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ABSTRACT

We present a large catalog of optically selected galaxy clusters from the appli-

cation of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm

to SDSS Data Release 7 data. The algorithm detects clusters by identifying the

red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for

galaxy clusters and does not exist among field galaxies. Red sequence clustering

in color space is detected using an Error Corrected Gaussian Mixture Model. We

run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to

assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000

rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte

Carlo tests of completeness and purity and perform cross-matching with X-ray

clusters and with the maxBCG sample at low redshift. These tests indicate high

completeness and purity across the full redshift range for clusters with 15 or more

members.

Subject headings: Galaxies: clusters, Catalog- Cosmology: observations - Methods:

Data analysis, Gaussian Mixture
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1. Introduction

One of the most exciting discoveries in physics and astronomy over the past decade is

the accelerating expansion of the Universe (Perlmutter et al. 1999; Riess et al. 1998), which

has been more recently confirmed by a series of independent experiments (Spergel et al.

2003, 2007; Tegmark et al. 2004; Eisenstein et al. 2005). This cosmic acceleration cannot be

explained without exotic physics, for example, modifications to General Relativity (GR), a

cosmological constant, or an additional energy component with negative pressure adequate

to drive acceleration. Perhaps the simplest possibility, a cosmological constant, is consistent

with all available data, although the theoretical challenges with this explanation have

not been resolved. If the framework of GR is retained without a cosmological constant,

something like dark energy must exist. In an effort to distinguish between these possibilities,

studies of expansion history and the growth of structure have become central research

topics in physics and astronomy.

One way to test theories of expansion and the growth of structure is to measure

the abundance and properties of galaxy clusters. Clusters are the largest peaks in the

density field. Their abundance and spatial distribution encode rich information about

the Universe (Evrard 1989; Oukbir & Blanchard 1992), making them sensitive probes for

cosmology (Majumdar & Mohr 2004; Hu 2003; Lima & Hu 2004, 2005). Cosmological

constraints from optically selected galaxy clusters have been carried out recently by

Gladders et al. (2007) based on the RCS cluster catalog (Gladders & Yee 2005a) and Rozo

et al. (2007b,a, 2010), based on the maxBCG catalog (Koester et al. 2007a,b).

Galaxy clusters are observationally rich as well. They can be detected and their

properties determined using a number of different observables, including X-ray emission

from and the Sunyaev-Zeldovich decrement caused by hot intracluster gas, optical and NIR

emission from stars in cluster galaxies, and the gravitational lensing distortions imposed
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on background galaxy images by the total cluster gravitational potential. Each probe

relies on different aspects of cluster physics and provides different, though often correlated,

information about cluster mass and structure. For cluster detection, the different probes

have complementary virtues. Cluster X-ray emission and the SZ decrement both require the

presence of very hot intracluster gas. This can only be present in very deep potential wells,

so these methods only detect the highest mass systems, but are consequently relatively free

from projection contamination. Unfortunately, neither very naturally provides information

about cluster redshift, so optical follow-up is required. Cluster searches using optical data

are more able to identify clusters in three dimensions, obtaining distances as part of cluster

detection. Optical selection can identify systems corresponding to much lower mass dark

matter halos than methods based on the intracluster gas, but this also results in more

serious projection effects. Cluster detection in the optical also benefits from the high signal

to noise for individual galaxy detection and large data volumes available in optical surveys.

The existence of a uniformly old stellar population in many cluster galaxies gives them

remarkably similar spectral energy distributions which include a strong 4000 angstroms

break. As a result, galaxies within clusters are tightly clustered in color as well as

space. When the cluster redshift increases, this break shifts across the optical filters,

creating a strong correlation between cluster galaxy color and redshift. It has been

shown that red-sequence galaxies exist in clusters of varied richness and extend to redshift

z ∼ 1.6 (Bower et al. 1992; Smail et al. 1998; Barrientos 1999; Mullis et al. 2005; Eisenhardt

et al. 2005; Papovich et al. 2010). Red sequence galaxies are a very prominent feature

of galaxy clusters and thus provide a very powerful means for removing projected field

galaxies during cluster detection. As these red sequence galaxies have mostly E and S0

morphologies, dominate the bright end of the cluster luminosity function (Sandage et al.

