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ABSTRACT

We present observations of six transits and six eclipses of the transiting planet system HD 189733
taken with the Spitzer Space Telescope IRAC camera at 8 microns, as well as a re-analysis of previously
published data. We use several novel techniques in our data analysis, the most important of which is
a new correction for the detector “ramp” variation with a double-exponential function which performs
better and is a better physical model for this detector variation. Our main scientific findings are: (1)
an upper limit on the variability of the day-side planet flux of 2.7% (68% confidence); (2) the most
precise set of transit times measured for a transiting planet, with an average accuracy of 3 seconds; (3)
a lack of transit-timing variations, excluding the presence of second planets in this system above 20%
of the mass of Mars in low-order mean-motion resonance at 95% confidence; (4) a confirmation of the
planet’s phase variation, finding the night side is 64% as bright as the day side, as well as an upper
limit on the night-side variability of 17% (68% confidence); (5) a better correction for stellar variability
at 8 micron causing the phase function to peak 3.5 hours before secondary eclipse, confirming that
the advection and radiation timescales are comparable at the 8 micron photosphere; (6) variation in
the depth of transit, which possibly implies variations in the surface brightness of the portion of the
star occulted by the planet, posing a fundamental limit on non-simultaneous multi-wavelength transit
absorption measurements of planet atmospheres; (7) a measurement of the infrared limb-darkening
of the star, which is in good agreement with stellar atmosphere models; (8) an offset in the times of
secondary eclipse of 69 seconds, which is mostly accounted for by a 31 second light travel time delay
and 33 second delay due to the shift of ingress and egress by the planet hot spot; this confirms that the
phase variation is due to an offset hot spot on the planet; (9) a retraction of the claimed eccentricity
of this system due to the offset of secondary eclipse, which is now just an upper limit; and (10) high
precision measurements of the parameters of this system. These results were enabled by the exquisite
photometric precision of the Spitzer IRAC camera; for repeat observations the scatter is less than 0.35
mmag over the 590 day time scale of our observations after decorrelating with detector parameters.
Subject headings: stars: planetary systems

1. INTRODUCTION

The planet system HD 189733 (Bouchy et al. 2005) is
one of the best studied transiting planet systems due to
two factors: its close proximity to our Solar System, mak-
ing its star one of the brightest transit host stars, and the
large size of the planet relative to the star, making the
transits particularly deep. After the secondary eclipse
was first detected for this planet by Deming et al. (2006),
Knutson et al. (2007) made a precise measurement of the
phase variation of the planet over slightly more than half
of an orbital period using the 8 micron Infrared Array
Camera (IRAC, Fazio et al. 2004) on the Spitzer Space
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Telescope (Werner et al. 2004). In addition to yielding a
longitudinal map of the planet (Cowan and Agol 2008)
which indicated an offset peak in brightness, attributed
to advection of energy by a super-rotating equatorial
jet (Showman and Guillot 2002; Cooper and Showman
2005), this observation also yielded the most precise mea-
surement of the depth of secondary eclipse, as well the
most precise times of transit and secondary eclipse, for
any extrasolar planet. This motivated us to propose
additional observations of six transits and six eclipses
of this system with the goals of looking for secondary
eclipse variability (e.g. Rauscher et al. 2007), looking for
transit timing variations due to other planets in the sys-
tem (Agol et al. 2005; Holman and Murray 2005), im-
proving the measurement of the atmospheric absorp-
tion (e.g. Tinetti et al. 2007), and improving the mea-
sured system parameters for better characterization of
the planet, host-star, and orbit properties (Winn et al.
2007; Torres et al. 2008; Pont et al. 2007).
The favorable properties of HD 189733 have al-

lowed detections of planet absorption and emis-
sion features, yielding possible evidence for wa-
ter, sodium, methane, carbon dioxide, and car-
bon monoxide, as well as Rayleigh scattering at
blue wavelengths (Grillmair et al. 2007; Tinetti et al.
2007; Barnes et al. 2007; Redfield et al. 2008; Barman
2008; Swain et al. 2008, 2009; Charbonneau et al.
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2008; Sing et al. 2009; Madhusudhan and Seager 2009;
Pont et al. 2008; Lecavelier Des Etangs et al. 2008).
Despite being an active star (Moutou et al. 2007;

Henry and Winn 2008) which affects radial velocity mea-
surements, the planet mass is measured precisely to be
Mp = 1.13± 0.03MJupiter, while the radial velocity mea-
surements constrain the eccentricity to be e < 0.008
(Boisse et al. 2009). The planet radius is slightly larger
than that of Jupiter (Bakos et al. 2006a; Baines et al.
2007; Winn et al. 2007). The orbit of the planet is well
aligned with the spin axis of the star (Winn et al. 2006;
Triaud et al. 2009).
The deluge of observational constraints on this system

has inspired a wide range of theoretical modeling. In
particular, the measured phase variation can be qual-
itatively explained by general circulation models, such
as Showman et al. (2009a) and Rauscher and Menou
(2010), while two-hemisphere models have more diffi-
culty explaining the shape and variation of the phase
function (Burrows et al. 2008); see the recent review by
Showman et al. (2009b) for a detailed discussion of these
models.
After describing our observations (§2), we give an ac-

count of our preliminary data reduction (§3), describing
our outlier rejection (§3.1) and choice of centroiding al-
gorithm (§3.2). In section 4 we discuss aperture photom-
etry, background subtraction (§4.1), and then detail our
correction for the detector ramp variation (§4.2), includ-
ing a new double-exponential model for the ramp (§4.2.3)
and its performance (§4.2.4). We complete the descrip-
tion of data reduction with a discussion of our choice
of aperture size (§4.3), conversion to Barycentric Julian
Date (§4.4), and error analysis (§4.5).
With the preliminary fit for the ramp, we then simulta-

neously fit to the stellar variability and planet variability,
outside of eclipse or transit, and demonstrate the high
precision of Spitzer IRAC (§5). We then fit the photom-
etry with transit and eclipse models (§6), and show that
the secondary eclipse depth offset can be explained by
light-travel time and the offset hotspot (§6.5). We com-
pute a new ephemeris from our data (§6.3), and use the
times of transits to place limits on the presence of com-
panion planets (§6.4). We show that the transit depth
appears to vary, which we hypothesize is due to varia-
tions in the stellar surface brightness within the path of
the planet (§6.6) and we show that the day-side planet
flux measured from the secondary eclipses appears not
to vary within the uncertainties (§6.7). We discuss these
results and compare to models in the conclusions (§7).
A preliminary analysis of these data were presented

in Agol et al. (2009); however, we have since made
significant improvements in the analysis, in particular
an improved ramp function, so the results presented
here are more reliable. These data were also used by
Carter and Winn (2010) to place a constraint on the
oblateness of HD 189733b, while for the purposes of this
paper we assume the planet to be spherical.

2. OBSERVATIONS

We were awarded Spitzer Guest Observing time during
Cycle 4 to observe six transits and six secondary eclipses
of HD 189733 with IRAC Channel 4 (PI: E. Agol, pro-
gram ID 40238). For each visit we obtained 44,160 ex-
posures of 0.4 second each over 5 hours each. We also

re-analyze the transit and eclipse from Knutson et al.
(2007) for a total of seven eclipses and seven tran-
sits. We chose IRAC channel 4 (8 µm) as it has been
demonstrated to be the most stable IRAC band (e.g.
Cowan et al. 2007, and references therein). Due to the
brightness of the host star we made the observations in
sub-array mode; this mode allows shorter exposure times
(0.4 sec) and faster readout, but sacrifices the larger field
of view (32×32 pixels rather than 256×256 pixels, where
each pixel is 1.′′2). We turned off dithering which is re-
quired for high precision photometry due to the array-
dependent sensitivity and detector ramp. We carried out
aperture photometry with a range of radii from 1 to 7
pixels in 1/2 pixel increments.

3. DATA REDUCTION

We performed our data reductions starting with the
Basic Calibrated Data (BCD) processed with version
S16.1.0 of the Spitzer IRAC pipeline. These data are cor-
rected for dark current, flat field variations, and detector
non-linearity; they are also converted to units of flux in
mega-Jansky per steradian (MJy/sr). After downloading
and organizing the data, we first converted the images to
units of photon counts (i.e. electrons) by multiplying by
the gain (fits header keyword GAIN = 3.8 e−/DN) and
exposure time (EXPTIME = 0.32 sec), and dividing
by the flux conversion factor (FLUXCONV = 0.2021
MJy/sr per DN/sec). For our 0.32 sec exposure time
this amounts to multiplying each pixel by 6.01682 e− per
MJy/sr. The elapsed time per exposure is FRAMTIME
= 0.4 seconds due to a 0.08 second readout. We did not
apply corrections for variation in pixel area or corrections
to the flat field for a stellar source; however, we did es-
timate the impact of these corrections, and found them
to be negligible.

