of complete-
ness and purity, establishing an objective way to
measure these quantities using simulated catalogs.

3. Applied the VT to mock galaxy catalogs and com-
puted the completeness and purity of the output
cluster catalog with the truth table, showing that
the VT can produce cluster catalogs with complete-
ness and purity above 80% in the ranges of interest
within the M -z parameter space.

4. Computed the cluster abundance from the VT cat-
alog and compared it to the halo abundance in the
mocks, finding a remarkable agreement at all mass
bins.
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Fig. 3.— Completeness (left) and purity (right) curves as a function of mass for six redshift bins: 0.1 < z < 0.3 (blue), 0.3 < z < 0.4
(cyan), 0.4 < z < 0.6 (black), 0.6 < z < 0.7 (orange), 0.7 < z < 0.9 (purple), 0.9 < z < 1.1 (red). From top to bottom, the plot pairs
feature different σz values: 0.015, 0.03, 0.045, 0.06. The photometric redshift errors have a strong impact on both completeness and purity.
In the best case, completeness and purity rest above 80% for all redshift bins and masses above ∼ 1014.2. In the case of purity, this curve
should be interpreted as a lower limit (see text for discussion).

These results allow us to be confident in our ability to
perform a cosmological test for dark energy using the VT
algorithm on a data set of sufficient scope. Analysis of
the application of the VT to the SDSS data is underway
and will be presented elsewhere.
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APPENDIX

THE VORONOI TESSELLATION CELL AREAS DISTRIBUTION FOR POWER-LAW CORRELATED POINT PROCESSES

Motivated by what is known about the two-point correlation function of galaxies in the Universe, we consider a
2-dimensional point field characterized by a two-point correlation function of the form

w(θ) = Aθ1−γ (A1)

where θ is a distance, A is the amplitude of the correlation and γ is the slope of the power-law. A = 0 represents the
Poisson particular case. We generate simmulated fields spanning a wide range of the parameter space (A, γ) around
the measured values reported in the literature. These simulated fields are used to characterize the VT cell areas
distribution.
Although aimed at application in our cluster finder algorithm, this study allows to investigate the connection between

this VT property and the statistical process of the generator set of points. This topic has been extensively discussed
(see Okabe (2000) for a review). For the Poisson case, simulations have been used to support the so-called Kiang’s
conjecture that the distribution of standardized cell sizes (size/mean size) in n-dimensional space is given by

p(x) =
βα

Γ(α)
xα−1 exp−βx (A2)

with α = β = 2n. This has been rigorously shown for n = 1 and studied in simulations up to n = 3. Here we extend
this conjecture to the case where the two-point correlation function of the field is given by a power-law. We focus on
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n = 2. Our results indicate that Eq. A2 still holds but the parameters α and β are modified. The relation α = 0.26+β
is found to be valid within the parameters space explored.
In the following sections we describe the simulations and the modeling of the area distribution. We discuss our

results in comparison to the well-studied Poisson case and provide the relevant quantities in Table 1.

Point field simulation

To generate the simulated fields with two-point correlation function given by Eq. A1, we implement the simulated
annealing method as proposed by Rintoul & Torquato (1997). This method is generally used to find the state of
minimum “energy” of a given system, by sampling the different states weighted by the probability of occurrence of
that state. Here, we take Eq. (A1) as our “reference” state, and the state of the “system” is denoted as ws(θ). We
consider logarithmic bins in θ, and define the energy of the system as

E =
∑

i

(ws(θi)− w(θi))
2 (A3)

where the sum is over all bins. We use 10 bins in the interval 0.01 < θi < 2. This definition of energy is convenient
because it ensures that E decreases when the difference between any two bins decreases.
The initial state is a Poisson state. To evolve the system towards w(θ), we chose a particle and move it to a random

position in the field. We compute the energy E′ of this new configuration and obtain ∆E = E′ − E. The move is
accepted with probability

p(∆E) =

{

1 ∆E ≤ 0
exp(−∆E/kT ) ∆E > 0 (A4)

where kT is the “temperature” of the system. This is chosen to allow the system to evolve as quickly as possible to the
minimum state, without getting trapped in local minima. The initial temperature is set to 1. We attempt to move all
the particles sequentially and, after a complete round over all the N particles of the system, its temperature is cooled
by a factor of 2. The system converges about 30% faster with this cooling schedule.
In Fig. 5 we show one example, where A = 0.005 and γ = 1.7. This combination of parameters correspond to typical

