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mediated by a Higgs field that manifests a particle, the
as-yet-unobserved Higgs boson. A SM Higgs boson with
mass (MH) below 114.4 GeV/c2 or with MH between 162
and 166 GeV/c2 has been excluded at 95% confidence
level in direct searches at LEP [1] and the Tevatron [2]. A
recently reported [3] preliminary update of the Tevatron
result has expanded this 95% exclusion range to values
of MH between 158 and 175 GeV/c2.

At the Tevatron, production of the Higgs boson is
dominated by the direct production process gg → H,
and for MH < 135 GeV/c2 the Higgs boson decays pri-
marily to a pair of b quarks, H → bb̄ [4]. The process
gg → H → bb̄ is overwhelmed by multi-jet background.
Associated production of a Higgs boson with a leptoni-
cally decaying W or Z boson yields a distinct signature
for efficient selection and in turn greater sensitivity de-
spite a significantly smaller cross section than direct pro-
duction [5]. This Letter presents an improved search for
the SM Higgs boson produced in association with a Z
boson, ZH → `+`−bb̄ (where ` is either an electron, e,
or muon, µ) using 1.96 TeV pp̄ collision data correspond-
ing to 4.1 fb−1 of integrated luminosity collected with
the CDF II detector [6]. This search channel is one of
the most sensitive to a low-mass SM Higgs boson at the
Tevatron [7, 8].

Previous CDF efforts in this mode used an artificial
neural network classifier (NN) [9] or a likelihood based
on matrix-element probabilities (MEP) [10] for signal iso-
lation. Here we enhance these techniques with NN-based
b jet discrimination [11, 12] and an improved multivari-
ate jet-energy correction to improve background rejec-
tion. New Z → e+e− selections increase the acceptance
of ZH signal, and new combinations of b jet identifiers
yield better signal sensitivity, as reflected in the expected
cross section limit. These additions improve the expected
sensitivity by a factor of 1.2 over the gain expected just
from additional integrated luminosity.

The selection requirements most relevant to this anal-
ysis are discussed below; a detailed presentation can be
found in [13]. We select ZH candidates by first identi-
fying a sample of events containing a Z → `+`− decay.
Events are selected in real time (triggered) based on the
presence of high-pT electron and muon [14] candidates.
The majority (∼ 80%) of ZH candidates pass the trigger
selection requiring events to contain at least one central
(|η| ≤ 1.0) track of pT ≥ 9 GeV/c matched to an electro-
magnetic energy (EM) cluster of ET ≥ 18 GeV (a trigger
electron) or at least one central track of pT ≥ 20 GeV/c
pointing to signals in the muon detectors (a trigger
muon). The remaining fraction of ZH candidate events
comes from newly included data selected by a trigger that
requires two or more EM clusters of ET ≥ 18 GeV and
|η| ≤ 3.6 without requiring that the clusters are associ-
ated with tracks (trackless trigger). Events are further
required to contain a lepton pair that forms a Z candidate
with mass in the range 76 ≤Mll ≤ 106 GeV/c2. Pairs of

central leptons forming Z candidates must have opposite
charge; electrons in the forward (|η| > 1.0) acceptance
of the detector may not have an associated track and no
charge requirement is imposed.

We divide the Z candidates into two categories based
on signal-to-background ratio (S/B). The search for the
signal in these two categories is conducted separately to
improve sensitivity to a ZH signal. The high-S/B cate-
gory includes Z candidates formed from a trigger muon
and a second muon candidate with pT ≥ 10 GeV/c, or a
trigger electron paired with a second electron candidate
formed from either a central EM cluster of ET ≥ 10 GeV
matched to a track of pT ≥ 5 GeV/c or a forward EM
cluster of ET ≥ 18 GeV. The low-S/B category con-
tains Z candidates in events satisfying the trackless trig-
ger only or formed from a trigger electron paired with an
isolated central track with pT ≥ 20 GeV/c pointing to an
uninstrumented region of the calorimeter. The low-S/B
category is included for the first time in the search for
ZH production at CDF.