1985; Barger et al. 1998), and exhibit narrow color scatter ( ∼ 0.05), they are also referred

to as the E/S0 ridgeline (Visvanathan & Sandage 1977; Annis et al. 1999). For reviews of
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red sequence galaxies in clusters, refer to Gladders & Yee (2000), Hao et al. (2009) and

references therein.

In this paper, we extend the use of red sequence galaxies and brightest cluster galaxies

(BCG) for cluster detection, and develop an efficient cluster finding algorithm which we

name the Gaussian Mixture Brightest Cluster Galaxy (GMBCG) method. The algorithm

uses the Error Corrected Gaussian Mixture Model (ECGMM) algorithm (Hao et al. 2009)

to identify the BCG plus red sequence feature and convolves the identified red sequence

galaxies with a spatial smoothing kernel to measure the clustering strength of galaxies

around BCGs. We apply this technique to the Data Release 7 of Sloan Digital Sky Survey

and assemble a catalog of over 55,000 rich galaxy clusters in a redshift range extending from

0.1 < z < 0.55. The catalog is approximately volume limited up to redshift z ∼ 0.4 and

shows high purity and completeness when tested against a mock catalog. The algorithm is

very efficient, producing a cluster catalog for the full SDSS DR7 data (∼ 8,000 deg2) within

23 hours on a single modern desktop computer.

Cluster finding algorithms are closely related to the properties of the data they are

applied to. Therefore, we begin with a general description of the GMBCG algorithm, then

add additional features that are particular to its application to the SDSS data. The paper

is organized as follows: in § 2, we review de-projection, the major challenge of optical

cluster detection, summarizing the de-projection methods used in previous cluster finding

algorithms and demonstrating why red sequence color outperforms the others. In § 3, we

introduce the major steps of the GMBCG algorithm and compare it with the maxBCG

algorithm. In § 4, we introduce the cluster catalog we constructed from the SDSS DR7 using

the GMBCG algorithm. In § 5, we evaluate this new DR7 catalog by matching it to catalogs

of known X-ray clusters and previously published maxBCG clusters. The completeness and

purity of the GMBCG catalog are then also tested against a mock catalog. We conclude
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with a summary of the properties of the GMBCG catalog, along with a discussion of the

prospects for using this method on future optical surveys.

By convention, we use a ΛCDM cosmology with h = 1, Ωm = 0.3 and ΩΛ = 0.7

throughout this paper. Also, we will omit the h−1 when describing distances, i.e., we will

use Mpc directly instead of h−1Mpc.

2. Optical Galaxy Cluster Detection and De-projection

Our goal is to detect galaxies clustered in three spatial dimensions, but we have precise

information in only two: RA and DEC. Large uncertainties in galaxy position along the

line of sight leads to projections which contaminate richness estimates for all clusters and

confuse cluster detection at low richness. Therefore, every optical cluster finding algorithm

needs to effectively de-project field galaxies before calculating overdensities in the RA/DEC

plane.

The ability to locate the positions of galaxies along the line of sight is limited by the

technology available. Over the past 60 years, various algorithms for optical galaxy cluster

detection based on photometric data have been employed (Abell 1957; Huchra & Geller

1982; Davis et al. 1985; Shectman 1985; Efstathiou et al. 1988; Couch et al. 1991; Lidman

& Peterson 1996; Postman et al. 1996; Kepner et al. 1999; Annis et al. 1999; Gladders &

Yee 2000, 2005b; Gal et al. 2000, 2003; Kim et al. 2002; Goto et al. 2002; Ramella et al.

2002; Lopes et al. 2004; Botzler et al. 2004; Koester et al. 2007b; Li & Yee 2008).1 For a

recent review of the cluster finding algorithms, see Gal (2006). Though these methods differ

1When spectroscopic redshifts are available, other algorithms have been developed, for

example, Berlind et al. (2006); Yang et al. (2007); Miller et al. (2005). In this paper, we will

mainly consider the algorithms based on photometric data.
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in many detailed respects, we can roughly classify them according to the de-projection

methods they use. In Table. 1, we list the cluster finding algorithms for photometric data

of the past two decades and the de-projection methods used.

