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The first of the hadron colliders, ISR, started operation in 1970. In the following years, 
the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 
first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which 
started in 2008. HERA was a hybrid that collided electrons and protons. All of these 
accelerators had or have their performance limited by the effects of the beam-beam 
interactions. That has also been true for the electron-positron colliders such as LEP, 
CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations 
arose in some of these machines. The discussion will be focused on common themes 
that span the different colliders. I will mostly discuss the hadron colliders but 
sometimes discuss the lepton colliders where relevant. Only a handful of common 
accelerator physics topics are chosen here, the list is not meant to be exhaustive. A 
comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) 
can be found in reference [1]. 
   Table 1 shows the relevant parameters of colliders (excluding the LHC), which have 
accelerated protons.  
 

Table 1: Basic parameters of past and present fully commissioned hadron colliders 

 
 ISR SPS Tevatron HERA p RHIC 
Circumference [m] 
Energy [GeV] 
Peak Luminosity 
[x1032 cm-2 s-1] 
 Lumi lifetime [hrs] 
#of  head-on collisions 
Number of parasitics 
Total bm-bm spread 
βx*, βy* [m] 
εx, εy [rms,  π μm] 
 
Bunch intensity 
[x1011] 
Number of bunches 
Bunch spacing [nsec] 
Bunch length [m] 

943 
31 
 
1.3 
? 
8 
0 
0.008 
30, 0.3 
  
 
- 
 
N/A 
N/A 
N/A 

6911 
315 
 
0.06 
9 
3 
9 
0.015 
0.6, 0.15 
2.75, 2.75  
3, 2.5 (a) 
1.3(p) 
0.7(a) 
6 
1150 
0.72 

6283 
980 
 
4.0 
6 
2 
70 
0.025 
0.28, 0.28 
2.9, 3.3 
1.6, 1.4(a) 
3.1 (p) 
1(a)  
36 
396 
0.6 

6336 
920 
 
0.5 
? 
2 
0 
0.003 
2.45,0.18 
 3.7, 3.7 
 
0.9  
  
180 
96 
0.30 

3834 
250 / 100 
 
0.85 
6 
2 
4 
0.013/0.009 
0.7 / 0.7 
3.3, 3.3 
 
1.3 
 
110 
 108 
0.6 / 0.8 

 
Notation: a  = anti-protons 
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Luminosity lifetime in the table refers to the initial luminosity lifetime at the start of 
stores. ISR also collided protons-antiprotons but peak luminosities were reached with 
protons in both beams. HERA was an e-p collider but is included here.  

 

  
Figure 1: Left plot shows the luminosity in cm-2s-1 vs. beam energy. Right plot shows the beam-
beam parameter per IP vs. beam energy. For SPS and the Tevatron, the beam-beam parameter 
for the anti-protons is shown. Also shown are the parameters for the LHC at its design energy 

and luminosity.  

Figure 1 shows the luminosity and beam-beam parameter/IP ξ for the different colliders. 
While the SPS had the lowest luminosity (because of the fewest number of bunches), it 
had small emittance bunches and had the highest specific luminosity so far.  
 
Tune space: In the Tevatron, the working points lie above the half integer between the 
5th and 7th order resonances with an available tune space of 0.028 which is comparable 
to the total beam-beam tune spread. In RHIC, the working points also above the half 
integer lie between 3rd and 10th order resonances with an available tune space of 0.03. 
The maximum tune spread is about half this value. The SPS also operated within these 
resonances. In HERA-p, tunes were below the half integer but placed between 7th and 
10th order resonances with an available tune space of 0.014, several times the beam-
beam induced tune spread for protons. In most of these colliders, the tunes have to be 
controlled to within 0.002 for optimal operation. This is not always easy, e.g. in the 
Tevatron the proton tune spread is determined by the anti-proton bunch intensity which 
can vary significantly from bunch to bunch.  

 

1.1.2 Beam-beam limits in different colliders  

Limits imposed by the beam-beam interactions can manifest in several different ways. 
Here we briefly review how the limits arise/arose in different colliders. 
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1.1.2.1   Hadron colliders 

