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Gravitational lensing of distant galaxies can be exploited to infecdheergence field as
a function of angular position on the sky. The statistics of this field, much like that of the
cosmic microwave background (CMB), can be studied to extract information about funda-
mental parameters in cosmology, most notably the dark energy in the Universe. Unlike the
CMB, the distribution of matter in the Universe which determines the convergence field is
highly non-Gaussian, reflecting the nonlinear processes which accompanied structure for-
mation. Much of the cosmic information contained in the initial field is therefore unavailable
to the standard power spectrum measurements. Here we propose a method for re-capturing
cosmic information by using the power spectrum of a simple function of the observed (non-
linear) convergence field. We adapt the approach of Neyrinck et al. (2009) to lensing by
using a modified logarithmic transform of the convergence field. The Fourier transform of
the log-transformed field has modes that are nearly uncorrelated, which allows for additional

cosmological information to be extracted from small-scale modes.
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I. INTRODUCTION

Gravitational lensing has emerged as a powerful tool to g@tbk distribution of matter in the
Universe BL]. Observations of the ellipticities of backgnal galaxies can be transformed into
estimates of theonvergence field 5(5). Along a given line of sight?, the convergence measures
a weighted integral of the total mass density field. Thus bgfadly studyingx as a function of
position on the sky, we can learn about the underlying defisid directly, without relying on the
traditional assumption that every galaxy corresponds tovandense region.

By measuring the convergence to sources at multiple baokgroedshifts, cosmologists can
infer not only the density field as a function of 2D positiu»@l but also the evolution of this
density field with timeEL}]. This information will be partitarly valuable as a tool to study both
dark matter and dark energy, which affect the growth of $tmecin the Universe[H’] 8]. A number
of wide-area surveys have been planned with the goal of mgpmit the cosmic convergence
field, and ultimately measuring properties of the dark ey ].

This goal appears attainable as it is reminiscent of anatb&mological success story: mea-
surement of anisotropies in the CMEM]. In both cases, #ilaes of the measured quantities
— temperature in the case of the CMB and convergence fronmgrsat any particular spot on
the sky are not important. Rather, it is the statistics offiblel that carries all the important in-
formation. The two-point function of the temperature of (DKIB, the power spectrum of the
anisotropies, is sensitive to a number of cosmologicalrpatars, and some of these have now
been measured to percent level accur@ [15]. Similaréypibwer spectrum of the convergence
depends on cosmologiczlljarameters, and one can hopedoterformation about these param-
19].

However the convergence field differs in an important waynfrithe anisotropy maps. CMB

eters from lensing surve

anisotropies provide a snapshot of the Universe when it veag young, and hence all devia-
tions from homogeneity are very small (temperature difiees in the maps are of order several
parts in a hundred thousand). The physics describing thexgerpations is linear. Further, the
perturbations were drawn from a Gaussian distributionhsawo-point function captures all of
the information in the field. On the other hand, the cosmicsdgrield today is non-linear and
non-Gaussian, increasingly so on smaller scales, so sothe offormation initially stored in the
two-point function when the fields were linear is no longegant.

Before quantifying this notion that information has lefettwo-point function, it is worth-



3

while to review some approaches to this problem. Takada &M] pointed out that including
information from both the two- and three-point functiongrsficantly reduces the errors on cos-
mological parameters. This makes intuitive sense: theimeal process of gravitational instability
transforms the initially Gaussian field into one with appabte non-Gaussianity, one hallmark of
which is a non-zero skewness. The goal of measuring bottos&iactions may work, but it suf-
fers from the drawback of requiring non-trivial covariamoatrices (which involve the challenge
of computing five- and six-point functions) [21].

A series of papers devoted to the 3D density field) = (p(Z) — p)/p [Q—EG‘S] have noted
that information in the power spectrum éfsaturates at high wavenumbérgor small length
scales). That is, the power spectrum at higis-highly correlated, apparently due to the coupling
of modes induced by nonlinear gravitational clusteringe Tost recent of these papers offered a
useful proposal [26] for re-capturing information about 8D density field by pointing out that
In(1 + &) has properties similar to the initidinear density field. Its probability distribution is
close to a Gaussian, the broadband shape is close to that loi¢lar power spectrum, and finally,
the information content is close to the Gaussian case. iPalgtthis transform may be of limited
utility because the 3D density field is typically estimatgdusing galaxies as tracers, and it is
unlikely that the log transform of thgalaxy density will be a useful tracer of the linematter
density field. However, we now show that the log transform lbarepplied to the 2D lensing
convergence field to de-correlate modes and obtain infeomdtom higher-order correlations

back in the two-point function.