The de-projection method used by each algorithm is often determined by the properties

of the data for which the algorithm was developed. When only single band data were

available the major de-projection methods were all magnitude based. However, the broad

luminosity function of galaxies makes magnitude a poor indicator of galaxy position

along the line of sight. Even so, these methods are quite effective for detecting massive

clusters. Unfortunately, they cannot maintain good purity and completeness for clusters

with low or intermediate richness. Moreover, the contamination of cluster richness induced

by projection also creates large scatter in the richness-mass relations derived from these

methods.

Multi-band digital imaging technology greatly alleviates the projection effects that

plagued optical galaxy cluster detection for decades. In a precise multi-band sky survey, we

have magnitude information from more than one band, allowing better reconstruction of the

galaxy spectra. Even the crude Spectral Energy Distribution (SED) information provided

by colors provides very effective information for locating galaxies along the line of sight.

The red sequence, or E/S0 ridgeline, which defines cluster galaxies, has a very narrow

color scatter ( ∼ 0.05) and a slightly tilted color magnitude relation, the study of which has

a long history, e.g. (Visvanathan & Sandage 1977; Bower et al. 1992; Gladders et al. 1998;

López-Cruz et al. 2004; Blakeslee et al. 2003, 2006; De Lucia et al. 2007; Stott et al. 2009;

Mei et al. 2009; Hao et al. 2009). This color information is the primary tool to determine

the position of galaxies along the line of sight.

There are basically two ways to de-project galaxies using multi-color data: use

the colors to obtain photometric redshifts and then de-project using these redshifts, or
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Table 1: Summary of optical cluster finding algorithms for photometric data

Algorithm Type of data applied De-projection method

Percolationa Single band/Simulation Magnitude/photo-z

Smoothing Kernelsb Single band Magnitude

Adaptive Kernelc Single band Magnitude

Matched Filter d Single band Magnitude

Hybrid and Adaptive Matched Filtere Single band Magnitude/photo-z

Voronoi Tessellationf Single band Magnitude

Cut-and-Enhance g Single band Magnitude

Modified Friends of Friendsh Multi-band Photo-z

C4i Multi-band All Colors

Percolation with Spectroscopic redshiftj Multi-Band Spectroscopic Redshift

Cluster Red Sequencek Multi-band Red sequence

MaxBCG l Multi-band Red sequence

GMBCG Multi-band Red sequence

a Huchra & Geller (1982); Davis et al. (1985); Efstathiou et al. (1988); Ramella et al. (2002)

b Shectman (1985)

c Gal et al. (2000, 2003)

d Postman et al. (1996)

e Kepner et al. (1999); Kim et al. (2002); Dong et al. (2008)

f Kim et al. (2002); Lopes et al. (2004)

g Goto et al. (2002)

h Li & Yee (2008)

i Miller et al. (2005)

j Berlind et al. (2006)

k Gladders & Yee (2000, 2005b)

l Annis et al. (1999); Koester et al. (2007a,b)
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use the red sequence to detect clustering directly in color space. The first approach is

straightforward in principle, but more complex in practice. There are many machine

learning algorithms (Oyaizu et al. 2007; Gerdes et al. 2009) that can be used to assign

photo-zs based on the multi-band colors/magnitudes. However, these methods are limited

by the available training set of spectroscopic redshifts. For galaxies that are similar to the

training set, reconstructed photo-zs can reach a precision of ∼ 0.03 (Oyaizu et al. 2007).

However, for galaxies that are not represented in the training set, photo-zs can be very

imprecise and biased.

To get a sense of how photo-zs perform for all galaxies, we can simply compare the

results of two different estimators. Take the neural network photo-zs for SDSS data (Oyaizu

et al. 2007) as an example. There are two well-tested estimators provided in the SDSS

catalogs, labeled photozd1 and photozcc2. The photozd1 is obtained by training only

on magnitudes, while photozcc2 is obtained by training only on colors. In Figure 1, we

compare photo-zs based on these two estimators. The difference of the two photo-zs has

a standard deviation of ∼ 0.1. For a typical cluster, with a velocity dispersion of 900 km

s−1, the dispersion between galaxy redshifts is ±0.003, much smaller that the precision

possible from photo-zs alone. Therefore, though it is a lot better than the magnitude based

de-projection, photo-z de-projection will still be insufficient to remove projection effects

entirely, especially when training sets remain limited.