3.1. Outlier rejection

After conversion to counts, we flagged and cleaned the
images of outliers, such as cosmic rays. We cleaned the
images at the pixel level by rejecting outliers in the time
series for each pixel. This worked well since the telescope
pointed at nearly the same location for the entirety of
each of our observations, so the flux in each pixel stayed
relatively constant making outliers easy to flag. The pixel
flux is affected by pointing variations, discussed in sec-
tion 3.2, so we did the outlier rejection by taking the
difference between the pixel time series and a 5 exposure
(2-second) running median of the time series. The du-
ration of the median was chosen to be shorter than the
shortest of the pointing excursions, one of which occurred
in the middle of the transit of the phase-function obser-
vation with a 1-pixel pointing change over 4 seconds.
For each pixel, the median-subtracted time series was

sorted. Then, the standard deviation was computed from
the 68.3% confidence limits on the median-subtracted
time series. Finally, outliers were flagged in the median-
subtracted time series that differed by more than 4-σ
from zero. The flagged pixels were then replaced by the
5-exposure median.
This procedure performed well in eliminating cosmic

rays and rogue pixels. After it was carried out, the pho-
tometry showed no significant outliers and, as we show
below, was very close to the photon-noise limit.
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3.2. Centroiding

Spitzer is affected by pointing variations that cause the
star to change position slightly on the detector; this re-
quires accurate centroiding to perform precise photome-
try. There are four varieties of pointing variations we ob-
serve in the data: small amplitude, short-timescale “jit-
ter” which appears by eye as a damped random-walk;
a periodic pointing fluctuation which occurs on a time
scale of ∼ 1 hour with an amplitude of about 0.1 pixel;
gradual drifts over long timescales; and occasional short
time scale sharp excursions, as mentioned in section 3.1.
In the inital stages of our data reduction, we found that

the photometry was extremely sensitive to the pointing
drifts. Since the 8 micron camera is undersampled, vari-
ations in pointing at the ∼ 0.1 pixel level can lead to ∼
10% variations in the flux of the central pixels. For large
photometric apertures, this is not a problem since small
changes in the centroid do not change the enclosed flux
much. However, large apertures contain pixels with lower
illumination which have a longer-lasting detector ramp
(see section 4.2), so a smaller aperture containing higher
illumination pixels is more desirable since these pixels
have a ramp that saturates more quickly. Thus, we real-
ized that a very accurate centroiding algorithm would be
necessary for using smaller apertures, so we set out to test
a wide range of different centroiding algorithms to see
which performed best. We tried several centroiding al-
gorithms: flux-weighted centroiding (e.g. Knutson et al.
2007), parabolic fitting (e.g. Todorov et al. 2010), Point
Response Function (PRF) fitting (e.g. Laughlin et al.
2009), and 2-D Gaussian-fitting (e.g. Désert et al. 2009).
The simplest algorithms to implement are the first two
since these involve no optimization; the last two involve
iterative non-linear optimization, but the PRF fitting
turned out to be too slow and problematic to implement.
We first tested the centroiding algorithms by creat-

ing simulated jitter using the IRAC channel 4 PRFs.
From these tests we found that the 2-D Gaussian fitting
gave the least scatter in the derived centroid relative to
the input centroid; we found that keeping the x and y
standard deviations the same gave as good a fit to the
centroid as allowing the two to vary independently. We
next ran the algorithms on the two stars (target star and
M-dwarf companion; Bakos et al. 2006b) in the phase-
function data from Knutson et al. (2007) and on the two
stars in the observations of HD 80606 (Laughlin et al.
2009). These tests were critical since these were long
time series so the stars had time to drift a significant
fraction of a pixel, and the data contain noise. We first
computed the centroid of both stars in each image (x1,y1
and x2,y2), then subtracted the x and y coordinates for
each pair of stars (x1−x2 and y1−y2), and finally binned
the x and y differences until the standard deviation of
the x and y differences reached a minimum. A perfect
centroiding algorithm ought to have perfect tracking be-
tween the two stars, resulting in a standard deviation
due only to the photon shot noise and finite spatial res-
olution of the instrument. Various choices can be made
for each of these algorithms, such as what portion of the
array to fit or whether to smooth the data first before
centroiding, so we spent some time experimenting with
these and other choices.
In short, we found that the 2-D Gaussian performed

the best of all the centroiding algorithms. The algorithm
selects a 7× 7 sub-array from the image centered on the
brightest pixel of a star. It then fits a 2-D Gaussian to
this sub-array, allowing the center (centroid), amplitude,
and width to vary; four free parameters in all for each
image. We used the mpcurvefit.pro routine which im-
plements a non-linear Levenberg-Marquardt algorithm to
optimize these parameters (Markwardt 2009). For the
HD 189733 phase-function observations, the scatter in
the data were 0.0018 pixels in x and 0.0051 pixels in y
when binned by 512 exposures (205 seconds), while for
HD 80606 the scatter was 0.0015 and 0.0021 in x and y
when binned by 4 exposures (56 seconds); further bin-
ning resulted in minimal decrease of the scatter. The
second best centroiding algorithm was the flux-weighted
algorithm which had standard deviations of 0.016 and
0.032 in x and y for HD 189733, and 0.0019 and 0.011
in x and y for HD 80606. Thus, the 2-D Gaussian cen-
troid performed better by a factor of ∼ 5 than the flux-
weighted centroid; not only that, but the scatter in the
flux-weighted centroid is due to a systematic error, while
the scatter in the 2-D Gaussian centroid is almost com-
pletely random. This can be seen in Figure 1 which shows
that the 2-D Gaussian centroid has weaker correlation of
centroid difference of the two stars versus the centroid of
one of the stars; on the other hand the other centroid-
ing techniques show signficant correlation between the
offsets of the two stars and the pixel position of one of
the stars, indicating a systematic error in the centroid
determination.
Applying these centroiding algorithms to our twelve

transits and eclipses and the transit and eclipse from
Knutson et al. (2007), we find that the scatter in the
difference in centroids of the two stars (adding in quadra-
ture the x and y components) ranges from 0.0035 to
0.0042 pixels for the Gaussian centroid after binning by
128 exposures (51 seconds); this is a factor of 3−7 times
smaller than the flux-weighted centroid, and also no sys-
tematic trend in x, and a weak systematic trend in y.
Since the Gaussian centroids of the two stars track one
another well and the difference in their positions is nearly
uncorrelated with their position on the detector, we are
confident that the Gaussian centroid is giving the cor-
rect absolute position of these stars. When the data
are fit with a 3.5 pixel radius aperture (as described
in more detail below), the 2-D Gaussian centroid yields
a χ2 which is smaller for 9 of 14 transits/eclipses than
the flux-weighted centroid, while the total χ2 is smaller
by 130 (after discarding the first 55 minutes of data for
each eclipse/transit which has the steepest portion of the
ramp).
In conclusion, we recommend the 2-D Gaussian for

Spitzer IRAC Channel 4 sub-array centroiding of bright
targets as it appears to behave in a near-optimal manner.
As we will show, this results in very small scatter in the
resulting photometry.

4. RAW PHOTOMETRY

We carried out photometry on our data using aperture
photometry with a circular aperture. The contribution of
the pixels on the edges of the circle are calculated by mul-
tiplying the total flux in the pixel by the geometric frac-
tion of the the pixel that is covered by the circular aper-
ture. This is done using the GSFC Astronomy Library
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Fig. 1.— Comparison of the centroiding algorithms for HD
189733 versus M dwarf companion (top panels) and HD 80606 ver-
sus HD 80607 (bottom panels) in the x-direction (left panels) and
y direction (right panels). The black dots are for the flux-weighted
centroid, the red dots for the 2-D Gaussian centroid, and the green
dots for the parabolic centroid. The HD 189733 data have been
binned by 512 exposures (205 seconds), while the HD 80606 data
have been binned by 4 exposures (56 seconds).

IDL routine pixwt.pro. Figure 2 shows a logarithmically-
scaled median image from one of our sets of observations.
As can be seen in the image, the sub-array is 32 pixels
square, and a companion M-dwarf lies 9 pixels from the
target star. We tried a range of apertures, discussed be-
low in §4.3, but our final analysis uses a 4.5 pixel radius
aperture which is shown as a red circle centered on the
target star. Note that this aperture size contains the
bulk of the target flux, and is near the minimum in flux
just inside the first Airy ring; this makes our photome-
try less sensitive to variations in position. We have fit
both stars with the measured point response function for
IRAC Channel 4, and we find that the contribution of the
M dwarf within this aperture is less than 0.06% of the
target star flux for all of our observations. The resulting
light curves for our twelve observations plus the transit
and eclipse from Knutson et al. (2007) are shown in Fig-
ure 3 for an aperture of 4.5 pixels radius. Note that for
each transit/eclipse pair, the flux at eclipse is higher than
the flux at transit; this indicates the planet is brighter
on the day side than the night side.

4.1. Background subtraction

To subtract the background, we used a similar proce-
dure as that described in Knutson et al. (2007); namely
we fit a Gaussian to a histogram of the counts from a
subset of pixels located in the corners of the image (ex-
cluding the M dwarf companion, and excluding the top
row). This background contributes about 1.9-2.6% of the
total flux in our 4.5 pixel radius aperture, which we sub-
tract from the time series frame by frame. As discussed
by Harrington et al. (2007) and in the IRAC Instrument
Handbook, the flux and the background of the 1st-5th
and 58th frame of every set of 64 exposures is systemat-
ically lower than the other exposures in a set. However,
after we carried out background subtraction frame by
frame, the offset in these exposures does not appear in
our total time series. Consequently, we believe it is due
to a bias offset that affects the entire frame uniformly,
and thus is easily removed.

Fig. 2.— Logarithmic scaling of a medianed image from one of
our observations; horizontal and vertical axes are pixels. White
represents about 13,700 counts per pixel, while black is about 6
counts per pixel. The red circle is a 4.5 pixel radius aperture.

4.2. Detector ramp

Spitzer was not envisioned as an instrument for carry-
ing out high-precision photometry on bright targets; con-
sequently it was designed without sub-mmag exoplanet
photometry in mind. An instrumental artifact that ap-
pears at the ∼mmag level in photometry, but can be up
to 10% for low-illumination pixels over 33 hours, is the
so-called “detector ramp” (Deming 2009): a pixel which
is illuminated uniformly in time shows a gradual increase
in the detected flux (see Figure 3). This is an important
effect to correct for in fitting photometric time-series;
unfortunately there has not been a full understanding of
this effect for the Spitzer IRAC detector. Here we derive
a toy-model which qualitatively matches the behavior of
the ramp (§4.2.1). We show that prior functions used for
ramp-corrections in other analyses of IRAC data (e.g.
Deming et al. 2006; Désert et al. 2009) do not have the
correct functional form to describe the observed ramp
(§4.2.2).
Understanding how to remove the detector ramp has

evolved with time. Early work (Deming et al. 2006) ra-
tioed the transit star to other sources, and modeled the
baseline in the ratio as linear or quadratic in time. Fit-
ting functions to the ramp directly have used either ex-
ponentials in time (Harrington et al. 2007) or polynomi-
nals in the log of time (Knutson et al. 2009; Désert et al.
2009). These approaches have been adequate at lower
signal-to-noise ratios, but for the present high S/N data
we are motivated to find an improved functional form.
We propose a new functional form, motivated by the toy
model, which has the correct behavior and matches the
observed ramps better (§4.2.3). We apply a range of tests
to this ramp model, and show that it performs better
than other ramp models (§4.2.4).
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Fig. 3.— Atlas of transits and secondary eclipses obtained at 8 microns with Spitzer. The photon counts per exposure averaged over 64
exposures is plotted versus the sequence of each set of 64 exposures. The numbers above or below each transit/eclipse indicate the orbital
phase. The solid red curves show the best-fit double-exponential ramp model (which includes the phase-variation of the planet for the
secondary eclipses).