values measured, for instance, on SDSS data up to magnitude limit r′ = 21.5 (Connolly et al. 2002). The initial system
is on the left, the field in the middle is the final state, after 10 rounds over all particles. The plot on the right shows
the evolution of the energy of the system. The difference between the initial and final states is not noticeable by eye
and a statistical method must be used to actually measure the two-point correlation function and compute ∆E at
each iteration. We use a fast Fourier transform code (Szapudi et al. 2005) to accomplish this. Using this method we
have generated 190 fields of 3× 3 sq degrees and 1.6× 104 particles.
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Fig. 5.— The left plot shows the initial (Poisson) state of a system meant to evolve towards a configuration with A = 0.005 and γ = 1.7.
The final state is the one in the central plot. The right plot is the evolution of the energy of the system (normalized by its initial energy) as
a function of the iteration number normalized by the total number of particles in the system. Under this normalization, nit/N = 1, 2, 3...
refers to complete rounds over all particles in the field. This simulation was performed in a box of 3×3 sq deg containing 1.6×104 particles.
Just a 1× 1 sq deg portion of the field is shown.

Gamma model for the VT cell distribution

We apply the VT code on each of the simulated fields, obtain the distribution of cell normalized cell areas and find
the best fit Gamma model (Eq. A2). Fig. 6 shows, as an example the VT diagram for the same system featured above.
The left and right diagrams correspond to the initial and final state of the system, respectively.
The result of the fit is shown in Fig. 7, again for the case A = 0.005 and γ = 1.7. For comparison we show as well

the traditional Kiang formula (dashed line). The results are α = 3.89± 0.04 and β = 3.65± 0.05. Kiang’s formula is
more than 5σ away from the best fit.
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Fig. 6.— The Voronoi diagram corresponding to the two fields shown in Fig. 5. The initial and final states are on the left and right
panels, respectively.
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Fig. 7.— Left: Best fit model for the distribution of normalized VT cell areas featured in Fig. 6. The curve for the Poisson case is also
shown for comparison (dashed line). Right: Fractional residuals of the fit.

The results for the ensemble of simulated fields studied are shown in Fig. 8. The values of α and β fall in the range
3.5 < α < 3.9 and 3.5 < β < 3.8. The mean error in both is 0.04. There is a noticeable correlation between these
two parameters. The difference α − β is shown to be 0.26 ± 0.02 all over the parameter space explored. The model
parameters for the values of A and γ considered are presented in Table 1.
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Fig. 8.— Density maps showing the results of the fit in the parameter space investigated. There is a noticeable correlation between the
two left most maps. The difference between these two maps is shown in the right.
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TABLE 1
VT Model Parameters

