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Gravitational lensing of distant galaxies can be exploited to infer theconvergence field as

a function of angular position on the sky. The statistics of this field, much like that of the

cosmic microwave background (CMB), can be studied to extract information about funda-

mental parameters in cosmology, most notably the dark energy in the Universe. Unlike the

CMB, the distribution of matter in the Universe which determines the convergence field is

highly non-Gaussian, reflecting the nonlinear processes which accompanied structure for-

mation. Much of the cosmic information contained in the initial field is therefore unavailable

to the standard power spectrum measurements. Here we propose a method for re-capturing

cosmic information by using the power spectrum of a simple function of the observed (non-

linear) convergence field. We adapt the approach of Neyrinck et al. (2009) to lensing by

using a modified logarithmic transform of the convergence field. The Fourier transform of

the log-transformed field has modes that are nearly uncorrelated, which allows for additional

cosmological information to be extracted from small-scale modes.
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I. INTRODUCTION

Gravitational lensing has emerged as a powerful tool to probe the distribution of matter in the

Universe [1]. Observations of the ellipticities of background galaxies can be transformed into

estimates of theconvergence field κ(~θ). Along a given line of sight~θ, the convergence measures

a weighted integral of the total mass density field. Thus by carefully studyingκ as a function of

position on the sky, we can learn about the underlying density field directly, without relying on the

traditional assumption that every galaxy corresponds to anoverdense region.

By measuring the convergence to sources at multiple background redshifts, cosmologists can

infer not only the density field as a function of 2D position [2–5], but also the evolution of this

density field with time [6]. This information will be particularly valuable as a tool to study both

dark matter and dark energy, which affect the growth of structure in the Universe [7, 8]. A number

of wide-area surveys have been planned with the goal of mapping out the cosmic convergence

field, and ultimately measuring properties of the dark energy [9–13].

This goal appears attainable as it is reminiscent of anothercosmological success story: mea-

surement of anisotropies in the CMB [14]. In both cases, the values of the measured quantities

– temperature in the case of the CMB and convergence from lensing – at any particular spot on

the sky are not important. Rather, it is the statistics of thefield that carries all the important in-

formation. The two-point function of the temperature of theCMB, the power spectrum of the

anisotropies, is sensitive to a number of cosmological parameters, and some of these have now

been measured to percent level accuracy [15]. Similarly, the power spectrum of the convergence

depends on cosmological parameters, and one can hope to extract information about these param-

eters from lensing surveys [16–19].

However the convergence field differs in an important way from the anisotropy maps. CMB

anisotropies provide a snapshot of the Universe when it was very young, and hence all devia-

tions from homogeneity are very small (temperature differences in the maps are of order several

parts in a hundred thousand). The physics describing these perturbations is linear. Further, the

perturbations were drawn from a Gaussian distribution, so the two-point function captures all of

the information in the field. On the other hand, the cosmic density field today is non-linear and

non-Gaussian, increasingly so on smaller scales, so some ofthe information initially stored in the

two-point function when the fields were linear is no longer present.

Before quantifying this notion that information has left the two-point function, it is worth-
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while to review some approaches to this problem. Takada & Jain [20] pointed out that including

information from both the two- and three-point functions significantly reduces the errors on cos-

mological parameters. This makes intuitive sense: the nonlinear process of gravitational instability

transforms the initially Gaussian field into one with appreciable non-Gaussianity, one hallmark of

which is a non-zero skewness. The goal of measuring both setsof functions may work, but it suf-

fers from the drawback of requiring non-trivial covariancematrices (which involve the challenge

of computing five- and six-point functions) [21].

A series of papers devoted to the 3D density fieldδ(~x) ≡ (ρ(~x) − ρ̄)/ρ̄ [22–26] have noted

that information in the power spectrum ofδ saturates at high wavenumbersk (or small length

scales). That is, the power spectrum at high-k is highly correlated, apparently due to the coupling

of modes induced by nonlinear gravitational clustering. The most recent of these papers offered a

useful proposal [26] for re-capturing information about the 3D density field by pointing out that

ln(1 + δ) has properties similar to the initial,linear density field. Its probability distribution is

close to a Gaussian, the broadband shape is close to that of the linear power spectrum, and finally,

the information content is close to the Gaussian case. Practically this transform may be of limited

utility because the 3D density field is typically estimated by using galaxies as tracers, and it is

unlikely that the log transform of thegalaxy density will be a useful tracer of the linearmatter

density field. However, we now show that the log transform canbe applied to the 2D lensing

convergence field to de-correlate modes and obtain information from higher-order correlations

back in the two-point function.

II. LOG-MAPPING FOR LENSING

Using simulations, we study the statistics of a new field:

κln(~θ) ≡ κ0 ln

[

1 +
κ(~θ)

κ0

]

(1)

whereκ0 is a constant with a value slightly larger than the absolute value of the minimum value

of κ in the survey – this keeps the argument of the logarithm positive. In the limit of smallκ, κln

reduces to the standard convergence, but the log alters it invery high or low density regimes. The

parameterκ0 tunes the degree of the alteration: the smallerκ0, the more we alter the field1. The

1 For our fiducial maps with 0.15 arcmin pixel scale, we useκ0 = 0.0482 based on the minimum value of measured

κ.
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log-mapping described above is motivated by our goal to de-correlate the Fourier modes of the

convergence field. Although the mapping is local on the sky, it is nonlinear, so in Fourier space it

has the potential to undo some of the correlations introduced by nonlinear clustering.