4.2.1. Toy model for the detector ramp

The ramp effect is hypothesized to be due to trap-
ping of electrons in detector defects (“charge-trapping”).
When a pixel is first illuminated, the charge traps are ef-
fectively empty, and some fraction of the electrons gener-
ated by the incident flux are retained by the traps instead
of being read out by the array. As these charge traps fill,
the effective gain of the detector goes up, until even-
tually the effect disappears. Thus bright, non-variable
sources should have a detected flux that asymptotes to
a constant value. When a pixel is not illuminated (or
illuminated at very low intensity), the trapped charge
gradually releases with time, causing the charge traps
to become empty; this leads to ghost images after ex-
posure of bright sources. A consequence of this model
is that higher illumination pixels fill their charge traps
more quickly, thus showing a much shorter detector ramp
timescale. Although it is not clear that this model is
correct, its predicted behavior agrees qualitatively with
the observed IRAC photometric properties: for a bright
source, the central pixels have a short ramp which satu-
rates quickly, while the pixels with lower illumination in
the wings of the PSF show a more gradual ramp. This
behavior, though, is difficult to model quantitatively as
the pixel illumination varies with time due to Spitzer

pointing variations (see section 3.2).
A simple toy model can be developed for charge-

trapping as follows. Let γm be the fraction of volume
of a detector pixel filled with charge-traps, γ(t) be the
fraction of volume of a pixel with empty charge-traps
at time t, and β be the total well-depth (electrons). A
pixel is illuminated below saturation with an intensity
causing I(t) electrons to be released per second, while
the measured intensity is I ′(t) (e− sec−1). As the pixel
is illuminated, the charge traps fill up at a rate propor-
tional to the intensity times the fraction of volume of
empty charge traps; however, there is also a timescale τ
at which electrons in charge traps are released, causing
γ to increase. This gives

dγ

dt
= −

I(t)

β
γ −

γm − γ(t)

τ
. (1)

The measured intensity is then

I ′(t) = (1− γ)I(t) + β
γm − γ

τ
. (2)

These equations have no closed-form solution for an ar-
bitrary I(t); however, we can solve for their behavior in
certain limits. For instance, if the illuminating intensity
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is constant, I(t) = I0, for times t ≥ t0, then

γ(t) = γm(1−Iτ/β)−1+(γ(t0)− γm(1− Iτ/β)) e(τ
−1

−I/β)(t−t0).
(3)

As we are observing a bright star, we can simplify this
equation by assuming that τ−1 ≪ I0/β, but we are still
below saturation and in the linear regime (I0texp . 0.9β,
where texp is the exposure time). In this limit

I ′(t) ≈ I0(1− γ) = I0

(

1− γ(t0)e
−

I0
β
(t−t0)

)

. (4)

This gives the expected ramp behavior: more strongly
illuminated pixels have an apparent intensity, I ′, that
asymptotes to a constant more quickly on a timescale
β/I0. At modest illumination, this becomes

I ′(t) = I0(1− γ0 + γ0I0β
−1(t− t0)); (5)

a gradual linear ramp.
In the limit of zero illumination,

γ(t) = γm − (γm − γ0)e
−(t−t0)/τ . (6)

Thus the apparent intensity is

I ′(t) =
β

τ
(γm − γ0)e

−(t−t0)/τ . (7)

This leads to persistent or ghost images that decay ex-
ponentially with time after observation of a bright target
when the illumination is so strong that γ0 ≪ γm.

4.2.2. Prior models for the detector ramp

The correction for the detector ramp is typically ap-
plied after performing photometry on the target star
rather than at the pixel level, with some exceptions (e.g.
Knutson et al. 2007; Laughlin et al. 2009). There is a
simple reason for this: at the pixel level it is very difficult
to disentangle the ramp from pointing variations, while
aperture photometry with a sufficiently wide aperture
gets rid of most of the pointing variations and isolates the
ramp behavior. Most ramp corrections have simply been
functions that match the behavior of the ramp; two popu-
lar functions are a0+a1(t−t0)+a2 log (t− t0) (log-linear)

and a0 + a1 log (t− t0) + a2 [log (t− t0)]
2
(quadratic log)

which both seem to work well for IRAC Channel 4 data
(e.g. Deming et al. 2006; Deming 2009). In particular,
the logarithmic term matches the shape of the ramp well,
which is steeper towards the beginning and shallower to-
wards the end.
Given the toy model described in the prior section,

this logarithmic behavior would appear to be largely co-
incidental. Aperture photometry combines pixels with
a wide range of illuminations; those with high illumina-
tion, which is most of the flux, have a ramp that is steep
and saturates quickly, while those with low illuminations
in the wings of the PSF have a longer timescale ramp
that saturates more slowly. Summing up these short and
long timescale ramps gives a shape which is steeper in
the beginning and more gradual as time passes, which is
well modeled by a logarithmic function. The linear term
or a squared logarithmic term gives enough extra degrees
of freedom to the model to adjust the slope of the curve
and give a good fit to most ramp data. This model has

the additional advantage that it is linear (except the ini-
tial time, t0, in the logarithmic term), and thus is quick
and easy to fit to the observed ramp.
However, the log-linear and quadratic log ramp models

have a serious drawback: they do not have the correct
behavior on long timescales. Both the log function and
linear function increase without bound, while the detec-
tor ramp does appear to saturate at a constant value for
the brightest pixels. Thus, with a dataset with long du-
ration, the log plus linear model or quadratic log ramp
models should do a poor job in fitting the ramp shape.
In addition, the log plus linear and quadratic log mod-
els do not describe what the final asymptotic flux value
will be, and thus does not give a ramp correction, but
only gives an empirical fit to how the flux is varying
over the timescale of a given observation. These points
are particularly important for small aperture photome-
try where most pixels have high illumination and thus
saturate quickly. Consequently, we advocate not using
ramps that are polynomials in time and/or log time.

4.2.3. New model for the detector ramp

Motivated by the toy model in section 4.2.1, we de-
cided to try an exponential ramp function. As this model
predicts, the time constant is a function of pixel illumi-
nation. However, due to the pointing variations, we were
not successful in correcting for the ramp on the pixel
level. Instead we tried a ramp correction function that
is simply the sum of two exponential terms:

F ′/F = a0 − a1e
−t/τ1 − a2e

−t/τ2 , (8)

where F ′ is the flux affected by the ramp, and F is the
flux corrected for the ramp. Although this does not have
exactly the correct behavior for the sum of pixels with
different illuminations (assuming the toy model is cor-
rect), it does have the correct asymptotic behavior, and
qualitatively represents the correction from higher and
lower illumination pixels.
Figure 3 shows the ramp function overplotted with our

data for the fourteen transits and eclipses.

4.2.4. Performance of double-exponential ramp

In addition to the qualitatively correct behavior of the
double-exponential ramp, we find that this ramp function
leads to a smaller scatter in our derived eclipse depths
for the seven eclipses, as well as less sensitivity to the
various choices we make in our analysis. We held the
planet-star radius ratio and impact parameter fixed at
the transit values when analyzing the secondary eclipses.
We ran initial fits for each ramp on photometry com-
puted for a 3.5 pixel radius aperture with the first 55
minutes for each transit/eclipse discarded, and then de-
termined how the eclipse depth changed as we varied
individual analysis parameters. The scatter in the seven
secondary eclipse depths for the double-exponential ramp
model is smaller by 30% than for the log-linear ramp
(3.05% versus 3.94%), and smaller by 20% compared to
the quadratic log ramp (3.05% versus 3.68%). An addi-
tional indication of the more robust behavior of this ramp
function is that the mean depth only changes by 0.2% if
we first fit the ramp to the out-of-transit/eclipse data,
and then fit the transit/eclipse to the ramp-corrected
data versus a simultaneous fit to the transit/eclipse and



Transits and Secondary Eclipses of HD 189733b 7

ramp. The log-linear and quadratic log ramps have a
mean eclipse depth that changes by 0.5% and 1%, respec-
tively, between these two reduction techniques. Likewise,
the double-exponential ramp changes in eclipse depth by
only -1.1% if the first 55 minutes are discarded, while the
log-linear and quadratic log change by -1.2% and 3.7%,
respectively. The double-exponential ramp is also less
sensitive to aperture size. For apertures between 3.5 to
5.0 pixels in radius, the individual eclipse depths vary by
1%, while for the log-linear and quadratic log ramps, the
variation is 1.5% and 2.4%, respectively. Finally, the to-
tal χ2 for the double-exponential ramp model is slightly
smaller by 21 than the log-linear ramp, and by 27 than
the quadratic log ramp, which by the F-test for the ad-
ditional 13 free parameters (for seven transits and six
eclipses; the phase -function eclipse has no ramp) favors
the double-exponential ramp at > 99.999% confidence.
There are two drawbacks of the double-exponential

ramp function: (1) it involves two non-linear fit param-
eters, τ1 and τ2, which need to be optimized with a non-
linear minimizer; (2) in some cases when there is very lit-
tle ramp (possibly due to high illumination prior to our
observations), one or both of the τ values can diverge,
or in some cases they can become degenerate. However,
these drawbacks are straightforward to deal with by set-
ting bounds in a non-linear solver, and are outweighed
by the improved fit to the observed ramp, the correct
asymptotic behavior, the smaller scatter in our results,
weaker dependence on aperture size, the weaker depen-
dence on whether the ramp is first corrected or fit si-
multaneously, and less sensitivity to whether the steep
portion of the ramp is discarded. Thus, we advocate
using this ramp function for IRAC Channel 4 data.