 
 Beam-beam interactions impose limits at all stages of the operation cycle and in 
different ways. At injection, the limits are imposed by the long-interactions when the 
two beams with 36 bunches each circulate on their helical orbits and each bunch suffers 
72 long-range interactions around the ring. Both beams suffer losses proportional to the 
intensity of the other beam. At collision with 2 head-on interactions and 70 long-range 
interactions, the limiting processes are different for the two beams. The long-range 
interactions contribute a tune spread of about 0.008, equal to from each of the main 
collisions. In current operations, both species have about the same beam-beam tune 
spread and are effectively in the strong-strong regime. Early in Run II, anti-protons 
suffered large losses during the beta squeeze and stores due to the long-range 
interactions, particularly the 4 interactions with smallest separations on either side of 
the 2 IPs. In 2006, additional separators were installed to increase the beam separations 
from about 5.4σ to about 6 σ [2] at these locations. Beginning in 2005 electron cooling 
of anti-protons in the Recycler was made operational which made their emittance much 
smaller than those of protons [3]. Consequently the anti-protons effectively experience 
only the linear part of the head-on beam-beam force and do not suffer much from it. 
Since 2006, anti-proton losses due to beam-beam interactions during stores have been 
small, provided the tunes are well controlled. Protons on the other hand have tunes 
closer to 12th order resonances and are transversely larger than the anti-protons. 
Consequently during head-on collisions, they experience the non-linear beam-beam 
force enhanced by chromatic effects and suffer beam loss and emittance growth. Long-
range interactions have affected protons occasionally during the beta squeeze when 
separations can drop to low values.  

Tevatron 

Earlier reports on beam-beam phenomena early in Run II can be found in several 
references, e.g. [4, 5, 6]. A review of beam-beam observations in Run I can be found in 
[1]. In 2010 the Tevatron achieved a peak luminosity of 4x1032 cm-2 s-1, about three 
times the peak value obtained with the ISR. Summaries of recent improvements made to 
the Tevatron complex can be found in [3, 4].   
 
 

RHIC has collided many species including proton-proton, gold-gold, gold-deuteron 
and others. I will discuss here some of the limits observed with proton-proton collisions. 
The beams in the Blue and Yellow rings have nearly the same intensity and emittances, 
so RHIC operates in the strong-strong regime, as does the LHC. During injections and 
acceleration, the beams are have a large enough vertical separation that long-range 
interactions at 4 locations do not lead to any losses. At collision each bunch suffers 2 
head-on collisions. During recent runs, the beam-beam parameter ξ per IP has 
approached 0.0065, close to the value in the Tevatron [8].  Dominant sources of beam 
lifetime limitations, not due to luminosity burn up, include beam-beam effects, IR 
multipole errors and parametric modulations due to mechanical vibrations of the triplets 
[9]. RHIC operates between the 3rd and 10th order resonances. When the tunes get too 
close to the 10th order resonances, both luminosity lifetime and proton polarization 
(which may be affected by beam-beam) suffer. During the latest runs, beta* values 
became comparable to the bunch length and the hourglass effect became significant 
enough to reduce the luminosity [10]. At intensities beyond 2x1011 /bunch, the beam-

RHIC 
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beam tune spread will exceed the resonance free space. There are plans to use electron 
lenses to compensate the effects of these head-on interactions.  
 

The beam-beam parameter for HERA-p was almost a factor of 10 lower than in the 
Tevatron. Also, as remarked above, the resonance free space was about 4-5 times the 
beam tune spread. Nevertheless the head-on interactions did induce beam losses. 

HERA 

During the early commissioning stage, proton transverse beam sizes were about 3-4 
times the electron beam sizes and their lifetime during stores was very low, around 0.5 
hours. As the proton beam size was reduced to match the electron size, the lifetime 
improved to about 100 hours or more [11]. During 2003 and 2004, proton beams were 
observed to be driven by coherent oscillations of the lepton beam when the tunes of the 
two beams approached resonances too closely. Under extreme conditions, the proton 
beam emittance grew by a factor of 2-4 times [12]. This growth was avoided by careful 
choice of the tunes and by bringing the beams into collision sequentially at the two IPs. 
In the final years of operation, increasing beam-beam forces on the protons increased 
diffusion into the beam halo and background rates and thus led to a “soft limit” rather 
than a hard limit [13]. However orbit vibrations at the IP due to mechanical vibrations 
of the triplet by more than a few microns were considered intolerable.  
 The lepton beam-beam limit in HERA was primarily due to operation close to the 

integer tune in order to maximize polarization. When the beam-beam tune spread 
overlapped low order synchro-betatron resonances, coherent oscillations and emittance 
growth of the lepton beam resulted. Careful control of the tunes was necessary to avoid 
these resonances [13].  
 

 Prior to 1988 the SPS operated with 3 proton bunches and 3 anti-proton bunches 
circulating in the same vacuum chamber. The protons had an emittance about 4 times 
larger than that of the anti-protons. During the start of stores, proton loss rate was high 
with an initial lifetime of around 10 hours and the background rates were unacceptably 
large [14]. Protons in the transverse tails were sensitive to very high order resonances 
such as the 16th order and were lost. The losses were controlled by a controlled increase 
of the anti-proton emittance at the start of the stores – similar to what is done now in the 
Tevatron. Along with other upgrades in 1988, the proton to anti-proton emittance ratio 
was reduced to 12/7 and the number of bunches in each beam was increased to 6. 
During injection and acceleration, the beams were horizontally separated with 
electrostatic separators. At injection, the beam separations at the 12 parasitic 
interactions varied between 1.3 to 7.9 units of the anti-proton beam size [