Areas Distribution

A γ α β χ2/ν

0.001 1.0 · · · 3.91 ± 0.05 3.66 ± 0.05 1.24
0.001 1.1 · · · 3.86 ± 0.05 3.61 ± 0.05 1.49
0.001 1.2 · · · 3.93 ± 0.04 3.68 ± 0.03 1.12
0.001 1.3 · · · 3.92 ± 0.04 3.67 ± 0.03 1.74
0.001 1.4 · · · 3.81 ± 0.04 3.57 ± 0.04 1.7
0.001 1.5 · · · 3.96 ± 0.04 3.71 ± 0.03 1.33
0.001 1.6 · · · 3.91 ± 0.04 3.65 ± 0.03 1.25
0.001 1.7 · · · 3.86 ± 0.05 3.62 ± 0.05 2.07
0.001 1.8 · · · 3.81 ± 0.04 3.57 ± 0.03 1.49
0.001 1.9 · · · 3.94 ± 0.02 3.69 ± 0.01 1.19
0.002 1.0 · · · 3.94 ± 0.04 3.71 ± 0.03 1.78
0.002 1.1 · · · 3.87 ± 0.05 3.63 ± 0.04 1.18
0.002 1.2 · · · 3.93 ± 0.04 3.69 ± 0.05 1.61
0.002 1.3 · · · 3.87 ± 0.02 3.63 ± 0.03 2.17
0.002 1.4 · · · 3.83 ± 0.04 3.58 ± 0.03 1.43
0.002 1.5 · · · 3.9 ± 0.04 3.66 ± 0.03 1.4
0.002 1.6 · · · 3.95 ± 0.04 3.7 ± 0.03 1.36
0.002 1.7 · · · 3.79 ± 0.04 3.55 ± 0.04 1.41
0.002 1.8 · · · 3.84 ± 0.04 3.59 ± 0.03 1.57
0.002 1.9 · · · 3.89 ± 0.04 3.65 ± 0.05 1.57
0.003 1.0 · · · 3.81 ± 0.04 3.56 ± 0.04 1.49
0.003 1.1 · · · 3.9 ± 0.04 3.65 ± 0.05 1.22
0.003 1.2 · · · 3.94 ± 0.04 3.69 ± 0.03 1.51
0.003 1.3 · · · 3.84 ± 0.04 3.6 ± 0.03 1.62
0.003 1.4 · · · 3.86 ± 0.01 3.61 ± 0.01 1.53
0.003 1.5 · · · 3.97 ± 0.04 3.72 ± 0.03 1.29
0.003 1.6 · · · 3.81 ± 0.04 3.57 ± 0.04 1.89
0.003 1.7 · · · 3.8 ± 0.04 3.55 ± 0.05 2.03
0.003 1.8 · · · 3.81 ± 0.05 3.57 ± 0.04 1.49
0.003 1.9 · · · 3.86 ± 0.04 3.61 ± 0.05 1.56
0.004 1.0 · · · 3.86 ± 0.04 3.62 ± 0.05 1.59
0.004 1.1 · · · 3.81 ± 0.04 3.56 ± 0.05 1.47
0.004 1.2 · · · 3.79 ± 0.04 3.55 ± 0.04 1.35
0.004 1.3 · · · 3.87 ± 0.04 3.62 ± 0.03 1.65
0.004 1.4 · · · 3.85 ± 0.04 3.6 ± 0.05 1.42
0.004 1.5 · · · 3.97 ± 0.04 3.73 ± 0.03 1.24
0.004 1.6 · · · 3.87 ± 0.05 3.63 ± 0.05 1.35
0.004 1.7 · · · 3.82 ± 0.04 3.57 ± 0.04 1.38
0.004 1.8 · · · 3.91 ± 0.04 3.66 ± 0.03 1.04
0.004 1.9 · · · 3.9 ± 0.02 3.65 ± 0.01 1.33
0.005 1.0 · · · 3.81 ± 0.01 3.56 ± 0.03 1.51
0.005 1.1 · · · 3.86 ± 0.04 3.61 ± 0.03 1.53
0.005 1.2 · · · 3.85 ± 0.04 3.6 ± 0.05 1.61
0.005 1.3 · · · 3.8 ± 0.04 3.55 ± 0.04 1.41
0.005 1.4 · · · 3.83 ± 0.04 3.58 ± 0.03 1.71
0.005 1.5 · · · 3.87 ± 0.04 3.63 ± 0.05 1.25
0.005 1.6 · · · 3.81 ± 0.04 3.57 ± 0.03 1.14
0.005 1.7 · · · 3.89 ± 0.04 3.65 ± 0.05 1.16
0.005 1.8 · · · 3.96 ± 0.04 3.69 ± 0.05 1.84
0.005 1.9 · · · 3.88 ± 0.04 3.64 ± 0.05 1.56
0.006 1.0 · · · 3.9 ± 0.05 3.66 ± 0.04 1.56
0.006 1.1 · · · 3.78 ± 0.01 3.54 ± 0.03 1.47
0.006 1.2 · · · 3.84 ± 0.04 3.61 ± 0.03 1.13
0.006 1.3 · · · 3.88 ± 0.05 3.63 ± 0.05 1.48
0.006 1.4 · · · 3.83 ± 0.01 3.59 ± 0.01 2.
0.006 1.5 · · · 3.86 ± 0.04 3.61 ± 0.05 1.62
0.006 1.6 · · · 3.71 ± 0.04 3.47 ± 0.04 2.34
0.006 1.7 · · · 3.86 ± 0.02 3.61 ± 0.03 1.62
0.006 1.8 · · · 3.92 ± 0.05 3.67 ± 0.05 1.34
0.006 1.9 · · · 3.91 ± 0.02 3.66 ± 0.01 1.25
0.007 1.0 · · · 3.85 ± 0.05 3.6 ± 0.04 1.53
0.007 1.1 · · · 3.9 ± 0.04 3.64 ± 0.05 2.08
0.007 1.2 · · · 3.84 ± 0.01 3.6 ± 0.03 1.13
0.007 1.3 · · · 3.82 ± 0.04 3.57 ± 0.03 1.51
0.007 1.4 · · · 3.89 ± 0.02 3.64 ± 0.001 1.43
0.007 1.5 · · · 3.81 ± 0.01 3.56 ± 0.01 2.11
0.007 1.6 · · · 3.84 ± 0.05 3.59 ± 0.05 1.53
0.007 1.7 · · · 3.77 ± 0.01 3.52 ± 0.001 1.29
0.007 1.8 · · · 3.75 ± 0.04 3.5 ± 0.04 1.91
0.007 1.9 · · · 3.86 ± 0.05 3.61 ± 0.04 1.52
0.008 1.0 · · · 3.86 ± 0.04 3.61 ± 0.05 1.89
0.008 1.1 · · · 3.87 ± 0.04 3.62 ± 0.05 1.53
0.008 1.2 · · · 3.92 ± 0.05 3.68 ± 0.05 1.67
0.008 1.3 · · · 3.82 ± 0.04 3.57 ± 0.03 1.32
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TABLE 1
VT Model Parameters