4.3. Aperture size

We carried out photometry with apertures ranging in
radius from 1 pixel to 7 pixels. We fit each transit and
eclipse separately, and then computed the standard de-
viation of the data divided by the best-fit model (this
is essentially the residuals in magnitudes). We find that
the residuals are minimized at 4.39 mmag for an aper-
ture radius of 3.5 pixels; this is the same aperture chosen
in Knutson et al. (2007). For aperture radii of 3.0 pixels,
the scatter is 4.5 mmag, while for 4.0 pixels it is 4.40
mmag, and for 4.5 pixels is 4.47 mmag, indicating that
there is a shallow dependence on scatter with aperture
size.
More importantly, we wish to minimize the presence of

red noise in the residuals of the data. Consequently, we
looked at the scatter in the residuals binned over a range
of bin sizes from one exposure to 1920 exposures as a
function of aperture size. We then took the mean of the
scatter of the binned data over all fourteen transits and
eclipses, and computed the product of this mean scatter
divided by the unbinned scatter over all bin sizes. The
minimum occurs for an aperture of 4.5 pixels; although
this has a slightly larger residual scatter without binning,
the binned residuals are smaller relative to the unbinned
residuals than for the 3.5 pixel radius aperture case. We
have also measured the power spectrum of the residuals,
and we find that the 4.5 pixel radius aperture minimizes
the long period power. Thus, we feel that this aperture
size represents an appropriate compromise between small
scatter in the unbinned data (which varies weakly with

aperture size) versus minimization of the red noise com-
ponent.
Figure 4 shows the scatter in the binned residuals, av-

eraged over the 14 transits, as a function of bin size. Even
up to bin sizes of 8832 exposures (1 hour bin), the scatter
in the data does not deviate significantly from the inverse
square root of the bin-size; this indicates that the resid-
uals are uncorrelated, and thus there is little (if any) red
noise present. Remarkably the scatter in the one hour
bins reaches 30 µmag; however this is after subtracting
off the double-exponential ramp model.

Fig. 4.— Scatter in the data (vertical axis) divided by the model
binned by a number of bins (horizontal axis), averaged over the 14
transits and eclipses presented here. Red line is the extrapolation
from the unbinned data by the inverse square root of the bin size.

For an aperture radius of 4.5 pixels, the median counts
per exposure is 66,792. If photon counting errors domi-
nate, then the expected noise level is 3.87 mmag per ex-
posure. Including read noise (4.5 e− per pixel) and sky
noise (∼30 counts per pixel), the expected uncertainty is
3.99 mmag (we did not use the BCD uncertainties since
these overpredict the noise properties according to the
Spitzer Observer’s Manual). The standard deviation in
the residuals is 4.47 mmag, which is only 15.5% greater
than the photon counting error and 12.0% greater than
the expected errors including read noise and sky noise.
Thus, the noise properties after correcting for the de-
tector ramp are very close to the expected photon noise.
The 3.5 pixel radius aperture has a residual scatter which
is only 11% above the photon noise; however this aper-
ture size appeared to have more significant red noise, so
we opted for the larger 4.5 pixel radius aperture.

4.4. Conversion to barycentric Julian date

We use the JPL Horizons ephemeris for the Spitzer or-
bit to convert the satellite time (keyword DATE OBS)
to Barycentric Julian Date (BJD) in Coordinated Uni-
versal Time (UTC).8 This correction is important since
heliocentric and barycentric Julian Date can differ by as
much as a few seconds, and different time systems can
vary by seconds depending on the number of leap sec-
onds included, which is close to the timing precision we
can achieve with these data (Eastman et al. 2010).

8 There is an additional +65.184 sec offset to convert to Barycen-
tric Dynamical Time for our data.
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4.5. Error analysis

We compute the errors on model parameters by calcu-
lating the residuals from each fit, shifting these by a ran-
dom number of observations, and then adding the shifted
residuals back to the best-fit model, then re-fitting; the
so called “prayer-bead” analysis (e.g. Agol and Steffen
2007). For each transit and eclipse we carried out 2000
iterations of the prayer-bead shifts. This has the advan-
tage of preserving correlations in the noise of the data
that might still be present. For instance, if the ramp-
model is incorrect, there may be systematic deviation due
to using the wrong ramp model, and these deviations are
preserved within the residuals. This approach has some
disadvantages; for instance, if the noise behaves differ-
ently within eclipse than outside eclipse, this might ex-
aggerate the noise outside eclipse. Another disadvantage
of this technique is that the number of independent trials
is limited by the size of the data set since point-order has
to be preserved; consequently we also randomly chose to
reverse the residuals or change their sign to give more
independent noise realizations. There is also the possi-
bility that the effects of correlated noise may be removed
in the fit. Even with these disadvantages we expect that
this technique gives a fairly conservative estimate for the
uncertainties on model parameters.

5. FIT FOR STELLAR AND PLANET VARIABILITY

Stellar variability can affect our fits to the transits and
eclipses, as well as our estimate of the planet variabil-
ity. We follow the approaches in Knutson et al. (2009)
and Sing et al. (2009) to derive a new estimate of the
relation between the optical and 8 micron flux variabil-
ity of the star by comparing our data set with that
of Henry and Winn (2008), plus additional unpublished
data. The contemporaneous optical monitoring data
were taken with the T10 0.8 m automated photometric
telescope at Fairborn Observatory, which has a median
time sampling of 1 day, but gaps of up to 2 weeks. The
optical time series consists of the mean of Stromgren b
and y magnitudes, subtracted from a nearby comparison
star, HD 189410, giving fopt = ∆[(b + y)/2] as a func-
tion of time, as described in more detail in (Winn et al.
2007). Data outliers are removed (usually taken in poor
conditions), resulting in a total of 700 observations over
5 seasons.
Using the measured stellar rotation period of P∗ =

11.953± 0.009 days from Henry and Winn (2008), we fit
a sinusoidal function to data within each season to in-
terpolate the measured optical fluxes to the times of our
Spitzer observations. For all but one of our IRAC obser-
vations there were at least one optical observation taken
within 1 day, and all within 2 days. We then computed
the total unocculted 8 micron flux, fir, at the mid-transit
and mid-eclipse times of our 14 observations, after cor-
recting for the best-fit double-exponential ramp, to look
for a correlation between the 8 micron and optical fluxes.
The initial data seemed to show little correlation between
the infrared and optical fluxes, so we carried out a regres-
sion of the infrared fluxes against five variables: (1) the
optical flux, fopt, which is entirely due to the star; (2)
the phase Φ which determines whether the source is tran-
siting or eclipsing (i.e. whether we are seeing the day or
night side of the planet), Φ = 0 during transit and Φ = 1

during secondary eclipse; (3) the average centroid posi-
tion, xc, on the detector for each of our observations (the
y position varied little between observations); (4) the av-
erage infrared background flux scaled to our aperture,
fbkd (this was already subtracted in earlier analysis of
the data, but we nevertheless include it in the regression);
and (5) the amplitude of the first exponential ramp, a1.
The last three terms are included to take into account
the possibility of flat-field errors, imperfect background
subtraction, and the imperfect performance of our ramp
function.
We find the best-fit relation

fir
〈fir〉

− 1=(0.197± 0.022)
fopt − 〈fopt〉

〈fopt〉

+(1.044± 0.026)
fbkd
〈fir〉

− (6.59± 0.84)× 10−4xc

+(1.19± 0.16)× 10−3Φ
+(1.55± 0.48)× 10−6a1
− (12.7± 1.2)× 10−3, (9)

where 〈fir〉 is the ramp-corrected flux averaged over all 14
observations, while 〈fopt〉 is the average over the optical
flux at the times of the 14 observations. The left hand
side of this relation is plotted versus the right hand side
in Figure 5; the scatter about this relation is 0.35 mmag.
We have computed the uncertainties on the regression
coefficients by Monte Carlo simulation.
The standard deviation of the residuals of our sinu-

soidal fits to the optical data is 2.5 mmag (after exclu-
sion of a few outliers), which is 1.8 times the optical flux
uncertainty (1.4 mmag; Henry and Winn 2008). Using
the sinusoidal fits, the uncertainty on the optical flux we
predict at the mid-points of our observed transits and
eclipses ranges from 0.6-1.4 mmag after inflating the op-
tical errors by a factor of 1.8. Since infrared stellar fluc-
tuations are 20% of the optical, this predicts a scatter
of 0.1-0.3 mmag in the infrared, which is consistent with
the measured scatter.
We have computed the expected spectral change at 8

microns compared to (b + y)/2 for a star spot model
in which the star spots are modeled as Kurucz stellar
atmospheres (Kurucz 1992) with 4000-4500 K (which is
the estimated temperature from occulted star spots mea-
sured with HST by Pont et al. 2008), while the bulk of
the star is 5000 K, following the procedure described in
Knutson et al. (2009). We find the expected change at 8
microns is 21-23% of the change in the optical, very close
to our measured value, the first coefficient in equation 9.
There are several important implications of this re-

lation: (1) as the scatter in this relation is only 0.35
mmag, this indicates that photometry with Spitzer is re-
producible to 0.35 mmag over a 590 day period; (2) this
scatter limits our uncertainty on the measurement of the
night-side planet flux (during transit), so we can claim
that the night side variability is less than 0.35 mmag,
which is about 17% of the planet’s night-side flux or 10%
of the planet’s day-side flux (which we fit for in section
6.7); (3) the transits are 1.19±0.16 mmag fainter than the
eclipses —after accounting for stellar variability— due
to the cooler night side of the planet than the day side,
confirming the phase variation detected in Knutson et al.
(2007); (4) the infrared flux variations are about 20% of
the optical variations.
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Fig. 5.— Left hand side of equation 9 versus the right hand side.
Solid line is equality; the vertical scatter in the residuals of this
relation is 0.35 mmag.