SPS 
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]. Beam 
losses due to 7th order resonances were associated with these interactions during 
injection and acceleration. At top energy each bunch had 3 head-on collisions, two at 
the experiments and one in between them. During stores with more equal beam sizes, 
the protons were now sensitive to lower order resonances such as 10th order but 
background rates were acceptable and the initial proton lifetime had increased to about 
50 hours. A comparative review of SPS and Tevatron performance up to 1989 can be 
found in [15].  
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 This machine had two interleaved rings in which first unbunched beams of protons 
and later antiprotons and other particles were brought into collision. There were 8 
crossing points of which 5-6 were used for experiments [16, 17]. Another feature of the 
ISR was that it had a working line, shown in Figure 2, rather than a working point.  

ISR 

 

 
Figure 2: One of the working lines in the ISR (named 8C) between 3rd and 5th order resonances 

and straddling 8th order resonances (taken from [18]) 

 
This large tune spread was required for stability against the transverse resistive wall 

instability. As a consequence, the beams crossed some low order betatron resonances 
which led to particle loss. Synchro-betatron resonances were not an issue. During 
collisions beam-beam effects also led to particle loss, often from coherent effects. This 
will be discussed further below. Beam currents in the range of 30-40 Amps were stored 
during high luminosity runs with lifetimes in the tens of hours. Overviews of the 
accelerator physics issues in the ISR can be found in [19, 20].  

1.1.2.2 e+-e- colliders 

 

Prior to 2007, beams in KEKB had a crossing angle of 22 mrad at the IP. Crab cavities 
were introduced in 2007, one in each ring, to have effective head-on collisions and 
recover the geometric loss of luminosity. However when the bunch currents were raised 
beyond values circulated without the crab cavities, beam lifetimes dropped. The 
lifetimes could be improved by introducing horizontal offsets in the crab cavities, the 
amount of offset depended on the bunch current. In 2008 it was understood to be due to 
the dynamic beta beating from the beam-beam interaction and operation close to a half 
integer [21]. The horizontal beam sizes of the beams were large at the crab cavities that 
did not have sufficient aperture. The optics was changed to reduce βx at the cavities, β* 
was raised to 0.15m to improve lifetime. The most important improvements came from 
the installation of skew sextupoles around the IR to reduce chromatic coupling at the IP. 

KEKB 
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These alone raised the luminosity by 15% and led to a peak luminosity of 2.1x1034cm-

2s-1 in 2009 [22, 23].  
 

 During 2008, its last year of operation, PEPII operated with 1732 bunches in each ring 
and achieved a peak luminosity of 1.21x1034cm-2s-1 [24]. At the highest bunch currents, 
the performance was limited by the head-on beam-beam interactions. For example, the 
low energy ring (LER) currents were limited by the losses and backgrounds from the 
beam in the high energy ring (HER). Additionally increasing the beam current in the 
LER also increased its own beam size, which was not understood [24]. The maximum 
beam-beam parameter achieved was 0.113 in the horizontal plane of the HER.  

PEPII 

 
Figure 3: The specific luminosity vs. the product of the bunch currents in the two 

rings in PEP II (taken from reference [24]). At low currents the dynamic beta effect 
increased the luminosity by decreasing beam sizes at the IP but at higher currents, 

losses due to the beam-beam interactions reduced the specific luminosity. 
 
The effect of the parasitic collisions on the luminosity was reduced to a few percent, 

after correcting for the tune shift and coupling generated by the vertical separation of 
the beams at these locations. In the early years of operation, electron cloud effects in the 
LER had to be mitigated by solenoidal fields in the straight sections, addition of 
antechamber, photon stops and TiN coatings in the arcs. A complete list of 
improvements made to PEPII over the years can be found in reference [24].  
 

Until 2001 CESR operated as a symmetric energy collider at 5 GeV with electrons and 
positrons circulating in the same beam pipe. In 2001 there were nine bunch trains in 
each beam with 4 bunches per train for a total of 71 long-range interactions and 1 head-
on collision. The beams were horizontally separated into pretzel orbits by electrostatic 
separators. The beam separations appear to have ranged from 4 to 7 σ [25]. The bunch 
currents were limited by the parasitic interactions. When a 5th bunch was added to each 
train, the specific luminosity and the beam lifetimes suffered [25]. Attempts to increase 
the bunch current beyond 7.5 mA with 4 bunches in each train also led to lower 
lifetimes. The average beam-beam tune shift in the vertical plane saturated at 0.07. In 
2001 CESR became CESR-c to study the bound states of charmed quarks and the 

CESR 
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energy was lowered to 2 GeV. During 2006 it operated with 8 trains of 3 bunches each, 
so each bunch suffered 47 long-range interactions and 1 head-on collision. Beam-beam 
effects were more severe at the lower energy. After local compensation of the phase 
advance shifts and beta-beats due to the long-range interactions, bunch currents could 
be raised to 3 mA from 2.5 mA before the compensation [26]. 
 