As an alternative, we may stay closer to the data and look for clustering directly in

color space. Red sequence galaxies in low redshift clusters display a scatter in g − r color

of ∼ 0.05. Most importantly, a tight cluster red sequence accompanied by a BCG presents

a pattern exhibited only by clusters and not found in field galaxies. Therefore, directly

looking for the red sequence plus BCG feature provides a powerful way to improve cluster

detections. It is this approach which we follow in the GMBCG method.
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Fig. 1.— Scatter between two well-trained photo-z estimators. Two neural network algo-

rithms from Oyaizu et al. (2007) (photozd1, which uses magnitudes only, and photozcc2,

which uses galaxy colors) applied to SDSS DR6 data are compared. Left panel plots the two

estimators against each other for the full sample, right panel shows the scatter between the

two estimators. Although the algorithms are well tuned using existing spectroscopic data,

the two photo-zs have an rms difference of ∼ 0.1.



– 11 –

3. Details of the GMBCG Algorithm for Optical Cluster Detection

3.1. Overview

As pointed out in the previous section, the BCG plus red sequence pattern is a

unique feature of galaxy clusters. We therefore make identifying this feature a key step in

our cluster finding algorithm. The distribution of galaxy colors in a cluster can be well

approximated by a mixture of two Gaussian distributions(Hao et al. 2009). The redder and

narrower Gaussian distribution corresponds to the cluster’s red sequence, while the bluer

and wider one includes both foreground and background galaxies along with the “blue

cloud” cluster members. In Figure 2, we show the galaxy color distribution around two

real clusters and the corresponding color magnitude relation. If there is no cluster, then

the color distribution in a given patch of sky will be well represented by a single Gaussian

with a wide width. Fitting the color distribution with mixture of Gaussian distributions

is well suited for our purpose. A complication in our case is that the measurement errors

of the colors are not negligible and proper modelling of them is essential for the detection

of red sequence. The traditional Gaussian Mixture Model (GMM) does not consider the

measurement errors and we therefore use an error corrected GMM to developed in our

earlier work (Hao et al. 2009).

As long as we effectively isolate red sequence galaxies, we reduce the problem of

cluster finding to a clustering analysis on the ra/dec plane. One can then use either

parametric (such as convolving with a model kernel) or non-parametric (such as Voronoi

Tessellation) methods to analyze the strength of the clustering signal. When we apply such

a scheme to data spanning a wide redshift range there are three other complications to

consider.

First, as redshift increases the red sequence shows up in different colors. This is mainly
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Fig. 2.— Color distributions and color-magnitude relations around two representative clus-

ters. Top Left Galaxy g − r color distribution around a cluster overlaid with a model con-

structed of a mixture of two Gaussian distributions. The red curve corresponds to the red

sequence component while the blue one corresponds to the sum of background galaxies and

blue cluster members. The green vertical line indicates the color of the BCG. µ and σ are the

means and standard deviations of the two Gaussian components. Top right Color-magnitude

relation for the same galaxies. Galaxies within the 2σ clip of the red sequence component

are shown with red points; the green line indicates the best fit slope and intercept of this

red sequence. The left most red point is the BCG. The bottom two panels shown the same

plots for a second, higher redshift cluster, where the color used is r − i instead of g − r.
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a result of the 4000 Å break shifting across the filters. Because of this effect, the most

informative color will vary as redshift increases. For the set of SDSS filters, the relation

between red sequence color and redshift is given in Table 2.

Beyond z ∼ 1.0, one needs near infra-red color information, from bands like Y, J,

H, or K. Therefore, when detecting clusters in data spanning a wide redshift range, it is

necessary to determine which ridgeline color we should examine. Since we will be searching

for the red sequence around candidate BCGs, we adopt the BCG’s photo-z as a good

estimator of cluster’s redshift. BCGs are bright, making their photo-zs generally much

better determined than more typical galaxies. As we discuss in §3.3, the precision of BCG

photo-zs is sufficient to determine which red sequence color should be examined around

a given BCG. This does require a determination of the photo-z for every candidate BCG

before proceeding.

A second complication for cluster finding across a broad redshift range is the increased

chance of overlapping clusters, one at low redshift and another at relatively high redshift.