Higgs boson candidates are assembled from pairs of
jets. We form jets from energy deposits in the calorimeter
using the jetclu algorithm [15] with a cone radius of 0.4.
We consider only jets well contained in the calorimeter,
|η| ≤ 2.0, and well separated from the Z-decay leptons,
∆R ≥ 0.4 [16]. Measured jet energies are corrected to
account for η-dependent variations in detector response,
calorimeter coverage, and the expected contribution from
additional pp̄ pair interactions in the same event [17].
Events are required to have one jet with ET ≥ 25 GeV
and a second of ET ≥ 15 GeV. We refer to the events
containing a Z boson candidate and two such jets as the
PreTag sample; b quark identification (described below)
is applied to the PreTag sample to form our final analysis
samples. There are 11,806 (3,061) events in the high
(low) S/B PreTag data sample, wherein we expect 5.0±
0.7 (0.8 ± 0.1) ZH signal events for MH = 115 GeV/c2.
Inclusion of the low-S/B subsample increases the total
signal yield in the PreTag sample by 16%.

The PreTag sample consists mainly of Z+light flavor
(l.f.) jet (u,d,s,g) events, with smaller contributions from
Z+heavy flavor (h.f.) jet (c,b), tt, and diboson processes.
To reduce the Z+l.f. background, we look for b jets in the
event. We use two algorithms to identify (tag) b jets: one
based on evidence for a decay displaced spatially from the
pp̄ interaction point (SV) [6] and one based on track im-
pact parameters with respect to the pp̄ interaction point
(JP) [18]. For the SV algorithm, there are two operating
points: tight and loose [19]. The tight operating point
has better l.f.-jet rejection (smaller mistag probability)
at the expense of reduced b-jet identification efficiency.

We select events in the PreTag sample using the b tag-
ging algorithms on the jet pairs forming Higgs candi-
dates. We require the jet pairs to satisfy one of the fol-
lowing classifications, in order of precedence from high-
est to lowest ratio of ZH signal to background: a pair
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containing two SV-tight-tagged jets is classified as tight-
double-tagged (TDT); a pair consisting of one SV-loose-
tagged jet and a second JP-tagged jet is classified as
loose-double-tagged (LDT); and a pair where only one
jet has a SV-tight-tag is classified as single-tagged (ST).
When there are multiple H → bb̄ candidates in an event,
the jet pair with the highest b tag class is selected (TDT
> LDT > ST). This is the first time the JP algorithm
has been used in the ZH → `+`−bb̄ channel. While the
b tag selection matches the signal selection efficiency (ap-
proximately 60%) and background rejection rate (96%)
of previous efforts, the addition of the new LDT class in-
creases sensitivity to a ZH signal by 6%. Due to differing
background composition, the events are divided into in-
dependent subsamples based on b-tagging class. With
two Z boson S/B categories and three b-tagging classes,
we form a total of six subsamples that we analyze for ZH
content.

We compare the b-tag data to a model of signal and
backgrounds to estimate the signal content. Signal, tt,
and diboson events are modeled with the pythia [20]
event generator. Backgrounds from Z+h.f. processes
are simulated at the quark level using alpgen [21], then
passed to pythia for hadronization. The detector re-
sponse is modeled with a detailed detector simulation [6].
We estimate the background from Z+l.f. mistags us-
ing re-weighted PreTag data with weights reflecting the
probability for a l.f. jet to be erroneously b tagged.
A small fraction, much less than 1%, of jets can be
erroneously identified as electrons, resulting in a back-
ground of misidentified (misID) Z → ee candidates. The
likelihood of jet-electron misidentification is measured in
generic jet data and applied to all electron-jet and jet-
jet pairings in the electron triggered samples to generate
a model of misID Z events. The misID Z → µµ back-
ground contribution is estimated from the events pass-
ing all selection requirements but containing like-charge
muon pairs. Predicted and observed event totals are
listed in Table I for the b-tagged subsamples.