1.1.3 Scaling laws 

Scaling laws which relate how beam loss rates or luminosity lifetimes relate to beam 
parameters can be useful for predicting the changes when beam parameters change in a 
given machine, for example after an upgrade. However these laws depend on the details 
of the machine and can usually not be applied across different accelerators. Furthermore 
even in a single machine, it is hard to measure beam loss rates or emittance growth 
against a single variable (such as bunch intensity of the opposing beam) over a wide 
enough range and with enough statistics, keeping all other factors constant. This is 
usually due to the lack of dedicated study time. Typically the loss rates or beam growth 
are measured at different points in time when other machine parameters (such as orbits, 
tune, chromaticities etc) may have also changed. With these caveats in mind, we now 
take a look at some scaling laws, some of which were obtained from data taken during 
machine experiments.  

 

1.1.3.1 Tevatron: Losses at injection 

At injection, the long-range interactions are responsible for losses. In 2005, the 
losses of anti-protons and protons were fitted to some key parameters. Figure 4 shows 
the proton loss rate dependence on the horizontal chromaticity.  

 
Figure 4: Dependence of proton loss rates in the Tevatron on horizontal 

chromaticity at injection 
 
The empirical law relating proton and anti-proton losses to key parameters (adapted 

from [27]) was found to be 
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Here t is the time spent at injection, Np, Na are the proton and anti-proton bunch 
intensities, εp, εa are the proton and anti-proton transverse emittances, Q’ is the 
chromaticity. The above dependencies hold only if the variables in parentheses are held 
constant. Qa, Qp the tunes, da-p, the separation between the beams, εL the longitudinal 
emittance and Dapert is the distance to the physical aperture. The functional 
dependencies on these parameters (N, ε, Q’) can be completely different if any of the 
variables held constant, e.g. the tunes, change. The t  dependence can be explained as 
the initial time dependence of a normal diffusion process [28], which at long times 
progresses to the more familiar exp(-t) decay for the intensity. It would be desirable to 
develop a theoretical model that explains the linear dependence on the opposing beam 
intensity and the quadratic dependence on its emittance and chromaticity but such a 
detailed understanding has not yet been developed.  

1.1.3.2 Tevatron: Anti-proton losses during stores 

 
Anti-proton loss rates are determined mostly by the long-range interactions. Data taken 
during 2004-2005 could be empirically fit to the law [27] 
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where M is the bunch number in the train and da-p is an average distance between the 
beams or more precisely the scale of the helix size compared to a nominal helix. The 
dependence on the beam separation was measured by changing the size of the helix 
everywhere in the ring by a scale factor. It is worth noting that changing the helix also 
changes tunes, coupling and chromaticities so their effects on beam loss may also be 
present. As at injection, the losses depended linearly on the opposing beam intensity 
and quadratically on its own transverse emittance. It is possible that these dependencies 
on (N, ε) are nearly universal for a well tuned machine away from harmful resonances. 
One machine where this could be tested is the LHC which also has several long-range 
interactions per turn.  
 

1.1.3.3   SPS study of proton losses 

   It is very likely that the inverse cube power law dependence on the beam separation is 
not universal but depends on the details of the beam and machine parameters. One 
example in the SPS is drawn from a study done with a single proton hunch interacting 
with two anti-proton bunches [29]. At two points the beams collided head-on, at Iwo 
other points they were separated by 6-7σ of the anti-proton beam size.  The loss rate and 
background rates were measured during two horizontal tune scans, one with full 
separation and the other with half their separations at the parasitic interaction locations. 
Figure 5 shows the decay rate on the left vertical scale and the background rate on the 
right vertical scale. There was a jump in the rates (by a factor of 2 – 3) for the halved 
separation only at the 13th and 16th order resonances, but not at the 10th order resonance. 



 9 

 
Figures 5: Proton intensity decay rate and proton background rate as a function of Ihe 

horizontal tune at two separations (taken from [29]). 
 
The power law dependence on the separation is weaker in this measurement compared 
to the Tevatron data and it is tune dependent. The jump in rates at the 16th order 
resonance suggests that it was driven by the parasitic interactions but the 10th order 
resonance was not.  

1.1.3.4 Tevatron: Proton losses due to head-on collisions 

 
Proton loss rates during the first two hours of stores in 2008 are plotted against the 

product of the anti-proton bunch intensity and the ratio of emittances in Figure 6 below. 
 

 

Figure 6: Proton loss rates vs. Na(
a

p

ε
ε

) during stores in 2008 (taken from Ref [4]) 

This shows a nearly linear dependence of proton losses on this product. This suggests 
an empirical law 
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However note that the error bars on the data are fairly large.  Also, there was not 
much variation in the proton emittance in this data. 