Such an overlap will complicate the distribution in color space, turning it from bimodal

to tri-modal or even more. To reduce the possibility of this occurring, we apply a broad

photo-z window (such as ± 0.25 in photo-z) to select potential member galaxies before

searching the color distribution. The available photo-z precision is adequate for this

Table 2: Red sequence color in different redshift ranges for SDSS filters

Ridgeline color Redshift range

g − r 0.0 ∼ 0.43a

r − i 0.43 ∼ 0.70

i− z 0.70 ∼ 1.0

aAlthough the 4000 Åbreak starts shifting into SDSS r band at z ∼ 0.36, we observed that
g − r color is still better than r − i color for detecting red sequence up to redshift 0.43.
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purpose. In addition to photo-z clips, we also apply luminosity cuts and require the

potential member galaxies to be brighter than 0.4 L∗, where L∗ is the characteristic

luminosity in the Schechter luminosity function. For our application, the i-band apparent

magnitude corresponding to 0.4L∗ as a function of redshift is shown in the lower right

panel of Figure 3. We adopted this from Annis et al. (1999) and Koester et al. (2007a).

Selecting potential member galaxies by cutting on photo-z and luminosity is very effective

at simplifying the color space structure around the target galaxies. In addition to this, the

0.4L∗ cut allows us to measure a consistent richness at different redshift 2.

The third complication concerns defining a consistent measurement of richness across

more than one color. Red sequence galaxies selected from different color bands have

different degrees of contamination from the background. This is a fundamental limit of

all color-based red sequence selection methods, though it has a relatively minor effect on

our cluster detection. Once a cluster catalog is produced, we will need to further calibrate

the richness measured from different color bands using other means, such as gravitational

lensing analysis (Sheldon et al. 2007; Johnston et al. 2007). In the present work, we just

adjust the richness definitions to result in a smooth transition between filters.

3.2. Brightest Cluster Galaxies as Cluster centers

Brightest cluster galaxies (BCGs) reside near the cluster center of mass, and provide

important clues to other observational features of clusters. Choosing the BCG as the

center in a cluster finding algorithm has good physical, algorithmic, and computational

motivations. The major physical motivation for focusing on the BCG is that the central

galaxy in a cluster (the one which resides near the bottom of the cluster potential well) is

2For the SDSS DR7 data, the 0.4L∗ can keep a consistent richness up to redshift 0.4.
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Fig. 3.— The top two and bottom left panels are the color evolution based on a color model

of the red sequence galaxies (Koester et al. 2007a). The bottom right panel is the I band

apparent magnitude corresponding to 0.4L∗ at different redshifts.
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very often the brightest galaxy in the cluster. This BCG is then coincident with the region

with the deepest potential traditionally identified in theory as the center of a cluster. To the

extent that this is true, using the BCG as the cluster center simplifies precise comparisons

between observations and theory, although the extent to which the brightest galaxy is

always at the center, and the extent to which the most central galaxy is at the center of the

dark matter potential well, are still areas of investigation.

In an algorithmic sense, the BCG helps to distinguish among the bright galaxies

typically found near the cluster center. Such galaxies are all similarly clustered, and the

choice of a cluster center is thus somewhat dominated by noise. The uniqueness of BCGs,

including their often cD-like morphologies, acts as a “noise damper” for positioning cluster

center. Computationally, BCGs are bright and have well-determined photo-zs, and the

combination of these phenomena boosts the efficiency of cluster detection by omitting

searches around intrinsically faint galaxies that dominate the luminosity function. These

motivating factors underscore the fact that while BCGs do not drive the identification of

clusters in the current algorithm, they play an important fine-tuning role that minimizes

the need for downstream modelling in cosmological analyses.

3.3. Red Sequence Color Selection

A filter combination tuned to the selection of red-sequence galaxies at a given redshift

is of utmost importance. In our algorithm, we use the photo-z of the BCG to determine

which color to choose. For SDSS filters, we list the corresponding red shift ranges for

different colors in Table 2. In principle, the wrong color can be chosen for a cluster due

to an inaccurate BCG photo-z. In practice this is not a serious problem; the photo-zs for

BCGs are usually well determined (∼ 0.015 for SDSS DR7, see § 4.2.2). Redshifts that

place the 4000 Å break near the border of the filters are also a cause for concern, as
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they can confuse the filter choice. However, near the filter transitions, the BCG plus red

sequence pattern is apparent in both adjacent colors. For example, for a rich cluster located

at z = 0.42, which falls in the transition region from the SDSS g band to the r band, the

combined red sequence and BCG features can be still be easily captured in either the g − r

or r − i. This ambiguity can impact the richness estimates for clusters near the transition

between filters (see § 4.2), but does not result in issues for cluster detection for the richness

range considered in the current work.