The derived infrared/optical correlation is nearly twice
the value derived in Knutson et al. (2009), which used a
smaller subset of data to carry out the correlation and
thus was unable to regress against these other factors.
Our estimate of the expected flux variations from Ku-
rucz stellar atmospheres indicates that our derived value
is likely correct. However, Knutson et al. (2009) derived
a larger change in the stellar flux —by interpolating the
observed y-band light curve— than we obtained by si-
nusoidal fitting of the (b + y)/2 light curve over the pe-
riod of duration of the phase function observation, so the
resulting estimates of 8 micron stellar variation for the
Knutson et al. (2007) observation are nearly the same:
a 0.6 mmag increase in stellar flux between transit and
eclipse.

6. ECLIPSE AND TRANSIT MODELS

We fit a model of a straight-lined trajectory of the
planet over the disk of the star. To compute the tran-
sits and eclipses, we used the analytic formulae from
Mandel and Agol (2002), treating the planet as a uni-
form disk (no limb-darkening), and the star as a disk
with a linear limb-darkening law.
For each transit the model has six physical parame-

ters and four ramp parameters: the stellar flux F∗; the
sky velocity v (units of stellar radius per day); the im-
pact parameter b (units of stellar radius); the planet-
star radius ratio p = Rp/R∗ (dimensionless); the time
of central transit tc (in Barycentric Julian Day, BJD);
the linear limb-darkening parameter of the star u1 (di-
mensionless); and the double-exponential ramp param-
eters a1, τ1, a2 and τ2 (equation 8). Note that we ne-
glect the contribution of the planet’s flux during transit;
this is because we find this is completely degenerate with
the transit depth, and thus leads to problems in fitting
(Kipping and Tinetti 2009). We initially neglected phase
variation of the planet and variation of the flux of the star
during transits as the ramp affects all of the transit data
sets and thus a short timescale (5 hour) planet or stellar
variation can not be disentangled from the ramp for a
single observation.
For the secondary eclipses, we assumed that the

planet phase-function followed the same shape as that
of Knutson et al. (2007), which we held fixed in our fits
to each secondary eclipse, but we allowed the total planet

Fig. 6.— (a) Average light curve for the seven transits and (b)
seven eclipses with best-fit models (solid lines). The data have
been binned by 8960 data points to a total of 69 data points for
each.

flux to vary for each eclipse. For each secondary eclipse
we held fixed the planet/star radius ratio p, the im-
pact parameter b, and the velocity v, at the best-fit val-
ues from the transit observations; these parameters are
poorly constrained by the secondary eclipses, and hold-
ing them fixed has no impact on the fitting. Thus, for
each secondary eclipse we have three physical parameters
that are varied: the stellar flux F∗; the planet flux Fp;
the central time of eclipse tc; as well as the four ramp
parameters.

6.1. Results from fits to individual transits/eclipses

We allowed the model parameters to vary indepen-
dently for each transit/eclipse. These fits were necessary
since a simultaneous fit to the entire data set is com-
putationally intensive due to the large number of data
points; we avoided pre-binning the data to preserve as
much information as possible about the noise in the final
results. Figure 6 shows the average of all seven transits
and all seven eclipses, corrected for the detector ramp
and folded to the same orbital phase. We have binned
the data by 8960 exposures to 69 data points for clarity.

6.2. Transit impact parameter and sky velocity

For the transits, we found that the sky velocity, v,
and impact parameter, b, have no evidence for varia-
tion. Figure 7 shows each of these parameters plot-
ted versus the transit number. The sky velocity has
an average fractional uncertainty of 0.62%; the scatter
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Fig. 7.— (a) Impact parameter and (b) transit velocity, versus
transit number with estimated error bars. The horizontal solid line
is the average of the seven measurements, while the dotted lines
are the uncertainties on the average values. The numbers above
each data point show the number of periods before or after the
zero-point of our measured ephemeris.

in the measured values is 0.57%, and thus is consistent
with being constant. Combining our data together, we
find the average sky velocity is 25.125±0.064 R∗ day−1,
while a limit on the variation of the sky velocity is
dv/dt = (−5.5 ± 6.6) × 10−4R∗ day−2. The impact pa-
rameter has an average measured value of 0.6631±0.0023
R∗, with an average fractional uncertainty for each ob-
servation of 0.93% and a fractional scatter for the seven
observations of 0.67%; also consistent with being con-
stant. We constrain the change in impact parameter to
be db/dt = (−0.02 ± 2.67) × 10−5R∗ day−1. Thus our
data indicate that the impact parameter and sky velocity
of the transits remain constant to <1% over a duration
of 590 days.

6.3. Transit and eclipse times

We measured the transit and eclipse times for the seven
transits and eclipses, shown in Figure 8, as well as in
Tables 1,2. The errors on the transit times range from
2.4-3.6 seconds and are some of the most precise transit
times ever measured; comparable to, or better than, the
three HST transit times reported in Pont et al. (2007).
We fit separate ephemerides to the transits and eclipses;
the results are shown in Table 3. If we instead fit the
transit times with the quadratic function: tn = t0+Pn+
1
2 ṖPn2, where tn is the time of the nth transit, and Ṗ is

the change in period of the orbit, we find Ṗ = −0.06 ±

0.02 sec yr−1. Since this is primarily due to the last data
point, which may be an outlier, we do not view this as a
significant detection.
The uncertainty on the transit times and eclipse times,

as well as the derived ephemerides, are inversely propor-
tional to depth of the transits and eclipses. This is due to
the fact that the timing precision is proportional to the
inverse of the flux gradient with time during ingress and
egress. The ingress and egress duration are the same
for the transit and eclipse (assuming a circular orbit),
so the ratio of the flux gradient scales with the ratio of
their depths. The ratio of the depths is proportional to
the ratio of the surface brightness of the star to the sur-
face brightness of the planet (limb-darkening is weak for
this star at 8 microns), so the transit time precisions are
smaller than the eclipse precisions by the ratio of the sur-
face brightness of the planet to the star, which is about
14.3%, or a factor of 7.0.
Figure 8 shows the deviations from the ephemeris for

both the transits and the eclipses. The transits have a
scatter of 5.1 seconds, which is very close the the observa-
tional errors; there is no evidence in our data for transit
timing variations over a period of 590 days. The eclipses
also appear to be precisely periodic - their scatter with
respect to the best-fit ephemeris is 27 seconds, which is
comparable to the errors on each data point. The period
derived from the transits differs from that derived from
the eclipses by only 0.1 seconds!
The eclipses appear 69±11 seconds later than 1/2 of

an orbital period after the transits. As discussed in
Knutson et al. (2007), this is partly due to the light-
travel across the system, 30.8±0.6 seconds (this uncer-
tainty is due to the uncertainty in stellar mass, M∗ =
0.806± 0.048M⊙, Torres et al. 2008), while the remain-
ing 38±11 seconds can be mostly accounted for by the
hot spot on the planet causing an offset in the time of
eclipse when the planet is modeled as a uniform disk, as
shown in section 6.5.

6.4. Limits on the presence of companion planets from
transit-timing

These transit data show no significant timing varia-
tions, but from these we can constrain the maximum
mass allowed of additional planets in the system. Transit
timings are a particularly sensitive probe for planets in or
near mean-motion resonance (MMR) and previous stud-
ies have ruled out Earth mass or super-Earth mass plan-
ets in low-order MMR for several systems. Prior transit
timing variation (TTV) analyses of the HD189733 sys-
tem (Hrudková et al. 2010; Miller-Ricci et al. 2008) used
data with timing precision of order 30 seconds and were
sensitive to planetary masses of near (and below) one
Earth mass in favorable MMRs. Our Spitzer observa-
tions of HD189733 have nearly a factor of 10 better tim-
ing precision and consequently have improved sensitivity
to secondary planets by that same factor. Here we calcu-
late the maximum mass that an additional planet could
have based upon these transit data. To do so we note
that the χ2 per degree of freedom of the timing residuals
is slightly more than unity. We therefore scale the timing
uncertainty by a factor of 1.5 and then multiply by two
to achieve our 2σ (≃ 95% confidence level) upper bound
on the timing variations.
Figure 9 shows 95% confidence-level constraints on sec-
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TABLE 1
Transit parameters

Phase F∗ tc σtc ∆tc b v (Rp/R∗)2 u1 −a1,−a2 τ1, τ2
(counts) (BJD-2454000 days) (sec) (sec) (R∗) (R∗ day−1) (%) (counts) (10−2days)

-109.0 67222.6 37.611919±0.000034 3.0 -4.2 0.6694±0.0062 25.02±0.15 2.4088±0.0037 0.08± 0.03 75, 550 0.6010,6.6616
1.0 66782.7 281.655291±0.000040 3.4 -0.0 0.6586±0.0066 25.28±0.16 2.4022±0.0047 0.11± 0.03 281, 107 0.4735,5.4525
2.0 66722.4 283.873884±0.000042 3.6 1.4 0.6592±0.0066 25.24±0.18 2.4253±0.0063 0.11± 0.03 756, 752 0.4929,5.5313

52.0 66758.8 394.802711±0.000028 2.4 5.2 0.6636±0.0067 25.05±0.17 2.4333±0.0051 0.13± 0.03 756, 712 0.4891,5.6423
63.0 66995.3 419.207003±0.000036 3.1 1.7 0.6594±0.0049 25.18±0.11 2.4225±0.0049 0.12± 0.02 773, 722 0.5322,6.2047

158.0 67385.6 629.971694±0.000033 2.9 1.8 0.6641±0.0062 24.90±0.16 2.3984±0.0062 0.16± 0.02 639, 570 0.4560,5.5904
159.0 67242.2 632.190128±0.000039 3.4 -10.4 0.6685±0.0060 24.99±0.16 2.3965±0.0074 0.08± 0.03 715, 669 0.4890,5.8697

TABLE 2
Eclipse parameters

Phase F∗ tc σtc ∆tc Fp/F∗ −a1,−a2 τ1, τ2
(counts) (BJD-2454000 days) (sec) (sec) (%) (counts) (10−2days)