 
The only models that exist to describe particle transport and beam loss in the 

absence of external noise are based on diffusion due to the overlapping of resonances. 
The diffusion coefficient is determined by the change in action which when dominated 
by beam-beam effects is proportional to the beam-beam parameter, hence 

22 ~~)( ξJJD ∆                                         (4) 
Diffusion models therefore lead to diffusion coefficients that depend quadratically 

on the beam-beam parameter. In general extracting the lifetime from the diffusion 
coefficients requires solving a diffusion equation. In some cases the lifetime or loss rate 
can be extracted more directly. For example, the loss rate in the case of isotropic 
diffusion can be expressed in terms of the diffusion coefficients as [30] 

1)
)(

(1 −∫=
r

rr
D JD

dJJN
τ                      (5) 

where ND is the number of dimensions (=2 or 3 if longitudinal effects are included), Jr is 
the radial action and D(Jr) is the radial isotropic diffusion coefficient. Thus the loss rate 
should also depend quadratically on the beam-beam parameter. The empirical fit above 
in Equation (3) shows a linear dependence on the beam-beam parameter. Reconciling 
theoretical models to the empirical fits remains a challenge.  

1.1.4  Influence of machine optics on beam-beam phenomena 

 In all colliders global orbits, tunes, coupling, chromaticities etc have to be well 
controlled for optimum integrated luminosity. Here I will discuss some recent examples 
of how local optics parameters in the interaction regions and beam-beam interactions 
have influenced performance.  

1.1.4.1 Local and beam-beam chromaticity 

 Experience at the Tevatron 
 
Beam-beam effects can directly contribute to chromaticity. The head-on interactions 
can do so for bunches with lengths comparable to β* or for short bunches if the beams 
are not exactly round at the IP so that the beam-beam tune shift does depend on the β* 
values. Alternatively collisions at a crossing angle can also contribute to chromaticity. 
However these are usually relatively small contributions. Long-range interactions on the 
other hand have sextupole components in their multipole expansion and if these 
interactions occur at regions of non-zero dispersion can contribute significantly to the 
chromaticity. This is the case in the Tevatron where the contributions also differ bunch 
by bunch since each bunch has its own distribution of long-range separations and 
locations. The left plot in Figure 7 shows the theoretically calculated chromaticities at 
top energy due to the long-range interactions only, taken from [31] 
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Figure 7: Left: Theoretical estimate of bunch-by-bunch chromaticity due to long-range 

interactions only. The right plot shows the measured bunch-by-bunch chromaticity that includes 
machine chromaticity and the effects of coupling as well. 

In this theoretical calculation, the contributions to the vertical chromaticity are fairly 
small because the vertical dispersion is also small around the ring. However this does 
not take into account coupling between the two planes. The machine chromaticity, 
which would shift all the chromaticities by constant amounts, was not included. The 
measured bunch by bunch chromaticity in the Tevatron shown in the right plot of Figure 
7, taken from [27], demonstrates (a) similar variation in chromaticity between the 
bunches and (b) that coupling tends to equalize the horizontal and vertical 
chromaticities.  

It is worth noting that just like the tunes, the chromaticities also depend on the 
transverse amplitudes and chromaticity footprints exist which are also different for each 
bunch [32]. As with the beam-beam tune footprints, these footprints are hard to observe 
directly with measurements. However they can have observable consequences. If 
particles have chromatic tunes that lie near resonances, then their momentum deviation, 
their transverse amplitude and the specific bunch will determine which particles are lost 
due to these resonances.  

 The level of machine chromaticity also influences the effects of the long-range 
interactions. Prior to December 2008, the machine chromaticity in the Tevatron during 
the squeeze was kept between 12-14 units to stabilize the protons against the head-tail 
instability. However during two stages of the squeeze when the beam separations were 
low, there were significant proton losses that were accompanied by a reduction in their 
bunch length. Particles with large momentum deviations were likely hitting synchro-
betatron resonances and getting lost. Lowering the chromaticity to about 5 units still 
provided enough tune spread for stability but also lowered the proton losses and 
removed the longitudinal shaving [33].  

A better-known phenomenon is the contribution of the interaction region to the 
chromaticity. At collision optics, the triplet quadrupoles contribute large linear and non-
linear chromaticity as well as strong chromatic beta beats. The linear chromaticity is 
corrected to the desired value but the nonlinear chromatic effects, if not corrected, can 
lead to beam loss due to beam-beam or lattice driven synchro-betatron resonances. This 
was the experience in the Tevatron until 2006 when a second order chromaticity 
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correction was put into effect [34]. This reduced the quadratic chromaticity by about a 
factor of five and decreased proton losses during stores. 
  
