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We present a search for the standard model Higgs boson produced in association with a Z boson
in 4.2 b~ of pp collisions, collected with the DO detector at the Fermilab Tevatron at Vs = 1.96
TeV. Selected events contain one reconstructed Z — ¢7¢~ candidate and at least two jets, including
at least one b-tagged jet. In the absence of an excess over the background expected from other
standard model processes, limits on the ZH cross section multiplied by the branching ratios are set.
The limit at My = 115 GeV is a factor of 5.9 larger than the standard model prediction.

PACS numbers: 14.80.Bn, 13.85.Qk, 13.85.Rm

In the standard model (SM), the spontaneous break-
down of the electroweak gauge symmetry generates
masses for the W and Z bosons and produces a scalar
massive particle, the Higgs boson, which has so far eluded
detection. The discovery of the Higgs boson would top a
remarkable list of experimentally confirmed SM predic-
tions.

For Higgs boson masses My below 135 GeV, the pri-
mary Higgs boson decay in the SM is H — bb, which is
challenging to discern amidst copious bb production at
the Tevatron pp collider. Consequently, sensitivity to a

low-mass Higgs boson is predominantly from its produc-
tion in association with a W or Z boson that decays to
leptons.

In this Letter, we present a search for ZH — (14~ bb,
where ¢ is either a muon or an electron. The searches
for ZH — vobb and ZH — 777 bb are treated else-
where [1, 2]. For the ¢*¢~bb final states, the DO collabo-
ration has previously used 0.45 fb~! of integrated lumi-
nosity to report a cross section upper limit at the 95%
CL that was around 25 times larger than the SM predic-
tion at My = 115 GeV [3], and the CDF collaboration



used 2.7 fb~! to obtain a factor of around 8 [4].

The data for this analysis were collected at the Fer-
milab Tevatron Collider with the DO detector [5]. Af-
ter imposing data quality requirements, the integrated
luminosity is 4.2 fb~'. The selected events were pre-
dominantly acquired by triggers that provide real-time
identification of electron and muon candidates, but to
maximize acceptance, events from all available triggers
are considered.

The selection of signal-like events requires a primary pp
interaction vertex (PV) that has at least three associated
tracks and is located within 60 cm of the center of the
detector along the direction of the beam. Selected events
must also contain a Z boson candidate with a dilepton
invariant mass 60 < my, < 150 GeV.

The dimuon (pu) selection requires at least two muons
matched to central tracks with transverse momenta pt >
10 GeV. Combined tracking and calorimeter isolation re-
quirements are applied to the muon pair such that one
muon does not need to be isolated if the other is suf-
ficiently well isolated. For each muon track, the pseu-
dorapidity n4et, measured with respect to the center of
the detector, must satisfy |nget| < 2 [6]. At least one
muon must have |nget] < 1.5 and pr > 15 GeV. The
distance of closest approach of each track to the PV in
the plane transverse to the beam direction, dpy, must be
less than 0.02 cm for tracks with at least one hit in the
silicon microstrip tracker (SMT). A track without SMT
hits must have dpy < 0.2 cm, and its pr is corrected
through a constraint to the position of the PV. An ad-
ditional dimuon selection, gk, requires one identified
muon and one isolated track (p4x) in the central track-
ing detector with pr > 20 GeV and |nqet| < 2, at least
one hit in the SMT, and dpy < 0.02 cm [7]. The gk
must be separated in pseudorapidity n and azimuth ¢
by AR = /(An)2 + (A¢)? > 0.1 from the other muon.
The puix selection adds 10% signal acceptance to the
e selection, mainly from gaps in the muon detector. To
reduce contamination from cosmic rays, the tracks from
both selections must not be back-to-back in 17 and ¢. The
two muons must also have opposite charge.

The dielectron (ee) selection requires at least two elec-
trons of pp > 15 GeV identified by electromagnetic show-
ers in the calorimeter. Each shower must be isolated
from other energy depositions and have a shape consis-
tent with that expected of an electron. At least one elec-
tron must be identified in the central calorimeter (CC,
[naet| < 1.1), and a second electron either in the CC or
the end calorimeter (EC, 1.5 < |nget| < 2.5). The CC
electrons must match central tracks or produce a pattern
of hits in the tracker consistent with that expected of an
electron. An additional dielectron selection, eejcgr, re-
quires exactly one electron from the CC or EC, with a
second electron identified as a narrow calorimeter clus-
ter in the inter-cryostat region (ICR, 1.1 < |nqet| < 1.5)
with a matching track in the central tracker [8]. A neural
network (NNicgr) is used to differentiate ICR electrons
from jets. The eejcr selection requires an explicit single-

electron trigger, and adds 17% signal acceptance to the
ee selection.