3.4. Red Sequence Detection

3.4.1. Cluster Member Galaxy Selection

The sizes of clusters are varied, increasing substantially with mass. Therefore, using

a scaled aperture is preferred for keeping a consistent richness estimation. Ideally for a

candidate cluster, a series of different aperture radii should be examined and chosen by

maximizing S/N. However, this can be computationally expensive. As a substitute, we take

a two-step approach similar to Koester et al. (2007b), which attempts to deal with this

fact: first, we measure the richness of the cluster using a fixed metric aperture; then we

scale the radius based on our measured fixed aperture richness and remeasure everything

using the scaled aperture size. The following describes the exact implementation for the

current work.
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3.4.2. Fixed Aperture Membership and Richness

For a candidate BCG, we identify cluster members using a multi-step process. We draw

a 0.5 Mpc circle around the candidate BCG at its photo-z3 and select all galaxies fainter

than the candidate BCG, but brighter than the 0.4L∗ cut at the relevant photo-z. Using

the filter combination relevant for the BCG, we use the Gaussian Mixture Model to fit the

distribution of the colors of all the galaxies selected above. To remove possible overlap of

two or more clusters along the line of sight, we consider only galaxies within a photo-z

window of ±0.25 around the BCG. To determine the appropriate number of Gaussian

components for the fitting the color distribution, we calculate the Akaike Information

Criterion (AIC Akaike 1974). Around a cluster, AIC normally chooses two Gaussian as

best fit, one narrow and one broad, and the former is chosen as the red sequence as it sits

red-ward. Using the fixed 0.5 Mpc aperture it is, however, possible that the field of view is

dominated by a large cluster and therefore the best fit to the color distribution is a single

Gaussian representing the red-sequence. This highlights the need for a scaled aperture (in

this case, enlarged) which would include more background galaxies and push the fitting

towards two color components.

Next, for the two mixture case, we need to determine to which Gaussian component the

candidate BCG belongs. We compare its corresponding likelihoods of the candidate BCG’s

color belonging to each of the two Gaussian components and assign the most likely Gaussian

3The BCG’s photo-z is a good estimator of the cluster redshift (see Figure 11). One

might use the weighted average of the member galaxy photo-zs in the expectation that the√
(N) averaging would provide a more accurate estimated redshift. This is true, however,

only when there is no systematic bias in the member photo-zs. In current practice there are

often systematic errors in these members related to their being fainter and yet just as red as

the BCG. There will always be the issue that they have lower signal/noise than the BCG.
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component to the candidate BCG. If this Gaussian component is wider than than the other

Gaussian component, we flag this candidate BCG as a field galaxy and remove it from the

searching list for next steps. For the case where there is only one Gaussian component,

we impose a threshold on its width, beyond which we do not deem it suggestive of a red

sequence and remove the corresponding candidate BCG from consideration. Extensive

testing on rich clusters in the SDSS sets a color width of 0.16 (about twice the intrinsic

width) as an appropriate threshold in both the g − r and r − i colors.

Following this process, we consider only the candidate BCGs with an appropriate red

sequence measured. All the galaxies whose colors are within ± 2 standard deviations of the

mean of the corresponding Gaussian component are flagged as members. The number of

member galaxies selected this way is denoted as N0.5Mpc
gals . The ±2σ cut corresponds roughly

the level where the background likelihood dominates over cluster likelihood. It is shown

elsewhere that indeed the two component Gaussian Mixture Model can reliably pick up the

correct peak in color space as verified by simulations (Hao et al. 2009).

3.4.3. Scaled Aperture Size and Richness

Scaled apertures are required to measure clusters of different sizes. To select the

appropriate aperture, we assume there is a scaling relation between the aperture and the

richness we measured with 0.5 Mpc aperture, as motivated by Hansen et al. (2007).