FIG. 1: The probability distribution function of the two fields κ (black, dashed) andκln (red, solid) in

comparison with a Gaussian Probability Distribution Function (dotted). The skewed PDF ofκ reflects

the distribution of structure in the Universe: large underdense regions separated by some very overdense

regions. The log transform restores the field to a PDF that is nearly Gaussian.

To study the properties ofκln, we use a suite of numerical simulations: 100 convergence fields,

each5◦ × 5◦ (a total of 2500 square degrees) with20482 pixels (i.e., 0.15 arcmin per pixel) were

generated using N-body simulations as described in [27]. All source galaxies are taken to be at

redshiftzs = 1 for all the results shown below, though we have also checked other source redshifts.

A first glimpse into the advantages of the log transform can beseen from Fig. 1 which shows

the probability distribution function (PDF) of bothκ andκln, compared to the (linear) Gaussian

PDF. The new field is much closer to Gaussian, a promising signsince the loss of information in

κ is attributed to gravity transforming the initially Gaussian random field into one that is highly

non-Gaussian.

To evaluate the log transform quantitatively, we take the Fourier transform of the three different

convergence fields (linear,κ, andκln) in each of the simulations. The angular power spectrum is

estimated from the Fourier transforms (denotedκ̃(~l)) by summing over all modes with wavenum-

ber|~l| in a given binlbin.



5

FIG. 2: The measured power spectra of the convergence fieldκ and the log transformed fieldκln. The latter

has smaller amplitude at highl. The linear power spectrum is shown by the dotted curve.

Fig. 2 shows these spectra. As expected, the power spectrum of the nonlinearκ field is much

larger than the linear field on small scales (largel). This excess power on small scales is suppressed

whenκln is used. Again the result is not surprising, as the high density regions are smoothed out:

κln ≪ κ for largeκ.

III. RECOVERY OF COSMOLOGICAL INFORMATION

Although the power spectrum ofκln is smaller than that ofκ, it contains more cosmological

information. To see this, consider a model with one free parameter, the amplitude of theobserved,

nonlinear power spectrum before and after the log transform. The projected fractional error on

this parameter is the inverse of the signal to noise defined as

S

N
(lmax) ≡

[

∑

l,l′<lmax

ClCov
−1(l, l′)Cl′

]1/2

(2)

whereCl is the power spectrum of multipolel before and after the transform,Cov is the covariance

matrix describing correlations between the power spectra of multipolesl andl′ (l, l′ < lmax), and

the summation runs over all the multipolesl andl′ subject tol, l′ < lmax [27, 28]. We follow [26]

and call the square of theS/N ratio the information content. Heuristically, then, “information”

quantifies how accurately parameters will be determined. Tocompute the expected error on the

chosen cosmological parameter (here the amplitude of the power spectrum [29]), one needs to
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know the covariance matrix of the spectra. If the field was Gaussian random, the covariance

matrix would be diagonal. In the absence of shape noise2, it would be arise from sample variance

and be equal to the spectrum squared divided by the number of independent modes in the bin. In

that case, since the number of modes in a bin grows asl for log binning, the(S/N)2 would grow

asl2
max

.

Fig. 3 shows the(S/N)2 as a function oflmax. The linearκ field is shown by the dotted gray

line. The information obtained from the nonlinearκ field falls well below this ideal limit, as seen

in the figure. This arises because the nonlinearities significantly affect the covariance matrix. Non-

zero off-diagonal elements in the covariance matrix mean that many of the modes carry redundant

information, so the total gain is significantly below thel2
max

Gaussian limit. The log transform

undoes a large portion of this damage. The left panel of Fig. 3shows that the information inκln

is well above that inκ and close to the Gaussian case. In other words, we measure theamplitude

of the power spectrum with higher precision if we use the log-transformed field. We find a factor

of ∼ 1.3 improvement in(S/N)2 at lmax ∼ 250, a factor of∼ 2.6 at lmax ∼ 1000, a factor of 4 at

lmax ∼ 2000, and a factor of 8 atlmax ∼ 5000.

The restored information in theκln field can be understood by examining the covariance matrix

of the power spectra. Fig. 4 shows two rows of the covariance matrix for the fields, with one

of the wavenumbers fixed atl′ = 253 and l′ = 1049 in the two cases (upper and lower panel).

Theκ covariance matrix has large off-diagonal elements in adjacent bins – these carry redundant

information and therefore do not add much to theS/N . The transformedκln, on the other hand,

is much more nearly diagonal. A nearly diagonal covariance matrix implies another important ad-

vantage of the log transform: the approximation of a Gaussian covariance matrix for cosmological

parameter estimation is more accurate forκln.