Jets are reconstructed in the calorimeter using the it-
erative midpoint cone algorithm [9] with a cone of radius
0.5. The energy scale of jets is corrected for detector
response, the presence of noise and multiple pp interac-
tions, and energy deposited outside of the reconstructed
jet cone. At least two jets with |nqet| < 2.5 are required,
with the leading jet of pr > 20 GeV and additional jets
of pr > 15 GeV. Both electrons in dielectron events are
required to be isolated from any jet by AR > 0.5. Like-
wise, jets must be separated by AR > 0.5 from the gk
candidate in the ppux channel, but no such requirement
is applied to the muon candidates in either dimuon chan-
nel. To reduce the impact from multiple pp interactions
at high instantaneous luminosities, jets must contain at
least two tracks matched to the PV.

To distinguish the decay H — bb from background pro-
cesses involving light quarks and gluons, jets are identi-
fied as likely containing b-quarks (b-tagged) if they pass
loose or tight requirements on the output of a neural net-
work trained to separate b-jets from light jets [10]. For
[n| < 0.7 and pr > 45 GeV, the b-tagging efficiency for
b-jets and the misidentification rate of light jets are, re-
spectively, 74% and 8.5% for loose b-tags, and 48% and
0.6% for tight b-tags. Events with at least two loose b-
tags are classified as double-tagged (DT). Events not in
the DT sample that contain a single tight b-tag are clas-
sified as single-tagged (ST). The dijet H — bb candidate
is composed of the two highest pr b-tagged jets in DT
events, and the b-tagged jet plus the highest pr non-b-
tagged jet in ST events.

The background from multijet events with jets
misidentified as leptons is estimated from control sam-
ples in the data. For the pu channel, the multijet control
sample contains events that fail the muon isolation re-
quirement but otherwise pass the event selection. In the
ik multijet control sample, the g and p, are required
to have the same charge. For the ee channel, the electrons
must fail isolation and shower shape requirements. The
resulting trigger bias is corrected by reweighting distri-
butions in lepton pt and 7 to match an unbiased control
sample. Misidentified ICR electrons in the eejcgr chan-
nel are selected from a background region of the NNicgr
output.

The dominant background process is the production of
a Z boson in association with jets, with the Z boson de-
caying to dileptons (Z+jets). The light-flavor component
(Z+LF) includes jets from only light quarks (uds) or glu-
ons. The heavy-flavor component (Z+HF) includes non-
resonant Z+bb production, which has the same final state
as the signal, and Z + cc. The remaining backgrounds
are from top quark pair (#£) and diboson production. We
simulate ZH — ¢*t¢~bb and inclusive diboson produc-
tion with PyTHIA [11] and Z-+jets and tf — (+tuvbl~ b
processes with ALPGEN [12], using the CTEQ6L1 [13]
leading-order parton distribution functions (PDFs). The
events generated with ALPGEN are input to PYTHIA for



parton showering and hadronization, and can contain ad-
ditional jets. For these events, we use a matching pro-
cedure to avoid double counting partons produced by
ALPGEN and those subsequently added by the shower-
ing in PYTHIA [12]. All samples are processed using a
detector simulation program based on GEANT3 [14], and
the same offline reconstruction algorithms used to pro-
cess the data. Events from randomly chosen beam cross-
ings are overlaid on the simulated events to reproduce
the effect of multiple pp interactions and detector noise.

The cross section and branching ratio for the signal
are taken from Refs. [15, 16]. For the tf and diboson
processes, the cross sections are taken from MCFM [17],
calculated at next-to-leading order (NLO). The inclusive
Z boson cross section is scaled to next-to-NLO [18], with
additional NLO heavy-flavor corrections calculated from
MCFM applied to Z + bb and Z + cé.