Experience at KEKB with chromatic coupling 

 
An interesting case of the combined effects of chromaticity and coupling has been 

recently reported from KEKB after the installation of crab cavities in 2007 in each ring. 
Coupling was found to be stronger for off-momentum particles both in measurements 
and simulations with their model lattice. Sources of this chromatic coupling were 
thought to be the misaligned sextupoles, higher order multiples in the final focus 
quadrupoles, special magnets and other lattice errors. Weak-strong and strong-strong 
beam-beam simulations showed that the luminosity was not sensitive to the chromatic 
coupling without the crab cavities but in their presence, the luminosity could drop as 
much as 10% due to chromatic effects [35].  

KEKB operates close to the 1st order synchro-betatron resonance near the diagonal 
in tune space Nqqq syx =+− , and various sources could be driving this resonance. 
Installation of skew sextupoles to control the chromatic coupling resulted in about 15% 
increase in luminosity [22]. Measurements showed that these skew sextupoles were 
effective in increasing the luminosity with the crab cavities turned off as well [23]. The 
maximum vertical beam-beam parameter achieved is 0.09 in the higher energy ring as 
opposed to a predicted value of 0.15 by beam-beam simulations. The reasons for the 
discrepancy and the limitations on achieving higher luminosity were under active study 
as of June 2010 [23].  

It is an interesting question why KEKB was so susceptible to this chromatic coupling 
and not other accelerators such as PEP II, since rotational misalignments of sextupoles 
are not uncommon. It could simply be that KEKB operated closest to the linear 
synchro-betatron resonances. The tunes in PEP II appear to have been closest to the 
higher order resonance qx – qy + 2 qs = N in both rings [36] and may have therefore not 
been affected.  

1.1.4.2 Local coupling and dispersion 

In the Tevatron, global coupling is controlled to a minimum tune split of 0.002. 
Both in the Tevatron and in RHIC local decoupling in the Irs has been operational to 
correct for rotational misalignments of triplet quadrupoles (in some cases by several 
mrad) in order to optimize luminosity. Local dispersion is measured and corrected to 
within a few cm at the IPs in the Tevatron.  

In lepton colliders there are direct geometrical effects since the coupling controls the 
vertical emittance and hence the vertical beam sizes at the IPs. KEKB finds it essential 
to correct both the local coupling and the dispersion at the IP during their luminosity 
optimisation.  They use anti-solenoids and skew quadrupoles to correct the local 
coupling sources and dipole correctors to correct the dispersions in both planes at the 
IP. In PEPII reducing the coupling in the interaction region of the low energy ring was 
found to be essential to increasing the luminosity. This was done by installing several 
permanent magnet skew quadrupoles in the IR [24]. It seems to be generally accepted 
that the dynamical effects of uncorrected coupling and dispersion have a greater impact 
on the luminosity than the purely geometrical effects in lepton colliders.  
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1.1.4.3 Matching beam sizes 

SPS had reported that when proton emittances were 4 times larger than anti-proton 
emittances, protons could be lost due to high order resonances such as 13th and 16th 
order. From 1988 onwards, the emittance ratio was reduced to < 2, proton losses 
dropped as long as resonances of lower order such as the 10th were avoided. Dedicated 
studies were done to measure the impact of unequal emittances [29]. One proton (rms 
normalized emittance ~ 5.5 π mm-mrad) and one anti-proton bunch (rms normalized 
emittance ~ 7.5 π mm-mrad) were injected into the SPS and each collided twice with 
the other bunch per turn. The tunes were changed and proton background rates and 
lifetimes were measured first with the initial anti-proton emittances and then the anti-
proton bunch was scraped to reduce its emittance to nearly equal the proton emittance 
and the loss rates measured again. In the first case with the larger and more intense anti-
proton bunch, the proton bunch was not sensitive to 13th and 16th order resonances. In 
the second case with the smaller and less intense anti-proton bunch, the proton bunch 
was sensitive to these resonances even though the beam-beam parameter was about 
40% lower. A scaling law such as the one in Equation (3) would not explain this 
dependence. A quantitative theoretical model to explain these observations has not yet 
been developed. 

Observations in the Tevatron have been similar. When electron cooling of anti-
protons in the Recycler made their emittance about 5-6 times smaller than those of 
protons, the latter suffered large losses [2]. A noise source was introduced to increase 
the anti-proton emittance and reduce the emittance ratio to about 3. This reduced the 
losses to acceptable levels.  

 HERA also had to control the mismatch but in their case, the beam sizes had to be 
matched to within 20% for tolerable beam losses [13]. This stringent tolerance is at first 
glance harder to understand given that the beam-beam parameter was about 0.001 
compared to 0.005 in the SPS and about 0.008 in the Tevatron. One can speculate about 
possible reasons, e.g. the lower beam-beam spread allowed the proton tunes to lie closer 
to resonances bur made them more susceptible to small perturbations such as an 
increased non-linear field from the smaller opposing beam.  