II. LOG-MAPPING FOR LENSING

Using simulations, we study the statistics of a new field:

1+ @] (1)

Ko

—

K (0) = Ko ln

wherek, is a constant with a value slightly larger than the absolataesof the minimum value
of x in the survey — this keeps the argument of the logarithm pesitn the limit of smallx, xy,
reduces to the standard convergence, but the log alterseatrynhigh or low density regimes. The

parameter, tunes the degree of the alteration: the smatlgrthe more we alter the field The

! For our fiducial maps with 0.15 arcmin pixel scale, we uge= 0.0482 based on the minimum value of measured

K.



log-mapping described above is motivated by our goal toatestate the Fourier modes of the
convergence field. Although the mapping is local on the gkg,monlinear, so in Fourier space it

has the potential to undo some of the correlations introdlbgenonlinear clustering.
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FIG. 1. The probability distribution function of the two fild x (black, dashed) and,, (red, solid) in
comparison with a Gaussian Probability Distribution Fiorct(dotted). The skewed PDF af reflects
the distribution of structure in the Universe: large unéesk regions separated by some very overdense

regions. The log transform restores the field to a PDF thatasly Gaussian.

To study the properties af;,,, we use a suite of numerical simulations: 100 convergenlisfie
each5° x 5° (a total of 2500 square degrees) w8 pixels (i.e., 0.15 arcmin per pixel) were
generated using N-body simulations as describe@ [27]s@drce galaxies are taken to be at
redshiftz, = 1 for all the results shown below, though we have also checkt&st source redshifts.

A first glimpse into the advantages of the log transform casd®n from Figl]1 which shows
the probability distribution function (PDF) of bothandk,,, compared to the (linear) Gaussian
PDF. The new field is much closer to Gaussian, a promisingsigre the loss of information in
r is attributed to gravity transforming the initially Gaussirandom field into one that is highly
non-Gaussian.

To evaluate the log transform quantitatively, we take therfes transform of the three different
convergence fields (lineat, andxy,) in each of the simulations. The angular power spectrum is
estimated from the Fourier transforms (denohéfj) by summing over all modes with wavenum-

ber|(] in a given bini,.
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FIG. 2: The measured power spectra of the convergencexfiahdl the log transformed field,,. The latter

has smaller amplitude at highThe linear power spectrum is shown by the dotted curve.

Fig.[2 shows these spectra. As expected, the power specfrtiva nonlinears field is much
larger than the linear field on small scales (laligd his excess power on small scales is suppressed
whenky, is used. Again the result is not surprising, as the high dgnsgions are smoothed out:

ki < k for largek.

[11. RECOVERY OF COSMOLOGICAL INFORMATION

Although the power spectrum af,, is smaller than that of, it contains more cosmological
information. To see this, consider a model with one freempetar, the amplitude of thabserved,
nonlinear power spectrum before and after the log transform. The piegefractional error on

this parameter is the inverse of the signal to noise defined as

1/2

%(lmax) = Z ClCOVﬁl(l, l/)Cl/

lvl,<lmax

(2)

where(; is the power spectrum of multipoldefore and after the transfori@ov is the covariance
matrix describing correlations between the power spedtrauitipoles! and!’ (I,!" < l,.x), and
the summation runs over all the multipoleand!’ subject tal, I’ < [,,ax ,]. We follow ]
and call the square of th&/N ratio the information content. Heuristically, then, “imfioation”
guantifies how accurately parameters will be determinedcoropute the eﬁ[jected error on the

chosen cosmological parameter (here the amplitude of teepspectrum([29]), one needs to



know the covariance matrix of the spectra. If the field was $<S&n random, the covariance
matrix would be diagonal. In the absence of shape Apiseould be arise from sample variance
and be equal to the spectrum squared divided by the numbedependent modes in the bin. In
that case, since the number of modes in a bin growdaslog binning, the(S/N)? would grow
asl? ..

Fig.[3 shows théS/N)? as a function of,,.... The linearx field is shown by the dotted gray
line. The information obtained from the nonlineafield falls well below this ideal limit, as seen
in the figure. This arises because the nonlinearities sagmfiy affect the covariance matrix. Non-
zero off-diagonal elements in the covariance matrix meanrttany of the modes carry redundant
information, so the total gain is significantly below tig  Gaussian limit. The log transform
undoes a large portion of this damage. The left panel of(Fgh®vs that the information iy,
is well above that inc and close to the Gaussian case. In other words, we measuaefiigude
of the power spectrum with higher precision if we use thetlagsformed field. We find a factor
of ~ 1.3 improvement in(S/N)? atl., ~ 250, a factor of~ 2.6 atl,,.. ~ 1000, a factor of 4 at
lmax ~ 2000, and a factor of 8 af, ... ~ 5000.