Corrections are applied to the simulated events to im-
prove the modeling. The simulated eercr, pp and ppigrk
events are weighted by trigger efficiencies measured in
data. For the ee channel, no correction is applied as
the combination of lepton and jet triggers is nearly 100%
efficient. Lepton identification efficiencies are corrected
as a function of 74et and ¢ of the lepton. Jet ener-
gies are modified to reproduce the resolution observed in
data. Scale factors are applied to correct for differences
in jet reconstruction efficiency between data and simula-
tion. To model the b-tagged samples, simulated events
are weighted by their probability to satisfy the ST or DT
criteria as measured in data.

The performance of the background model is evaluated
in control samples with negligible signal contributions
that are obtained by applying only the lepton selection
requirements (inclusive) or all selection requirements ex-
cept b-tagging (pretag). The simulated Z boson events
are reweighted such that the pr distribution of the Z
boson is consistent with the observed distribution [19].
To improve upon the ALPGEN modeling of Z+jets, mo-
tivated by a comparison with the SHERPA generator [20],
the pseudorapidities of the two jets with the highest pr,
and the AR between them are reweighted to match the
distributions measured in the pretag data.

Normalization factors for the simulated and the mul-
tijet samples are determined from a fit to the my, dis-
tributions in the inclusive and pretag data. This im-
proves the accuracy of the background model and reduces
the impact of systematic uncertainties that affect pretag
event yields (e.g., uncertainties on luminosity). The re-
gion 40 < myy < 60 GeV, where the multijet contribution
is most prominent, is included in the fit to normalize the
multijet control sample to the multijet contribution. The
inclusive control sample constrains the lepton trigger and
identification efficiencies, while the pretag control sam-
ple, which includes jet requirements, constrains a com-
mon scale factor kzjets that corrects the Z+jets cross
section. The total event yields after applying all correc-
tions and normalization factors are shown in Table I.

A multivariate analysis combines the most significant

kinematic information into a single discriminant [21].
Each decision tree in a random forest (RF) [22] is trained
to separate signal from background using a randomly
selected subsample of simulated events. In addition, a
random subset of input variables is considered for each
decision in each tree. The RF output is a performance-
weighted average of the output from each decision tree.
To exploit the kinematics of the ZH — ¢+¢~bb process,
the energies of the candidate leptons and jets are ad-
justed within their experimental resolutions with a x? fit
that constrains myy to the mass and width of the Z boson,
and the pr of the £T¢~bb system to the expected distribu-
tion for ZH events before detector resolution effects [7].
The variables selected for the RF are: the transverse mo-
menta of the two b-jet candidates and the dijet invariant
mass, before and after the jet energies are adjusted by the
kinematic fit; angular differences within and between the
dijet and dilepton systems; the angle between the proton
beam and the Z boson candidate in the rest frame of the
£t¢~bb system [23]; and composite kinematic variables
such as the pr of the dijet system and the scalar sum
of the transverse momenta of the leptons and jets. The
RF outputs with all lepton channels combined are shown
separately for ST and DT events in Figs. 1(a,b).

Systematic uncertainties resulting from the back-
ground normalization are assessed for the multijet con-
tribution (20-60% depending on channel) and for effects
of lepton efficiency (2-10%), some of which are corre-
lated between all lepton channels (6%). The normal-
ization of the Z+jets sample to the pretag data con-
strains the Z+jets cross section multiplied by any jet-
dependent efficiency to within the statistical uncertainty
of the pretag data (1-2%). Additional systematic un-
certainties (10-20%) for possible jet-dependent efficiency
effects absorbed into kzjcts are applied to the tt, dibo-
son and ZH samples. The normalization to the pretag
data, which is dominated by Z+4LF, does not strongly
constrain the cross sections of other processes. A cross
section uncertainty of 20% for Z+HF and 6%-10% for
other backgrounds is determined from Ref. [17]. For the
signal, the uncertainty is 6% [15]. The normalization
to the dilepton mass distributions reduces the impact of
many of the remaining systematic uncertainties on the
background size (except those related to b-tagging), but
changes to the shape of the RF output distribution per-
sist and are accounted for. Additional sources of sys-
tematic uncertainty include: jet energy scale, jet energy
resolution, jet identification efficiency, b-tagging and trig-
ger efficiencies, PDF's, data-determined corrections to the
model for Z+jets, and modeling of the underlying event.
The uncertainties from the factorization and renormal-
ization scales in the simulation of Z+jets are estimated
by scaling these parameters by factors of 0.5 and 2.