1.1.5 Orbit vibrations at the IP 

  Orbit vibrations at the IP modulate the offset between the colliding beams and are 
thought to lead to an emittance increase depending on the frequencies of modulation. 
Random orbit fluctuations at the IP have been theoretically shown to lead to diffusion 
and emittance growth [37]. 
     Triplet vibrations in the frequency range from 4 to a few hundred Hz have been 
measured at the Tevatron and these frequencies have also been seen in the orbit 
spectrum [38]. Vibrations in this range are attributed to the liquid helium pumps, 
ground vibrations due to passing vehicles etc. An orbit feedback system installed in 
2005 reduced the orbit drift during stores by a factor of eight and may have also helped 
to keep the bunches better centred at the IPs [39].  
      In RHIC orbit modulations such as those resulting from the 10 Hz vibrations of the 
triplet quadrupoles have long been thought to limit proton beam lifetime during stores 
[9]. Recent measurements showed that modulations of the betatron tunes and orbits 
could be well correlated with these vibrations [40]. It was suggested that the orbit 
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modulation could manifest as a modulated crossing angle at the IPs and may explain the 
relative large proton losses at the start of stores in recent years.  

     In HERA, closed orbit oscillations of the electron beams were measured at the 
IPs with largest amplitudes at frequencies in the range 2-15 Hz. The sources were traced 
to vibrations of the electron triplet quadrupoles in the two IRs due to ground motion. 
These oscillations of the electron orbit led to increased proton background rates as the 
beams were brought into collision. A feedback system using BPMs upstream and 
downstream of the IPs was installed to control these oscillations [41]. 
 

1.1.6 Coherent phenomena 

Coherent instabilities have long been observed in lepton colliders that operate with 
nearly equal intensities in both beams, see e.g. reference [42]. Observations of coherent 
beam-beam effects have been less frequent in hadron colliders. Beam loss due to 
coherent beam oscillations was reported in the ISR [17]. This usually occurred when the 
vertical separation between the beams was gradually reduced to initiate collisions. The 
losses started when the separations reached about 1σ and the beam-beam tune shift was 
about 0.001 per interaction region. The losses were reduced by a combination of 
reducing the separation at one interaction region at a time, improving the vertical 
feedback system and increasing the tune spread to increase Landau damping. SPS does 
not appear to have suffered from beam loss due to coherent oscillations, possibly due to 
the large difference in anti-proton and proton intensities.  

In the Tevatron coherent instabilities do not cause beam loss during regular 
operation. There have been sporadic reports of multi-bunch coherent instabilities, 
usually when the chromaticity was too low [7]. However coherent dipole 
modes have been observed in recent dedicated studies [43]. The observed modes were 
in rough agreement with the coupled bunch mode spectrum calculated from a matrix 
analysis using 3 bunches per beam interacting only via the head-on interactions. 
However there were some observed frequencies that were unexpected.  

RHIC reported the first observation of coherent modes in a hadron collider [44]. 
Both the sigma mode and the pi mode were observed during operation with protons 
beams with four head-on collisions per turn and a beam-beam parameter/IP of 0.0015. 
These modes, shown in Figure 8, appeared when the bunches were colliding and 
disappeared when the bunches were separated.  
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Figure 8: First observation of coherent beam-beam dipole modes in RHIC (taken from 
[44]). 

They were also observed in a dedicated experiment with 1 collision per turn and beam-
beam parameter = 0.003. These modes could be well reproduced in simulations [45]. 
More recent BTF measurements in 2009 have shown the appearance of sigma and pi 
modes in the vertical plane of both beams but not in the horizontal plane during regular 
operation [46]. No instability was associated with the appearance of these modes, 
especially the pi mode, which is outside the incoherent spectrum. This runs counter to 
theoretical expectations that the pi mode being undamped and would therefore, in the 
presence of machine impedance for example, initiate instabilities [47]. This needs to be 
better understood especially for the LHC where much effort has been put into 
understanding possible mechanisms for damping this mode, e.g. [48].  

1.1.7 Compensation of head-on interactions with an electron lens 

Compensation with an electron lens is covered elsewhere in this issue, so the 
discussion here will be brief. Operation with a Gaussian electron lens in the Tevatron 
has shown that it produces the expected tune shift and tune spread when acting on an 
anti-proton bunch [49]. Compensation of the head-on interactions has not yet been 
observed but simulations of the compensation in RHIC and the LHC has been done by 
three different codes with similar results [50, 51, 52]. They find the following 

- The compensation works at higher values of the bunch intensity than at present 
used in operation in RHIC or the design value in LHC respectively. RHIC 
already suffers emittance growth and beam loss at present intensities. Even 
though the head-on collisions cause losses, the electron lens compensation does 
not become effective until higher intensities. What determines the critical bunch 
intensity above which the electron lens is useful? 