-108.5 67466.9 38.722278±0.000265 22.9 9.1 0.3345±0.0057 0, 0 0.0000,0.0000
0.5 66870.3 280.546423±0.000263 22.7 -32.5 0.3469±0.0060 609, 535 0.3793,4.5632
1.5 66808.5 282.765713±0.000350 30.2 29.3 0.3420±0.0068 255, 118 0.1134,4.8741

51.5 66904.4 393.693798±0.000414 35.8 -26.2 0.3368±0.0042 750, 727 0.6350,6.1896
63.5 67097.2 420.317184±0.000287 24.8 16.2 0.3623±0.0064 759, 647 0.5089,6.0830

157.5 67582.4 628.862649±0.000390 33.7 -30.8 0.3378±0.0091 330, 239 0.0310,5.6520
158.5 67318.3 631.081875±0.000313 27.0 25.5 0.3477±0.0075 737, 685 0.5505,5.6994

TABLE 3
Transit and eclipse ephemerides

T0 P
(BJDUTC) (days)

Transit: 2454279.436714±0.000015 2.21857567±0.00000015
Eclipse: 2454279.437510±0.000125 2.21857456±0.00000131

ondary planets with near circular orbits in this system
based upon these data and the radial velocity (RV) mea-
surements from Boisse 2009. These limits are derived
from the analytic formula given in Agol et al. (2005) and
Steffen and Agol (2005). We do not attempt an in-depth
numerical analyis of these transit times here—the robust-
ness of limits derived from analytic formulae was demon-
strated in Agol and Steffen (2007), Nesvorný (2009) and
Nesvorný and Beaugé (2010). These data exclude plan-
ets above 2 Earth masses for any orbit that lies closer
to the known planet than either the interior or exterior
2:1 MMR. The transit-timing mass exclusion is supe-
rior than the exclusion from radial-velocity data for pe-
riods from 1 to 5 days, excluding all planets with masses
greater than 3 Earth masses within this range. In ad-
dition they exclude planets with masses well below the
mass of Mars—approximately 0.2 Mars masses or 2 Moon
masses at 95% percent confidence—in circularly orbiting
2:1 or 3:2 MMRs (interior or exterior). For non-circular
orbits the sensitivity generally increases. However, in
low-order MMR the mass sensitivity can decline as much
as a factor of 10 for eccentric orbits — (see, for example,
Agol and Steffen 2007).

6.5. Effect of hot spot on secondary eclipse time

As discussed in Knutson et al. (2007), the 8 micron
phase function indicates that the hottest point on the
planet is offset from the sub-stellar point. This was pre-
dicted by Cooper and Showman (2005), and is attributed
to the advection of energy by a super-rotating wind en-
circling the equator of the planet. This offset hot spot
means that the ingress and egress of the secondary eclipse
will have a shape that differs from our model, which

utilizes a uniform disk. In particular, this means that
the steepest portion of ingress and egress will be offset
from the uniform disk case; since the hotspot is on the
trailing side of the planet with respect to the direction
of motion, this causes a delay in the eclipse time when
fit with a uniform disk model (Charbonneau et al. 2005;
Williams et al. 2006). In Knutson et al. (2007) we esti-
mated that the hot spot would cause a delay of at most
20 seconds; however, the fit to the phase function in that
paper did not correct for stellar variation which caused
the location of the hot spot to be underestimated, leading
to an underestimated uniform time offset.
To estimate the magnitude of this effect, we used a sim-

plified model of the longitudinal planet brightness which
is discussed in Cowan and Agol (2010a). Briefly, each
position on the planet is treated as a parcel of gas which
moves eastward, absorbing star light as it passes across
the day side, all the while radiating with a time constant
τrad. This model can be parameterized by a single pa-
rameter, ǫ = τrad/τadv, where τadv is the time it takes
a parcel of gas to circle the planet. Small values of ǫ
(“instant” re-radiation) lead to darker night sides and
day side temperatures which are in equilibrium with the
incident stellar flux. Large values of ǫ lead to nearly uni-
form temperatures at each latitude. Thus in the small
or large ǫ limits we expect no timing offset since the day
sides are symmetric. Only with ǫ ∼ 1 is there an off-
set hot spot causing a phase function which peaks before
secondary eclipse, as well as a slight offset in the times
of eclipse ingress and egress if fit with a uniform planet.
We computed the effect of ǫ on the time of secondary

eclipse by solving for the planet day-side longitudinal
surface brightness at the equator in the Rayleigh-Jeans
limit and assuming a constant temperature with latitude.
We computed the eclipse ingress and egress from this
model for the planet surface brightness, we fit this sim-
ulated eclipse light curve with a model for the eclipse of
a uniform planet, and from this best fit we determined
the offset in the time of eclipse, the so-called “uniform
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Fig. 8.— (a) Transit timing variations, observed minus cal-
culated for a constant ephemeris, O − C, and (b) both transit
and eclipse timing variations (ETV), O−C, versus transit/eclipse
chronological order with estimated error bars. Note that panel (b)
has a vertical scale that is 12 times larger than panel (a). The
horizontal dotted lines are the average of the seven transits and
seven eclipses; this is zero for the transits as we have subtracted
off the best-fit transit ephemeris. The numbers above each data
point show the number of periods before or after the zero-point of
our measured ephemeris; the points are not plotted as they occur
in time, but are simply evenly spaced.

time offset” defined by Williams et al. (2006). Figure
10 shows this time offset as a function ǫ; a positive off-
set means that the secondary eclipse occurs later than
expected for a uniform planet. The maximum offset pre-
dicted by this model is 43 seconds, which agrees with
the observed eclipse time offset. Our measured eclipse
time is plotted as a dashed line in this figure, with the
uncertainty indicated by the horizontal shaded rectangle.
The location of the peak in the planet phase function

from Knutson et al. (2007) provides another constraint
on the location of this hot spot, or equivalently on the
value of ǫ (see Figure 11). We used the relation between
the infrared and optical stellar variability derived in sec-
tion 5 to derive the change in stellar flux at 8 micron
during the phase function measurement, about 0.6 mmag
over 26.6 hours. We then fit the last 2/3 of the measured
8 micron phase function to estimate ǫ (Figure 11); we dis-
carded the first 1/3 of the phase function data since it is
strongly affected by the ramp correction. We find a best-
fit value of ǫ = 0.74 ± 0.07, which we have also plotted
as a vertical shaded region in Figure 10. This value of ǫ
predicts a timing offset of 33 seconds, which is consistent
with the measured offset of 38 ± 11 seconds. Figure 12
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Fig. 9.— Constraints (95% confidence level) on initially circular
orbiting secondary planets in HD189733 as a function of the pe-
riod ratio of the known planet based upon these transit data and
the radial velocity measurements presented in Boisse 2009. The
dotted curve are the limits from a TTV analysis alone from equa-
tions (A7) and (A8) in Agol et al. (2005). The dashed line is the
expected sensitivity from 33 RV measurements with 3.5 m/s preci-
sion calculated using equation (2) from Steffen & Agol (2005). The
solid curve is the overall sensitivity from both RV and TTV mea-
surements (summed in quadrature); the region above this curve is
excluded. The solid dots are the variation in mean-motion reso-
nance, ≈ Ptransmp/mt, where mt,p are the masses of the transiting
and perturbing planets (Agol et al. 2005). Finally, the horizontal
dot-dashed and triple-dot-dashed lines correspond to the mass of
the Earth and the mass of Mars, respectively.

shows a direct comparison of the secondary eclipse to the
average of our seven secondary eclipses. The top panel
shows the binned data as well as the best-fit secondary
eclipse at 1/2 orbital period after transit plus the 30.8
second light travel time delay (solid line), as well as the
ǫ = 0.74 model with light-travel time delay (dashed line).
The bottom panel shows the residuals binned into eleven
bins: pre-ingress, post-egress, eclipse, and four bins each
in ingress and egress; the residuals are plotted for the
uniform planet model (diamonds) and ǫ = 0.74 model
(filled circles with error bars). The uniform planet model
shows points which are on average higher in ingress and
lower in egress, which is a sign of the shifted hot spot.
The hot spot model provides a better fit to the data, al-
though there is still scatter in the residuals which just
reflects the low significance of the eclipse hot spot detec-
tion (the uniform time offset is only 3.5σ: 38± 11 sec).
Note that we have not optimized the hot spot model,
but only computed the light curve from the best fit to
the phase function (which gives ǫ = 0.74).
Consequently, there is no evidence for non-zero e cosω

in this system. For the estimated value of ǫ, the remain-
ing time offset is 6 ± 11 seconds, which yields e cosω =
0.00005± 0.00009.
Another prediction of this model is the day-night

brightness difference. For ǫ = 0.74, we predict a night-
side brightness which is 57% of the day-side brightness
(day defined at mid-eclipse; night at mid-transit). This
corresponds to a decrease in brightness from the day to
night side which is 0.15% of the stellar flux, which is
very close to the value of 1.2±0.2 mmag derived in sec-
tion 5. The minimum planet brightness (for the visible
hemisphere) divided by the maximum planet brightness
for this best-fit model is 50%, while the peak in observed
planet brightness is 23 degrees, 0.065 orbital periods, or
3.5 hours before the secondary eclipse. On the planet,
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the hottest longitude is 13 degrees from the sub-stellar
point; note that this differs from the hemispherically in-
tegrated peak due to asymmetry in the longitudinal day-
side intensity. Figure 11 shows the phase function data
after correction for stellar variation and binned by 1000
data points, versus planet orbital phase with the best-fit
model for the planet variability, ǫ = 0.74, overplotted.
Also plotted is our estimate of the night side flux based
on equation 9.

Fig. 10.— Timing offset for a hot spot model as a function of the
ratio of the radiative to advective time scales. The dashed line is
the best-fit eclipse time offset after correction for light travel time,
and horizontal rectangular shaded region is the 1-σ confidence limit
on this time. The vertical rectangular shaded region is the best-fit
value of ǫ to the 8 micron phase function, after correcting for stellar
variability.