Rscale = N(N0.5Mpc
gals )P (1)

where N and P are the normalization and power respectively, which need to be set so that

the resulting Rscale corresponds roughly to the relevant value of R200. To determine the

scaling relation, we measure the N0.5Mpc
gals for maxBCG clusters (Koester et al. 2007a). For

every maxBCG cluster, there is a Rlens
200 measured, interior to which the mean mass density
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of the cluster is 200 times of the critical energy density. This Rlens
200 is measured based on an

exhaustive weak lensing analysis (Johnston et al. 2007; Hansen et al. 2007). We find that

N0.5Mpc
gals and the corresponding Rlens

200 follow a simple relation,

Rscale = 0.133× (N0.5Mpc
gals )0.539, (2)

where Rscale, measured in Mpc, plays the role of the Rlens
200 in Johnston et al. (2007) and

Hansen et al. (2007). Once we have the scaled aperture, we repeat the procedure for the

fixed aperture richness measurement, substituting the corresponding scaled aperture for 0.5

Mpc. The corresponding richness is denoted as N scaled
gal , and is used as the primary estimate

of richness for the cluster catalog.

3.4.4. GMM vs ECGMM and Weighted Richness

In this prescription for cluster member selection, we rely on the detection of the red

sequence as well as the measurement of its width. The Gaussian Mixture Model (GMM)

and its generalization with error correction (ECGMM) are well-suited to detecting the red

sequence in a cluster. An unbiased measurement of the evolution of the red sequence and

its width requires the ECGMM (Hao et al. 2009). However, as the measurement errors

increase, we cannot simply select member galaxies using ECGMM with a 2σ (σ is the

standard deviation of the Gaussian component corresponding to the red sequence) cut in a

consistent way. GMM does give consistent membership selection. This is mainly due to the

fact that the ECGMM measures “true” ridgeline width while our cuts are made in terms of

the observed colors. However, as the measurement error increases (e.g. at higher redshift),

GMM struggles to discern the correct number of Gaussian components, as the measurement

errors “blur” the color distribution. In this case, GMM will more likely favor a single

Gaussian component over two based on AIC, but ECGMM more accurately recovers the

correct number of mixtures because it properly models the measurement errors.
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On the other hand, we can also measure a weighted richness. When we apply GMM

(ECGMM) to fit the color distribution, each Gaussian component has a weight from the

fitting. This weight quantifies how much of the total population is from the corresponding

Gaussian component. By multiplying the relative weight of the cluster component to

the total number of galaxies in the field, we measure the weighted richness. It turns out

that this weighted richness correlates better with the true richness of the cluster when

they are well measured4. To demonstrate this, we performed some Monte Carlo tests.

First, we generate the mock colors from two Gaussian distribution, one corresponds to the

background and another corresponds to the cluster. We fix the number of galaxies in the

background component as 40 while vary the number of galaxies in cluster component from

10 to 70 with increment of 5. Then, we generate the measurement errors from a uniform

distribution scaled by a noise level (0.1 and 0.2 respectively in our case). The mock color

will be updated by adding realizations from a Gaussian distribution with the width specified

by the measurement errors.

For each given mock cluster richness, we repeat the above procedure 100 times and

obtain a richness and weighted richness measurements using GMM/ECGMM each time.

In Figure 4, we plot our measured mean richness (NFound) and mean weighted richness

(Weighted NFound) vs the true richness (NTrue) at different measurement noise level.

Based on these analyses, we conclude that GMM can give better richness counts while

ECGMM can give better weighted richness. Therefore, in practice, we will use a hybrid of

both GMM and ECGMM. We firstly detect the red sequence using ECGMM and measure

the weighted richness, and then we use GMM with fixed number of mixtures (according

to the results of ECGMM) to do a follow-up measurement and select the red sequence

4Note if there is only one Gaussian component, this weighted richness does not make

sense.
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Fig. 4.— Reconstruction of richness using GMM and ECGMM at noise level 0.1 and 0.2.

The noise on the plot indicate the scale we used to generate the mock measurement errors.

GMM results in better number counts reconstruction, while ECGMM gives better weighted

richness as measurement noise varies.
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members.