- The electron lens intensity should not compensate more than half the tune spread 
due to the head-on interaction. At higher electron lens intensities and larger 
reduction of the tune spread, the proton beam lifetime suffers. Coherent 
instability due to a small tune spread is not the cause of this result since these 
were weak-strong simulations 
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- The electron transverse density should be uniform with a width larger than that 
of the proton bunch that is being compensated. With a wider lens, the proton 
bunch does not experience the sharp nonlinear fields at the edges pf the electron 
beam and effectively sees mostly the linear part of the force from the electron 
lens. However the effect of the electron lens is more beneficial than a simple 
tune shift. 

 These numerical predictions need to be tested with measurements. These will happen 
after electron lenses are installed in RHIC. If these predictions are borne out, then there 
is more to understand about the electron lens compensation.  

1.1.8 Compensation of long-range interactions with wires 

 The principle of long-range compensation with a wire was partially tested in RHIC in 
2009. The measurements were done in a single study where a single long-range 
interaction was created at a very small phase difference from the wire location [53]. 
Measurements of loss rates and bunch intensities showed that the wire reduced the 
losses for the beam in the Yellow ring but not for the beam in the Blue ring. Simulations 
seem to suggest that the separations between the beams (3.1σ) may not have been large 
enough for the wire compensation to be effective [54]. We recall the field due to the 
long-range interaction approaches the 1/r dependence of the field of a wire when the 
separations are significantly greater than 3σ. The wires have been removed from RHIC 
so further measurements may have to wait until wires are installed in the LHC during an 
upgrade. In earlier studies at RHIC, the effect of a wire on a beam was studied as a 
function of the beam-wire separation with different particle species at injection and 
collision [55]. Extensive simulations of the beam-wire interactions showed satisfactory 
agreement with the measurements [56]. The beam-wire distance at which the loss rates 
spiked found by simulations agreed to within 0.5σ with measurements at injection and 
collision and the higher loss rates observed with deuteron beams compared to gold 
beams were also reproduced in simulations.  
 

1.1.9 Future developments related to the LHC 

Crab cavities: Following the success with crab cavities in KEKB, there are plans to 
test the concept for implementation in the LHC during a future upgrade [57]. Two 
schemes are envisaged: a global scheme with a single cavity per ring or a local scheme 
with pairs of crab cavities around the high luminosity IRs. Some of the beam dynamics 
issues were examined in reference [58]. Some issues require detailed studies such as the 
sensitivity of the beam to phase noise in the cavities, synchro-betatron resonances 
driven by dispersion in these cavities and perhaps others.  
 

Crab waist: The crab waist concept [59] has been demonstrated to work in DAΦNE 
[60]. The concept works for flat beams by placing sextupoles at appropriate phase 
advances in the IR such that the vertical phase advance in the IR becomes independent 
of horizontal betatron oscillations. This effectively suppresses some resonances driven 
by the beam-beam interactions. It is not immediately obvious that the same scheme will 
also work in hadron colliders with round beams where resonances with modulations of 
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the horizontal phase are strong. Are there modifications of this scheme that can be 
successfully applied to hadron colliders? 
 
 Flat bunches and large Piwinski angles: One of the possible paths to higher luminosity 
at the LHC is the so-called large Piwinski angle (LPA) scheme in which bunches collide 
at an angle with a large Piwinski parameter (φ ~ 2) and large bunch intensity keeping 
the beam-beam parameter at the same value as in other schemes [61]. The luminosity 
increases with the bunch intensity. The number of bunches is reduced to keep the beam 
current, hence the heat load, down. An additional 40% gain in luminosity is obtained if 
a longitudinally flat profile rather than a Gaussian profile is used. These bunch profiles 
have lower peak fields and hence lower electron cloud effects. Preliminary studies of 
beam-beam effects showed lower transverse diffusion than with Gaussian bunches [62]. 
This needs to be checked with more detailed studies. If these results are confirmed, this 
scheme with longitudinally flat profiles may be attractive even without large Piwinski 
parameters and high bunch intensities.  
 
Beam-beam limit at high energies: There are plans to operate the LHC at more than 
double the design energy of 7 TeV. At such energies, effects of synchrotron radiation 
become much more important with the radiation damping time being of the order of an 
hour. Will the beam-beam limit be set by the saturation of a beam-beam parameter due 
to emittance growth (1st beam-beam limit in lepton colliders) or by the creation of tails 
and beam loss? This issue is already under study [20]. 
 
A general list of the beam-beam related issues in the LHC were discussed in reference 
[63]. Besides the effects discussed in this reference and those listed above, there are 
likely to be other manifestations of beam-beam effects at the LHC, some anticipated 
and some perhaps not. The multiple physics aspects of this effect will remain interesting 
in any circumstance.  
 

.  
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