Fig. 11.— Planet phase function after correction for stellar vari-
ability versus planet orbital phase. We only use the last ∼ 2/3
of the phase function to avoid problems with the ramp correction,
and we masked the secondary eclipse. The thick solid line is the
best-fit model for planet variability with ǫ = 0.74. The dot with
error bar on the left is our estimate of the night-side brightness
from equation 9. The dotted line shows our correction for stellar
variability during the phase function.

6.6. Transit depth variation

In the fits to the transits we allowed the depth of each
transit to vary independently through the ratio of the

Fig. 12.— Plot of average of 7 eclipses (top panel) with best-fit
uniform planet model, offset by 30.8 seconds after 1/2 orbital pe-
riod after the transit ephemeris (solid line), as well as the ǫ = 0.74
model with light-travel time delay (dashed line). The bottom
panel shows the residuals binned into eleven bins: pre-ingress,
post-egress, eclipse, and four bins each in ingress and egress; the
residuals are plotted for the uniform planet model (diamonds) and
ǫ = 0.74 model (filled circles with error bars).

planet to stellar radius, p = Rp/R∗. This ratio also af-
fects the duration of ingress and egress, but the amount
of time spent in ingress or egress is small, so the primary
effect is on the depth of transit. Figure 13 shows the de-
rived transit depths, p2, for the seven observed transits.
There is evidence for variability in the transit depth - the
uncertainty on the individual transit depths ranges from
37-74 µmag, while the scatter is 145 µmag. This corre-
sponds to a scatter in the fractional variation of transit
depth of 0.6%, while the ratio of maximum to minimum
is 1.5%. Fitting the transit depths with a single value
of p gives a ∆χ2 of 40.8 for 6 degrees of freedom. Thus,
transit depth variation is detected with high significance.
We allowed the limb-darkening parameter to vary for

each transit, which ranged from 0.08-0.13 for the seven
transits, with an overall mean of u1 = 0.12 ± 0.01.
Even though limb-darkening is weaker in the infrared,
an LTE Kurucz model atmosphere (Kurucz 1992) with
parameters close to the values inferred for HD 189733,
Teff = 5000 K, [Fe/H ] = 0.0, and log[g(cm/s2)] = 4.5,
predicts a linear limb-darkening coefficient of 0.136, close
to what we measure. We checked that the variation in
transit depth is not due to variations in the best-fit limb-
darkening parameter by holding the limb-darkening co-
efficient fixed at the mean value; this did not affect our
measured values of transit depth.
In fact, the variation in transit depth is not necessarily

due to a change in p. The average depth of each transit
is given by δ = 〈Ipath〉πR

2
p/(F∗ + Fp) (Mandel and Agol

2002), where 〈Ipath〉 is the average surface brightness
within the path of the planet across the star and Fp, F∗

are the planet and stellar flux during transit. Although
our model assumes a linear limb-darkening law, if the
path of the planet passes over a region of the star with
brighter than average surface brightness, then a larger
depth will be inferred.
So, it is possible that the change in transit depth is due

to changes in 〈Ipath〉/F∗, Rp, R∗, or Fp/F∗. Variations in
Rp or R∗ seem unlikely to be responsible for the transit
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depth variation as this would require changes in radius
of 0.3% for either body: either 220 km for the planet (∼
1/3 of a thermal scale height) or 1600 km for the star.
Both of these variations seem too large to be physically
plausible. Variations in 〈Ipath〉/F∗ due to fluctuations in
F∗ are ruled out as the transit depth variations are un-
correlated with the optical stellar flux variations. Vari-
ations in Fp (the night-side planet flux) are less than
0.35 mmag relative to F∗, which is too small by a factor
of 17 to be responsible for the transit depth variations.
Thus, the most likely possibility is that the transit depth
variations are due to a variation in the occulted stellar
intensity, 〈Ipath〉. This requires only a variation of 0.6%
in the surface brightness of the path of the planet relative
to the average stellar surface brightness, which is much
smaller than the 12% change in surface brightness from
center to limb inferred for the best-fit limb-darkening.
We have checked that individual star spots are not re-
sponsible for this variation by computing the standard
deviation of the residuals in transit divided by the square
root of the counts, which is 1.153, versus the same quan-
tity computed out of transit, which is 1.154, so there is
no evidence for individual star spots causing this differ-
ence. Similar inferences have been drawn for Channels 1
and 3 by Beaulieu et al. (2008), while star spots are eas-
ier to detect in the optical where the contrast between
star spots and the stellar disk is larger, and have already
been detected for this star by Pont et al. (2007), who also
resolved the shape and color-dependence of the spots.

Fig. 13.— Transit depths measured for seven transits. Horizontal
solid line measures the weighted mean transit depth, while dotted
lines give 1-σ uncertainty on this average value based on the scatter
in the data. The numbers above each point indicate the orbital
ephemeris.

6.7. Eclipse depth variation

Figure 14 shows the measured eclipse depth in units
of the stellar flux at mid-eclipse. The weighted mean
eclipse depth is 0.344 ± 0.0036% and the χ2 fit to the
eclipse depths with this mean value is 14.6 for 6 degrees of
freedom. The errors on each eclipse depth vary between
0.004-0.009%, while the scatter in the depths is 0.01%,
so there is no detection of significant eclipse depth vari-
ability. This scatter corresponds to 2.7% variation of the
mid-eclipse planet brightness; this can be taken as an
upper limit on the planet variability at 68% confidence.

Although our eclipse depths do not exhibit signifi-
cant variability, they only probe variability on timescales
shorter than the baseline of the observations (roughly
two years). To verify that our data do not show any
time structure, we plot in Figure 15 the change in eclipse
depth against the time between observations, for each
pair of observations (N × (N − 1)/2 = 21 for N = 7).
We add uncertainties in quadrature to estimate the un-
certainty on the flux differences. The resulting locus is
flat, showing that measured eclipse depth is uncorrelated
with the time of the observation. Note that this sets a
limit not only astrophysical variability scenarios, but also
systematic errors.

Fig. 14.— Eclipse depths measured for seven planet eclipses.
Horizontal solid line measures the average transit depth, while dot-
ted lines give 1-σ uncertainty on this average value. The numbers
above each point indicate the orbital ephemeris.

Fig. 15.— For each pair of eclipse observations, we show here the
change in eclipse depth as a percent, versus the time between the
observations. If the eclipse depths showed time-correlation —due
to either astrophysical variability on some characteristic timescale
or detector systematics— this plot would show a rise. The flat
distribution is consistent with Gaussian variations at the level of a
few percent.

This limit on the variation in eclipse depths is suffi-
cient to rule out the predicted variation computed for
HD 189733b by Rauscher et al. (2008). The most ex-
treme prediction they make is for their η = 0.05, Ū =
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Fig. 16.— An exclusion plot for the covering fraction and temper-
ature contrast of a putative storm on the day-side of HD 189733b.
The top right corner of the plot is excluded at 5σ. For comparison,
Jupiter’s Great Red Spot has a filling fraction of roughly 0.03, and
a temperature 12 K cooler than the rest of the planet (asterisk).

800 m s−1 model which has a standard deviation of ∼ 8%
in the day-side brightness, with the largest excursions of
20%. The largest difference in brightness we see is 8%,
while the scatter in planet brightness is 2.7%, so by both
measures the observed variation is a factor of ∼ 3 smaller
than the predictions of this particular model.
Other models predict smaller variations in the day-side

brightness, such as Showman et al. (2009a) who compute
the 8 micron brightness variation for HD 189733b should
be less than 1%. Our upper limits are consistent with this
model, but unfortunately do not constrain the model due
to our uncertainties that are larger than the predicted
variations.
With upper limits on both day and night-side vari-

ability, it is worth asking which of these puts stronger
constraints on the planet’s physical properties. Consider
the simple model of Cowan and Agol (2010b), which
parametrizes the planet’s day and night-side brightnesses
in terms of the planet’s Bond albedo and recirculation
efficiency. One can treat brightness variability —of the
day or night— as being due to changes in albedo and/or
changes in recirculation efficiency, and compute how
these affect the day and night side brightness. We find
that the day side variability upper limit provides a better
constraint on variation in the Bond albedo or recirula-
tion efficiency than does the night side variability limit,
which is ∼ 6× larger than the day-side limit.
Another possible origin of planet day-side variability

are transient local variations in the surface brightness,
for example due to large-scale “storms.” We use a toy
model where the planet’s day side has a uniform tem-
perature, Td, except for a storm with covering fraction
0 < f < 1 (the y-axis) and temperature difference ∆T
from mean day-side temperature (the x-axis). Figure 16
shows exclusion limits on the largest putative storm that
could form or dissipate without appearing in our data.
The increasingly dark shades of gray denote areas of pa-
rameter space excluded at 1σ through 5σ. According to
Showman et al. (2009b), the radius of deformation for
HD 189733b is 0.3 of the planetary radius, an order of
magnitude larger than for Jupiter. The covering fraction
for a typical storm on such a planet would be f = 0.1, for

which we cannot rule out storms differing by 324 K (68%
confidence) from the average day-side temperature. For
comparison, Jupiter’s Great Red Spot has a filling frac-
tion of roughly 0.03, and a temperature 12 K cooler than
the rest of the planet. The bottom line is that our data
rule out only the most extreme weather fluctuations on
HD 189733b.

6.8. System parameters

Due to the high precision of our data and weak limb
darkening in the infrared, we can considerably improve
the determination of certain stellar and planet parame-
ters for this system from our data. Since both the small
inferred value of e cosω and theoretical predictions in-
dicate that e should be close to zero, we set e = 0 in
deriving the system parameters. The uncertainties on
the stellar and planet parameters are computed for each
transit or eclipse by computing the system parameters
from the model parameters from each simulation (us-
ing the relations in Winn 2010), computing the standard
deviation of the results from the simulations as an esti-
mate of the errors on each parameter, and then taking a
weighted mean of all transits/eclipses to obtain the final
mean value of the best-fit parameters.