0.008 1.4 · · · 3.83 ± 0.04 3.59 ± 0.03 1.66
0.008 1.5 · · · 3.99 ± 0.04 3.73 ± 0.03 1.67
0.008 1.6 · · · 3.86 ± 0.02 3.61 ± 0.03 1.46
0.008 1.7 · · · 3.88 ± 0.05 3.63 ± 0.05 1.52
0.008 1.8 · · · 3.88 ± 0.05 3.62 ± 0.05 1.39
0.008 1.9 · · · 3.86 ± 0.04 3.6 ± 0.03 1.34
0.009 1.0 · · · 3.9 ± 0.02 3.66 ± 0.03 1.25
0.009 1.1 · · · 3.96 ± 0.05 3.7 ± 0.05 1.48
0.009 1.2 · · · 3.96 ± 0.04 3.71 ± 0.05 1.51
0.009 1.3 · · · 3.78 ± 0.05 3.53 ± 0.04 2.21
0.009 1.4 · · · 3.91 ± 0.04 3.65 ± 0.05 1.47
0.009 1.5 · · · 3.86 ± 0.04 3.63 ± 0.05 1.32
0.009 1.6 · · · 3.93 ± 0.02 3.67 ± 0.01 1.21
0.009 1.7 · · · 3.84 ± 0.04 3.59 ± 0.04 1.3
0.009 1.8 · · · 3.85 ± 0.04 3.6 ± 0.03 1.65
0.009 1.9 · · · 3.95 ± 0.05 3.69 ± 0.04 1.44
0.01 1.0 · · · 3.9 ± 0.02 3.65 ± 0.03 1.71
0.01 1.1 · · · 3.93 ± 0.04 3.69 ± 0.03 1.34
0.01 1.2 · · · 3.93 ± 0.04 3.68 ± 0.05 1.5
0.01 1.3 · · · 3.83 ± 0.05 3.58 ± 0.04 1.74
0.01 1.4 · · · 3.94 ± 0.05 3.69 ± 0.05 1.37
0.01 1.5 · · · 3.8 ± 0.04 3.56 ± 0.04 1.3
0.01 1.6 · · · 3.88 ± 0.02 3.63 ± 0.03 1.26
0.01 1.7 · · · 3.82 ± 0.05 3.57 ± 0.04 1.82
0.01 1.8 · · · 3.88 ± 0.02 3.62 ± 0.03 1.52
0.01 1.9 · · · 3.82 ± 0.01 3.56 ± 0.03 1.49
0.02 1.0 · · · 3.93 ± 0.04 3.68 ± 0.05 1.97
0.02 1.1 · · · 3.84 ± 0.01 3.6 ± 0.01 1.96
0.02 1.2 · · · 3.88 ± 0.04 3.63 ± 0.03 1.2
0.02 1.3 · · · 3.92 ± 0.04 3.67 ± 0.03 1.4
0.02 1.4 · · · 3.91 ± 0.05 3.66 ± 0.05 1.51
0.02 1.5 · · · 3.75 ± 0.01 3.5 ± 0.01 1.72
0.02 1.6 · · · 3.79 ± 0.04 3.55 ± 0.03 1.2
0.02 1.7 · · · 3.94 ± 0.04 3.68 ± 0.05 1.35
0.02 1.8 · · · 3.93 ± 0.04 3.67 ± 0.03 1.31
0.02 1.9 · · · 3.88 ± 0.04 3.62 ± 0.03 1.09
0.03 1.0 · · · 3.74 ± 0.01 3.49 ± 0.03 1.85
0.03 1.1 · · · 3.88 ± 0.05 3.63 ± 0.05 1.61
0.03 1.2 · · · 3.91 ± 0.02 3.66 ± 0.03 1.66