To improve the separation of ZH from background, we
utilize several multivariate techniques that use kinematic
quantities as inputs. The dijet mass Mjj is one of the
most useful quantities, with its separating power limited
mainly by the jet-energy resolution. In ZH signal events
with Z → `+`−, incorrect measurement of jet energies
results in apparent missing transverse energy 6~ET [22].
We correct jet energies, based upon the 6~ET , and thereby
improve the resolution on the dijet invariant mass. Jet-
energy correction factors are computed by a NN trained
to match measured jet energies to parton-level energies
in Z+jets and signal events. In this analysis, this neural
network is improved compared to the previous analysis [9]
by utilizing additional input variables describing the re-
coil of the Z boson. The corrected jet energies are used
to recompute the Higgs candidate mass MH , the pT of
the jets, the pT of the Higgs candidate, the projection of
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FIG. 1: The dijet invariant mass distribution of the two jets
with the highest ET in the PreTag sample. The distribution
is shown for data after NN correction of jet energies. The dijet
mass is shown for background before (dash-dotted line) and
after (grey region) NN correction. The dotted (solid) curves
show the dijet mass for signal (MH = 115 GeV/c2 and scaled
by a factor of 1500) before (after) correction.

6~ET onto the lower-ET Higgs jet, and the sphericity. The
effect of the NN corrections on the reconstructed H → bb̄
mass is shown in Fig. 1. In signal the resolution [23] on
MH is improved from about 18% to 12%.

To exploit the combined signal-to-background discrim-
ination power of event quantities and their correlations,
we employ a neural network discriminant (NND) trained
to simultaneously separate ZH, tt̄, and Z + jets events.
The NND is configured to return values of (x, y) = (1, 0)
for ZH events, (0, 0) for Z+jets, and (1, 1) for tt̄. A sep-
arate NND is formed for each of the three b-tag classes.
In addition to the quantities recomputed with corrected
jet energies, the NND inputs include: 6ET ; MEPs for ZH,
tt̄, and Z+jets processes; the number of jets in the event;
and the output of a b jet identifying artificial neural net-
work (NNb) [11]. The ZH process MEP is computed [10]
by convolving the theoretical matrix element for ZH pro-
duction with detector resolution functions. The resulting
MEP reflects the likelihood that an event is signal. We
calculate two additional MEPs under the hypotheses that
an event is Z+jets or tt̄ to aid background rejection. The
NNb augments the performance of the SV algorithm by
isolating incorrectly b-tagged l.f. jets. The addition of
NNb as an input enhances the ability of the NND to dis-
tinguish ZH from Z+l.f., which constitutes 40% of the
total background in the ST class. One-dimensional pro-
jections of NND output are shown in Fig. 2 for each b-tag
class.

The effect of systematic uncertainties on the determi-
nation of signal content requires propagating uncertain-
ties on NND input quantities to the output distributions.
The dominant effect on the result comes from uncertain-
ties on cross sections for background processes — a 40%
uncertainty is assumed on the normalization of Z + h.f.
samples [24], 11.5% for the diboson samples [25], 20%
to account for the theoretical and experimental uncer-
tainty on the tt̄ cross section [26], and 5% for ZH sig-
nal [27]. Uncertainties of 4% (ST), 8% (TDT), and 11%
(LDT) on the normalization of b-tagged samples are ap-
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TABLE I: Comparison of the expected mean event totals for background and ZH signal with the observed number of data events.
The totals are for full event selection, and systematic and statistical uncertainties are combined in quadrature. Systematic
uncertainties dominate. The background composition is provided in the first five rows. Each of the six ZH subsamples is
presented in a separate column.