TABLE 4
Best fit system parameters

Parameter Best fit units

a/R∗ 8.863±0.020
b/R∗ 0.6631 ± 0.0023
i 85.710 ± 0.024 deg
e cosω 0.000050± 0.000094
u1 0.118 ± 0.010
ρ∗ 2.670 ± 0.017 g cm−3

Rp/R∗ 0.155313 ± 0.000188
Fp/F∗ 0.3440 ± 0.0036 %
gp 2145.9 ± 13.5 cm s−2

ρp 0.943 ± 0.024 g cm−3

Table 4 presents the system parameters determined
from all 14 transits and eclipses. We have focused
on parameters that are most directly constrained from
the photometry, which are either dimensionless, or have
units of density. Compared to the values derived in
Torres et al. (2008) and Pont et al. (2007), the uncer-
tainties on our values are smaller by a factor of 2-10.
For the planet surface gravity, gp, we use the veloc-
ity semi-amplitude K = 200.56 ± 0.88 m s−1, derived
by Boisse et al. (2009), and for the planet density, ρp,
we use the stellar mass M∗ = 0.806 ± 0.048M⊙ given
in Torres et al. (2008), propagating the uncertainties as-
suming they are uncorrelated and Gaussian.

7. DISCUSSION AND CONCLUSIONS

The analysis of fourteen transits and eclipses in this
paper has made several improvements to the data reduc-
tion and modeling; in particular, we have found a better
function for fitting the detector ramp of IRAC Channel
4, a double-exponential. The scatter in the residuals is
approaching that of photon counting errors, similar to
the precision achieved in other IRAC observations (e.g.
Todorov et al. 2010), but for a brighter source star, and
the residuals show very little evidence of red noise. These
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technical developments have allowed us to make a better
correction for stellar variability, and have given us better
constraints on the parameters of this system.
As HD 189733 is the first planet system in which the

phase variation has been measured at high significance,
it provides some of the tightest constraints on the atmo-
spheric dynamics of an extrasolar planet. Our observa-
tions of an additional six transits and eclipses presented
here allows us to place additional constraints on the lon-
gitudinal brightness distribution of the planet at 8 mi-
crons. In particular, we have improved the measurement
of the correlation between the optical, (b + y)/2 band,
and 8 micron variations in the star over the correlation
measured in Knutson et al. (2009), giving a correlation
that agrees better with predictions of star spot models.
This measured correlation allows us to derive a better
correction for the stellar variation during the observa-
tion of Knutson et al. (2007), giving us a better mea-
surement of the planet’s phase function. In particular,
we find that the peak planet flux at 8 microns occurs
3.5 hours before secondary eclipse, which is 1.2 hours be-
fore the value derived in Knutson et al. (2007) without
correction for stellar variation; this is consistent within
the errors given in that paper, which were dominated by
the ramp correction. This measured phase function pre-
dicts a 33 second delay of the secondary eclipse when fit
with a uniform planet model, which is consistent with the
38± 11 second delay that has been measured after cor-
recting for light travel time across the system. This con-
firms that the phase variation is indeed due to the planet,
and gives a crude eclipse mapping of the planet detected
the 3.5σ level, as first pointed out by Williams et al.
(2006). It is significant that —for the same high quality
photometry— phase function mapping (Cowan and Agol
2008) is more effective at locating the planet’s primary
hot spot than eclipse mapping (Williams et al. 2006).
This is because the duration of eclipse ingress or egress
is shorter by a factor ∼ Rp/(2πa) than the planet’s or-
bital period, while the changes in brightness used by
both techniques are comparable. The superior leverage of
phase function mapping will become even more marked
as interest shifts towards smaller planets in longer orbits.
That said, the two mapping techniques suffer from dif-
ferent degeneracies and different impacts of systematic
errors and stellar variability, so when possible one will
want to use both. We also confirm the phase variation
by measuring the difference between the fluxes at tran-
sit and eclipse, and we find the night side is fainter by
1.2±0.2 mmag, or about 64% of the brightness of the day
side. All of these constraints are consistent with a model
in which the gas circulating the planet has a radiative
cooling timescale which is comparable to the advection
timescale; we find τrad/τadv ∼ 0.74 by fitting the phase
function.
The larger offset in the time of peak planet flux

is also in better agreement with the predictions of
Showman et al. (2009a) who found that to obtain agree-
ment with the smaller offset of Knutson et al. (2007)
they required an inner boundary of their atmosphere
that was rotating more slowly than synchronous rota-
tion; instead of a sub-synchronous core, this may be in-
dicative of slower wind speeds due to magnetic drag near
the 8 micron photosphere (Perna et al. 2010). The sub-
synchronously rotating and 5× solar abundance models

of Showman et al. (2009a) predict a peak brightness at 8
microns which is 20-30 degrees before secondary eclipse,
which agrees well with our new estimate of 27 degrees.
The same models also predicts a day-side brightness
(mid-transit) which is 0.33-0.35% of the star’s brightness,
consistent with our measured value of 0.344±0.004%.
The night side brightness at 8 micron predicted by the
models is 0.17-0.18% of the stellar brightness, which is
consistent with our measured value of 0.22±0.05%. Their
models also predict very small variations in the secondary
eclipse depth of less than 1%, which is consistent with our
upper limit of 2.7%. The lack of variation of the atmo-
sphere indicates that the assumptions used in creating
longitudinal maps of planets from phase functions are
likely valid (Cowan and Agol 2008).
The time delay for the secondary eclipse can be com-

pletely accounted for by the light travel time of the sys-
tem and delay of ingress and egress due to a hotspot on
the planet which is offset longitudinally. Consequently
there is no evidence for a non-zero e cosω, and we can
place a limit of e cosω = 0.00005± 0.00009. If the orbit
of this planet is nearly circular, which the small value
of e cosω would indicate, then the interior is likely also
synchronously rotating, which seems to agree with the
Showman et al. (2009a) predictions for the phase func-
tion.
We have detected 8 µm limb-darkening of the star at

high significance, ∼ 10σ, which agrees with predictions
of stellar atmosphere models. However, the individual
transits vary in depth, which we hypothesize may be due
to variation of the stellar surface brightness that is oc-
culted by the planet. This is not surprising given the
strong optical variations of this star which indicate a sig-
nificant presence of star spots. This variation needs to
be accounted for in creating spectral absorption profiles
of transiting planets. If the data taken are non- simul-
taneous, the variation in stellar surface brightness could
affect the inferred depth of transit differently at different
wavelengths, leading to systematic errors in comparison
to model predictions; even simultaneous data might be
affected by the star spot color. This is a stronger ef-
fect at shorter wavelengths; for example, the contrast
in surface brightness of 4000 K star spots in the IRAC
Channel 1 (3.6 µm) and Channel 2 (4.5 µm) should be
20-40% higher than for Channel 4 for this star; thus fluc-
tuations in transit depth could approach 2% in these
bands. In addition, this limits the possibility of con-
straining the variations in transit depth due to planet
oblateness (Carter and Winn 2010).
Due to our highly precise transit times spaced over

a wide range in time, the ephemeris we derive is one
of the most precise for any transiting planet. The
high precision is due to the weak limb-darkening, sta-
ble instrument (thanks to the Earth-trailing orbit of
Spitzer which leads to stable thermal properties and
no occultation of targets by the Earth, as occurs with
the Hubble Space Telescope), allowing a 3-second pre-
cision for transit times. Our ephemeris has a precision
that is > 10 times better for the period than that re-
ported in in Pont et al. (2007), and agrees with their
reported period within ∼2.8σ: their period is longer by
0.46±0.17 sec. Our ephemeris predicts times of transit
that are -3.3±5.0, 3.5±5.0, and 12.6±3.5 seconds after
their three transit times in Pont et al. (2007). We de-
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tect no strong evidence for transit timing variations in
our data, and we estimated from analytic formulae the
upper mass limits on the presence of companion plan-
ets in this system, improving upon the limits placed by
Miller-Ricci et al. (2008) and Hrudková et al. (2010) by
a factor of ∼ 10. Theories of the evolution of short-
period planets due to tidal effects and interaction with
turbulence in the protoplanetary disk indicate that they
should evolve out of mean-motion resonance, so the lack
of detected transit-timing variations may not be surpris-
ing, especially for interior perturbing planets (Fabrycky
2009; Adams et al. 2008; Terquem and Papaloizou 2007;
Papaloizou and Terquem 2010).
In sum, the excellent stability of the Spitzer Space Tele-

scope, and in particular Channel 4 of the IRAC camera,
has enabled near photon-limited photometric errors, and
sub-mmag variations over a period 1.6 years. This has
enabled a better calibration of the contribution of stellar
variability at 8 micron, which has allowed us to mea-

sure the night-side planet brightness, and has shifted our
estimate of the peak of the phase function.
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Lecavelier Des Étangs A, Lovis C, Mayor M, Pepe F and Udry
S 2009 A&A 506, 377–384.

Werner M W, Roellig T L, Low F J, Rieke G H, Rieke M,
Hoffmann W F, Young E, Houck J R, Brandl B, Fazio G G,
Hora J L, Gehrz R D, Helou G, Soifer B T, Stauffer J, Keene J,
Eisenhardt P, Gallagher D, Gautier T N, Irace W, Lawrence
C R, Simmons L, Van Cleve J E, Jura M, Wright E L and
Cruikshank D P 2004 ApJS 154, 1–9.

Williams P K G, Charbonneau D, Cooper C S, Showman A P
and Fortney J J 2006 ApJ 649, 1020–1027.

Winn J N 2010 arXiv:1001.2010” .
Winn J N, Holman M J, Henry G W, Roussanova A, Enya K,

Yoshii Y, Shporer A, Mazeh T, Johnson J A, Narita N and
Suto Y 2007 AJ 133, 1828–1835.

Winn J N, Johnson J A, Marcy G W, Butler R P, Vogt S S,
Henry G W, Roussanova A, Holman M J, Enya K, Narita N,
Suto Y and Turner E L 2006 ApJ 653, L69–L72.