0.03 1.3 · · · 3.89 ± 0.05 3.65 ± 0.04 1.91
0.03 1.4 · · · 3.89 ± 0.02 3.63 ± 0.03 1.55
0.03 1.5 · · · 3.78 ± 0.01 3.54 ± 0.03 1.22
0.03 1.6 · · · 3.79 ± 0.04 3.54 ± 0.04 1.48
0.03 1.7 · · · 3.82 ± 0.04 3.57 ± 0.03 1.52
0.03 1.8 · · · 3.85 ± 0.02 3.59 ± 0.01 0.998
0.03 1.9 · · · 3.86 ± 0.04 3.6 ± 0.05 1.08
0.04 1.0 · · · 3.91 ± 0.05 3.66 ± 0.05 1.53
0.04 1.1 · · · 3.89 ± 0.04 3.65 ± 0.05 1.6
0.04 1.2 · · · 3.92 ± 0.04 3.66 ± 0.05 1.73
0.04 1.3 · · · 3.8 ± 0.01 3.56 ± 0.03 1.68
0.04 1.4 · · · 3.93 ± 0.04 3.68 ± 0.03 1.03
0.04 1.5 · · · 3.97 ± 0.04 3.71 ± 0.03 1.22
0.04 1.6 · · · 3.86 ± 0.02 3.61 ± 0.01 1.39
0.04 1.7 · · · 3.83 ± 0.01 3.57 ± 0.03 1.23
0.04 1.8 · · · 3.77 ± 0.04 3.51 ± 0.03 1.18
0.04 1.9 · · · 3.81 ± 0.04 3.54 ± 0.03 1.32
0.05 1.0 · · · 3.87 ± 0.04 3.63 ± 0.05 0.971
0.05 1.1 · · · 3.85 ± 0.01 3.6 ± 0.03 1.33
0.05 1.2 · · · 3.8 ± 0.04 3.55 ± 0.03 1.18
0.05 1.3 · · · 3.88 ± 0.04 3.63 ± 0.03 1.39
0.05 1.4 · · · 3.9 ± 0.04 3.64 ± 0.03 1.29
0.05 1.5 · · · 3.96 ± 0.04 3.69 ± 0.05 1.27
0.05 1.6 · · · 3.85 ± 0.04 3.59 ± 0.05 1.42
0.05 1.7 · · · 3.89 ± 0.05 3.62 ± 0.05 1.19
0.05 1.8 · · · 3.77 ± 0.04 3.5 ± 0.04 1.27
0.05 1.9 · · · 3.72 ± 0.01 3.45 ± 0.01 1.45
0.06 1.0 · · · 3.88 ± 0.04 3.62 ± 0.05 1.36
0.06 1.1 · · · 3.86 ± 0.04 3.61 ± 0.03 1.62
0.06 1.2 · · · 3.8 ± 0.04 3.55 ± 0.03 1.37
0.06 1.3 · · · 3.91 ± 0.02 3.66 ± 0.03 1.72
0.06 1.4 · · · 3.86 ± 0.04 3.6 ± 0.03 1.19
0.06 1.5 · · · 3.77 ± 0.04 3.52 ± 0.04 1.6
0.06 1.6 · · · 3.88 ± 0.04 3.61 ± 0.03 1.31
0.06 1.7 · · · 3.73 ± 0.04 3.46 ± 0.03 1.52
0.06 1.8 · · · 3.76 ± 0.01 3.49 ± 0.03 1.14
0.06 1.9 · · · 3.82 ± 0.04 3.55 ± 0.05 1.29
0.07 1.0 · · · 3.85 ± 0.04 3.61 ± 0.03 1.58
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TABLE 1
VT Model Parameters