High S/B Low S/B
Process TDT LDT ST TDT LDT ST
tt̄ 7.0± 1.5 8± 2 17± 4 2.9± 0.6 3.2± 0.8 8.9± 1.9

Diboson 2.9± 0.4 4± 1 16± 2 0.5± 0.1 0.6±0.1 3.3± 0.5
Z + h.f. 18± 7 30± 13 159± 67 3.5± 1.5 5.6± 2.4 32± 14
Z + l.f. 0.9± 0.3 9± 3 152± 23 0.4± 0.1 3.8± 1.3 50± 7.6
misID Z 0.7± 0.3 2± 1 22± 11 1.4± 0.7 1.1± 0.5 23± 12

Total Bkg. 29± 8 53± 14 366± 72 9± 2 14± 3 117± 20
ZH(115 GeV/c2) 0.7± 0.1 0.7± 0.1 1.7± 0.2 0.11± 0.01 0.11± 0.03 0.28± 0.05

Data 23 56 406 12 14 116
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FIG. 2: Projections of the two-dimensional neural network (NND) output onto the x-axis (x and y are defined in the text)
for events in the b-tag categories ST, LDT, and TDT. Events with a NND score of y ≥ 0.1 are omitted to highlight the signal
region. The ZH contribution is shown, multiplied by a factor of 25, for MH = 115 GeV/c2.

plied to account for different b-tag efficiencies in data and
simulation. Other uncertainties affecting sample normal-
izations include: 6% on the integrated luminosity, 1%
on the trigger and lepton reconstruction efficiencies [28],
1.5% on the measurement of lepton energies, and a 50%
uncertainty on the total lepton misID estimate. We in-
clude uncertainties on jet energies, the modeling of initial
and final state radiation, and mistag event weighting as
variations on the shape and normalization of the NND

output.

We calculate a limit on the associated production of a
SM Higgs boson and Z boson based on the comparison of
the full NND output of the b-tagged data to expectations
for signal and background. We consider eleven Higgs
mass hypotheses between 100 and 150 GeV/c2. We use a
Bayesian algorithm [29] with a flat prior in the produc-
tion cross section, integrating over the priors for the sys-
tematic uncertainties, incorporating correlated rate and
shape uncertainties, and uncorrelated bin-by-bin statis-
tical uncertainties [30]. Systematic uncertainties reduce
the sensitivity of this search by 16%. The expected 95%
credibility level (C.L.) limits are calculated assuming no
signal, based on expected backgrounds only, as the me-
dian of 1000 simulated experiments. The ±1σ and ±2σ
expected limits are derived from the distribution of the
simulation limits at the 16th, 84th, 2nd, and 98th per-
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FIG. 3: The expected (dashed curve) and observed (solid
curve) ZH cross section upper limits divided by the SM cross
section are shown as a function of the Higgs boson mass. The
dark (light) band represents the ±1σ (±2σ) expected limit
range.

centiles of the distribution, respectively. The observed
95% C.L. on the ZH cross section are calculated from
the b-tagged data, and displayed in Fig. 3 and summa-
rized in Table II.

In conclusion, we have searched for the SM Higgs boson
produced in association with a Z boson, where Z → `+`−

and H → bb̄, finding no significant evidence for the pro-
cess. We set 95% C.L. upper limits on the ZH produc-
tion cross section times the H → bb̄ branching ratio for
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TABLE II: Expected (Exp) and observed (Obs) 95% C.L.
upper limits on the ZH production cross section times the
branching ratio for H → bb̄ normalized to the SM value for
Higgs masses between 100 and 150 GeV/c2. The assumed ZH
cross section and branching fraction for H → bb̄ are 0.11 pb [5]
and 0.73 [4] for a 115 GeV/c2 Higgs boson.

MH 100 105 110 115 120 125 130 135 140 145 150
Exp 6.7 6.4 6.3 6.8 8.5 10. 13 19 29 45 74
Obs 4.5 4.6 5.3 5.9 7.9 8.1 10. 14 19 24 43

Higgs boson masses between 100 and 150 GeV/c2. For a
Higgs boson mass of 115 GeV/c2 we set (expect) a 95%
C.L. upper limit of 5.9 (6.8) times the standard model
prediction. This result is an important step forward in
the search for the Higgs boson and the source of EWSB,
improving upon the previous observed (expected) limits
in this channel by factors of 2.2 to 3.7 (1.9 to 2.4).
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