Another way of understanding the gain in information in the log field is to consider the Taylor

expansion of the log transformκln. For−1 < κ/κ0 ≤ 1, one sees thatκln contains the standard

convergence field, but also a piece that scales asκ2 (and higher orders). Considered perturbatively,

then, the spectrum ofκln will depend not only on the 2-point function ofκ, Cl, but also on the

3-point function, the bispectrum, as well as higher-point functions. Effectively, then this rather

2 The ellipticity of a single galaxy is, in the absence of any distortion by the intervening density field, randomly

distributed on the sky with an RMS of about 0.3. This corresponds to noise in the measurement of the cosmic

convergence field, a noise which decreases as the square rootof the number of galaxies in a pixel. The resulting

noise is called shape noise.
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FIG. 3: Left: the information, represented by(S/N)2, contained in the two fieldsκ andκln in comparison

with the Gaussianized field. The information in the Gaussianizedκ field (dotted curve) increases asl2max as

smaller scales are included. The actual nonlinear convergenceκ (dashed black line/triangles) loses much of

the(S/N)2 at largel, while the log transform (solid red line/squares) recoversit. Right: the effect of the log

transform in the presence of shape noise: we assume a galaxy number densityNg = 30/arcmin2 atzs = 1

and increase the pixel size to2.4 arcmin (accordingly we useκ0 = 0.112). We find an improvement of 1.7

(2.4) in the information content forlmax ∼ 1000 (2000) even in the presence of shape noise.

FIG. 4: Slices of the covariance matrix. The off-diagonal elements are normalized relative to the diagonal

elements, i.e.,Cov(l, l′)/(Cov(l, l)Cov(l′, l′))1/2 are shown as a function ofl for two choices ofl′. The

off-diagonal covariances between different scales have been substantially decreased by the log transform.
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simple transform captures information in the power spectrum, bi-spectrum, tri-spectrum, etc. in

a compact way. Of course, it does not contain all the information in these higher point functions,

but the improvement seen in Fig. 3 suggests that usingκln as a transform in future surveys may

be a simple, powerful way to bundle much of this information into one simple spectrum. We

have tested this by measuring the information contained inκ′

ln
≡ κ − κ2/(2κ0) and found that,

once we apply an appropriate cutoff3 on highκ values to make the polynomial expansion more

sensible, the single extra term replicates most of the improvement observed in the log transform.

Meanwhile the cross-correlation of theκ andκ − κ2/κ0 which involves only up to bispectrum,

with an appropriate cutoff, replicates most of the improvement up tol ∼ 1000. This implies that

the bispectrum is the dominant contributor to this improvement up to the scales.

There are several caveats to this analysis. So far, we have neglected noise, in particular shape

noise due to the random orientations of galaxies on the sky. We have studied this issue for several

survey parameters. Surveys with higher number density havelower shape noise and therefore the

advantages ofκln approach those depicted in the left panel of Fig. 3. For a galaxy number density

of 30 per square arcminutes atzs = 1, as expected for the planned Subaru Hyper SuprimeCam

survey [10], we find an improvement of 1.7 (2.4) in the information content forlmax ∼ 1000 (2000)

(right panel in Fig. 3). The gain is larger for more ambitioussurveys like LSST or DUNE [11, 13]

and smaller for shallower surveys like the Dark Energy Survey [12].

Second, althoughκln has some of the advantages of the linearκ field, it does not actually re-

cover the initial field phase by phase since the cross-correlation between the initial and final fields,

when tested for the density fields, does not improve by this transformation. Third, our analy-

sis (and our definition ofinformation) revolved around only one parameter, the amplitude of the

power spectrum. Its shape and evolution certainly contain additional cosmological information,

as discussed by [21]. Finally, we have assumed that the convergence field, reconstructed from the

shear, will be available over the entire survey area – in practice such a reconstruction adds addi-

tional noise. We are in the process of studying these issues,but they are not expected to affects

our main point: that the log transformκln recovers cosmological information.

3 We remove the highκ values by replacingκ larger than 0.1 with 0.1.
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IV. CONCLUSION

We have found that the log transform of Eq. (1) alters the nonlinear convergence field to one

that mimics the properties of a Gaussian field. It returns a PDF that is close to a Gaussian –

analogous to the findings of [26] for the 3D density field. The signal-to-noise (i.e., precision) of

the measurement of the amplitude of the power spectrum is greatly improved over a wide range

of angular scales,200 <∼ l <∼ 104. Even in the presence of shape noise, this improvement holds,

to a greater or lesser extent depending on the galaxy number density. The improvement arises

from the effect on the covariance matrix: the off-diagonal elements of the covariance matrix are

substantially reduced for the log transform. We find that thebispectrum that is embedded in the log

transform is the dominant contributor to this improvement.Therefore the log transform appears to

bundle much of the information from higher order statisticsinto the power spectrum.

Upcoming imaging surveys will collect data on the shapes of galaxies at an unprecedented rate,

with an eye towards understanding the physics which drives the acceleration of the Universe. It is

imperative that we use algorithms to analyze this data whichextract as much of the cosmological

information as possible: the log transformκln is a step in this direction.
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