0.07 1.1 · · · 3.74 ± 0.01 3.5 ± 0.01 1.28
0.07 1.2 · · · 3.87 ± 0.02 3.62 ± 0.03 1.67
0.07 1.3 · · · 3.87 ± 0.04 3.61 ± 0.03 1.47
0.07 1.4 · · · 3.86 ± 0.05 3.6 ± 0.05 1.8
0.07 1.5 · · · 3.91 ± 0.05 3.65 ± 0.05 1.34
0.07 1.6 · · · 3.78 ± 0.04 3.53 ± 0.03 1.36
0.07 1.7 · · · 3.8 ± 0.04 3.54 ± 0.04 1.49
0.07 1.8 · · · 3.78 ± 0.01 3.5 ± 0.03 1.72
0.07 1.9 · · · 3.87 ± 0.02 3.59 ± 0.01 1.01
0.08 1.0 · · · 3.86 ± 0.04 3.6 ± 0.03 1.42
0.08 1.1 · · · 3.9 ± 0.05 3.64 ± 0.04 1.28
0.08 1.2 · · · 3.88 ± 0.04 3.62 ± 0.03 1.03
0.08 1.3 · · · 3.89 ± 0.05 3.63 ± 0.05 1.47
0.08 1.4 · · · 3.79 ± 0.04 3.54 ± 0.04 1.53
0.08 1.5 · · · 3.79 ± 0.05 3.53 ± 0.04 1.94
0.08 1.6 · · · 3.9 ± 0.04 3.64 ± 0.03 1.29
0.08 1.7 · · · 3.76 ± 0.04 3.5 ± 0.04 1.54
0.08 1.8 · · · 3.7 ± 0.04 3.42 ± 0.04 1.98
0.08 1.9 · · · 3.92 ± 0.05 3.63 ± 0.04 1.15
0.09 1.0 · · · 3.87 ± 0.02 3.61 ± 0.03 1.34
0.09 1.1 · · · 3.92 ± 0.05 3.67 ± 0.05 1.44
0.09 1.2 · · · 3.97 ± 0.04 3.71 ± 0.05 0.92
0.09 1.3 · · · 3.84 ± 0.05 3.59 ± 0.05 1.63
0.09 1.4 · · · 3.94 ± 0.04 3.67 ± 0.05 1.87
0.09 1.5 · · · 3.75 ± 0.04 3.49 ± 0.04 1.57
0.09 1.6 · · · 3.95 ± 0.04 3.67 ± 0.03 1.44
0.09 1.7 · · · 3.79 ± 0.04 3.53 ± 0.05 1.38
0.09 1.8 · · · 3.92 ± 0.02 3.63 ± 0.03 1.41
0.09 1.9 · · · 3.86 ± 0.02 3.58 ± 0.03 0.993
0.1 1.0 · · · 3.87 ± 0.04 3.62 ± 0.05 1.76
0.1 1.1 · · · 3.91 ± 0.02 3.66 ± 0.03 1.75
0.1 1.2 · · · 3.93 ± 0.04 3.69 ± 0.05 1.42
0.1 1.3 · · · 3.85 ± 0.04 3.6 ± 0.05 1.18
0.1 1.4 · · · 3.86 ± 0.04 3.6 ± 0.03 1.47
0.1 1.5 · · · 3.88 ± 0.02 3.62 ± 0.03 1.25
0.1 1.6 · · · 3.85 ± 0.04 3.57 ± 0.03 1.47
0.1 1.7 · · · 3.8 ± 0.04 3.53 ± 0.04 1.68
0.1 1.8 · · · 3.74 ± 0.04 3.46 ± 0.03 1.38
0.1 1.9 · · · 3.76 ± 0.05 3.49 ± 0.04 1.55