The restored information in thg, field can be understood by examining the covariance matrix
of the power spectra. Fi@l] 4 shows two rows of the covariana&irfor the fields, with one
of the wavenumbers fixed &t = 253 and!’ = 1049 in the two cases (upper and lower panel).
The k covariance matrix has large off-diagonal elements in adfjabins — these carry redundant
information and therefore do not add much to #YéV. The transformed,, on the other hand,
is much more nearly diagonal. A nearly diagonal covariana&imimplies another important ad-
vantage of the log transform: the approximation of a Ganssiaariance matrix for cosmological
parameter estimation is more accuratedr

Another way of understanding the gain in information in tbg field is to consider the Taylor
expansion of the log transform,,. For—1 < x/ko < 1, one sees that;, contains the standard
convergence field, but also a piece that scaleg #and higher orders). Considered perturbatively,
then, the spectrum of;,, will depend not only on the 2-point function af C;, but also on the

3-point function, the bispectrum, as well as higher-pourictions. Effectively, then this rather

2 The ellipticity of a single galaxy is, in the absence of anstalition by the intervening density field, randomly
distributed on the sky with an RMS of about 0.3. This corr@gf®to noise in the measurement of the cosmic
convergence field, a noise which decreases as the squarefithet number of galaxies in a pixel. The resulting
noise is called shape noise.
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FIG. 3: Left: the information, represented by/N)?, contained in the two fields andx;, in comparison

with the Gaussianized field. The information in the Gausset field (dotted curve) increases ds,, as

smaller scales are included. The actual nonlinear conmeege(dashed black line/triangles) loses much of

the (S/N)? at largel, while the log transform (solid red line/squares) recovierRight: the effect of the log

transform in the presence of shape noise: we assume a galextyen densityV, = 30/arcmin? atz, = 1

and increase the pixel size 20! arcmin (accordingly we use, = 0.112). We find an improvement of 1.7

(2.4) in the information content fdy,.x ~ 1000 (2000) even in the presence of shape noise.
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FIG. 4. Slices of the covariance matrix. The off-diagonanetnts are normalized relative to the diagonal

elements, i.e.Cov(l,1")/(Cov(l,1)Cov(I’,1'))'/? are shown as a function éffor two choices of’. The

off-diagonal covariances between different scales haea babstantially decreased by the log transform.



simple transform captures information in the power sp@&atroi-spectrum, tri-spectrum, etc. in
a compact way. Of course, it does not contain all the infolonan these higher point functions,
but the improvement seen in F[d. 3 suggests that usjin@s a transform in future surveys may
be a simple, powerful way to bundle much of this informatiatoione simple spectrum. We
have tested this by measuring the information contained,jin= x — x%/(2k¢) and found that,
once we apply an appropriate cufoffn highx values to make the polynomial expansion more
sensible, the single extra term replicates most of the ingent observed in the log transform.
Meanwhile the cross-correlation of theandx — x?/kq which involves only up to bispectrum,
with an appropriate cutoff, replicates most of the improeeatrup tol ~ 1000. This implies that
the bispectrum is the dominant contributor to this improgatup to the scales.

There are several caveats to this analysis. So far, we haleated noise, in particular shape
noise due to the random orientations of galaxies on the skyh&Ve studied this issue for several
survey parameters. Surveys with higher number density loswer shape noise and therefore the
advantages aof;,, approach those depicted in the left panel of Elg. 3. For axgalamber density
of 30 per square arcminutes at = 1, as expected for the planned Subaru Hyper SuprimeCam
survey], we find an improvement of 1.7 (2.4) in the infotima content foll,,.,. ~ 1000 (2000)
(right panel in Fig[B). The gain is larger for more ambitisusveys like LSST or DUNEﬁ[] 3]
and smaller for shallower surveys like the Dark Energy Syf¢&].

Second, although,,, has some of the advantages of the linedield, it does not actually re-
cover the initial field phase by phase since the cross-@iioel between the initial and final fields,
when tested for the density fields, does not improve by tlissfiormation. Third, our analy-
sis (and our definition oinformation) revolved around only one parameter, the amplitude of the
power spectrum. Its shape and evolution certainly contddit@nal cosmological information,
as discussed b@l]. Finally, we have assumed that the cygwvee field, reconstructed from the
shear, will be available over the entire survey area — intm@asuch a reconstruction adds addi-
tional noise. We are in the process of studying these issugghey are not expected to affects

our main point: that the log transforrj, recovers cosmological information.

3 We remove the high values by replacing larger than 0.1 with 0.1.



IV. CONCLUSION

We have found that the log transform of Eq. (1) alters the ineak convergence field to one
that mimics the properties of a Gaussian field. It returns & Biat is close to a Gaussian —
analogous to the findings 6] for the 3D density field. Thgmnal-to-noise (i.e., precision) of
the measurement of the amplitude of the power spectrum algrenproved over a wide range
of angular scale00 < I < 10%. Even in the presence of shape noise, this improvement holds
to a greater or lesser extent depending on the galaxy nundmsitg. The improvement arises
from the effect on the covariance matrix: the off-diagorieheents of the covariance matrix are
substantially reduced for the log transform. We find thatlispectrum that is embedded in the log
transform is the dominant contributor to this improvemdihterefore the log transform appears to
bundle much of the information from higher order statisiite the power spectrum.

Upcoming imaging surveys will collect data on the shapesatdxjes at an unprecedented rate,
with an eye towards understanding the physics which drivesitceleration of the Universe. It is
imperative that we use algorithms to analyze this data wéxtiract as much of the cosmological

information as possible: the log transfory is a step in this direction.
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