No significant excess above the background expecta-
tion is observed. Therefore, we set limits on the ZH pro-
duction cross section with a modified frequentist (CLs)
method that uses a negative log likelihood ratio (LLR)
of the signal-plus-background (S+B) hypothesis to the



Data Total Background Multijet Z+LF Z+HF Other ZH
inclusive 865254 853976 131905 701516 19074 1481 9.14
pretag 31336 30634 3449 23234 3459 491 6.82
ST 728 707 £ 130 48.4 161 443  54.1 1.87+0.25
DT 485 435 + 68 29.5 106 237  61.8 2.344+0.36

TABLE I: Expected and observed event yields for all lepton

channels combined after requiring two leptons

(inclusive), after also requiring two jets (pretag), and after requiring at least one tight (ST) or two loose (DT)
b-tags. The total statistical and systematic uncertainties are indicated for the “Total Background” and “ZH”
columns of the ST and DT samples. The “Other” column includes diboson and ¢t event yields. The ZH sample

yields are for My = 115 GeV.
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FIG. 1: Data and background RF outputs trained for a Higgs boson with My = 115 GeV in (a) ST and (b) DT

samples. The (c) background-subtracted combination of ST

and DT samples, with the systematic uncertainty bands

before and after the fit performed by the limit-setting program.

background-only (B) hypothesis [24]. The RF output
distributions and corresponding systematic uncertainties
of the ST and DT samples from each leptonic channel
and from two distinct data taking periods are analyzed
separately by the limit setting program to take advantage
of the sensitivity in the more discriminating channels. To
minimize the impact of the systematic uncertainties, the
likelihood of the B and S+B hypotheses are each maxi-
mized by independent fits that vary nuisance parameters
used to model the systematic effects [25]. The corre-
lations among systematic uncertainties are maintained
across channels, as well as backgrounds and signal. The
background-subtracted RF distribution, combined for all
channels, with systematic uncertainty bands both before
and after the fitting procedure, is shown in Fig. 1c.

Figure 2 shows the observed LLR as a function of Higgs
boson mass. Also shown are the expected (median) LLRs
for the B and S+B hypotheses, together with the one
and two standard deviation bands of the background-
only expectation. A signal-like excess would result in a
negative value of observed LLR. The data are consistent
with either hypothesis for the entire mass range 100 <
Mg < 150 GeV. The 95% CL upper limit on the cross
section times branching ratio, expressed as a ratio to the
SM prediction, for each My is presented in Table II.
At My = 115 GeV, the observed (expected) limit on
this ratio is 5.9 (7.1). Compared to the previous best
expected limit in this channel [4], this represents a 40%
improvement.

Supplementary material detailing the pretag control
sample, the effect of the kinematic fit, and additional
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FIG. 2: Observed LLR as a function of Higgs boson
mass. Also shown are the expected LLRs for the B and
S+B hypotheses, together with the one and two
standard deviation (s.d.) bands of the background-only
expectation.

cross section limits and LLR distributions from individ-
ual lepton channels is available at [26].
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FIG. 3: Pretag distributions for (a) the dilepton invariant mass, (b) the dijet invariant mass after the kinematic fit,
(c) the RF discriminant trained for ST events, (d) the RF discriminant trained for DT events, for all lepton channels
combined. (e) and (f) reproduce (¢) and (d) using a logarithmic scale.
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FIG. 4: Dijet invariant mass distributions before the kinematic fit in (a) ST events, and (b) DT events; and
calculated from jet energies as adjusted by the kinematic fit in (¢) ST events and (d) DT events combined for all
lepton channels. The ZH signal shown is for Mg = 115 GeV.
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FIG. 5: The expected and observed 95% C.L. cross section limit divided by the SM Higgs boson production cross
section as a function of My (a) for My < 150 GeV and (b) for My < 130 GeV. Limits are for the combination of
the DT and ST samples in all lepton channels.
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FIG. 6: Observed LLR as a function of My for the (a) ee, (b) uu, (¢) eeicr, and (d) ppugx channels. Also shown are
the expected LLRs for the B and S4B hypotheses, together with the one and two standard deviation (s.d.) bands
about the background-only expectation.
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FIG. 7: Expected and observed 95% CL cross section limit divided by the SM cross section as a function of My for
the (a) ee, (b) pu, (c) eeicr, and (d) ppk channels.