3.5. Clustering Strength

We now have sufficient machinery to detect red sequence around a given BCG

candidate. If there is red sequence detected, it is still possible that the candidate BCG is,

e.g., a bright foreground galaxy, and does not belong to the red sequence. Criteria must be

chosen to determine the association of a candidate BCG with the identified red sequence.

We thus consider it to be “associated” with the red sequence if its color lies within 3

standard deviations of the peak of the identified red sequence Gaussian.

Next, we quantify the strength of spatial clustering in the ra/dec plane by convolving

the selected members with a projected NFW (Bartelmann 1996; Navarro et al. 1997; Koester

et al. 2007b) radial kernel. It is worth noting that the type of kernel used is not as important

as its scale, which has been revealed by statistical kernel density analyses (Silverman 1986;

Scott 1992). Therefore, the specific kernel does not significantly bias the detection of

clusters that deviate from the kernel shape. We introduce the clustering strength as

Scluster =

Ng∑
k=1

Σ(xk) (3)

where Ng is the total number of member galaxies and

Σ(x) =
2ρsrs
x2 − 1

f(x), (4)

rs = r200/c is the the scale radius, ρs is the projected critical density, x = r/rs and

f(x) =



1− 2√
x2−1

tan−1
√

x−1
x+1

x > 1

1− 2√
1−x2 tanh−1

√
1−x
x+1

x < 1

0 x = 1

0 x > 20.

(5)
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Similar to Koester et al. (2007b), we choose rs = 150 kpc, regardless of richness. The

clustering strength parameter Scluster is essentially the height of the peak of the smoothed

red sequence density field at the position of the BCG.

3.6. Luminosity Weighted Clustering Strength

In addition to the clustering strength parameter introduced in the preceding section,

we also measure another luminosity weighted clustering strength Slum
cluster. The measurement

is similar to Sstrength
cluster except that a luminosity weight (Wlum) is attached to each galaxy.

The luminosity weight is simply defined as the ratio of each galaxy’s i-band magnitude to

the i-band magnitude corresponding to 0.4L∗ at the candidate cluster BCG’s redshift.

Slum
cluster =

Ng∑
k=1

Σ(xk)×Wlum(k) (6)

The advantage of introducing such a measure is that its ratio to the non-luminosity

weighted Scluster is a good indicator of whether the candidate BCG is a contaminating

bright star. This forms an important double check of the star/galaxy separation of the

input catalog, which is a minor, but non-negligible source of contamination.

3.7. Implementation of the Algorithm

With all the quantities calculated from the above definitions, the implementation of

the cluster selection is straightforward. There are basically three steps:

1. For every galaxy in the catalog, evaluate the clustering strength Scluster inside a 0.5

Mpc searching aperture. This Scluster is calculated using galaxies fainter than the

candidate BCG and belonging to the identified red sequence.
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2. Percolation procedure: rank the candidate BCGs by their clustering strength and

remove candidates from the BCG list if they are identified as “members” of another

candidate BCG with higher clustering strength. Figure 6 illustrates the distribution

of clustering strength around a candidate BCG.

3. Repeat the above process and finally obtain a list of BCGs and their cluster members.

Based on the richness measured in 0.5 Mpc, one calculates a scaling Rscaled for every

BCG. Then processes 1) – 2) are repeated by changing the searching aperture to

Rscaled from 0.5 Mpc. This concludes the search and completes the final list of BCG

members and BCGs with scaled richness N scale
gals .

The procedures are summarized as a flowchart in Figure 5.

3.8. Post Percolation Procedure

The above process is essentially a process of detecting the peaks of the smoothed

density field, where the height of the peaks is measured by Scluster. In Figure 6, we show

the Scluster measured around Abell 1689.

In this cluster finding process, the center of the cluster is assumed to be the brightest

cluster galaxy. Therefore, it is possible that several higher peaks (quantified by Scluster)

are identified in the field of a brightest cluster galaxy and survive the previous percolation

procedure. Multiple peaks must be identified and merged into one cluster using some

criteria. This process is deemed “post percolation”, in contrast to the previous percolation

procedure. The major motivation for not directly blending the peaks during the cluster

finding process is the need for additional flexibility in both merging the peaks and avoiding

“over-percolation” the true BCGs by some bright stars. Perhaps most importantly, the

sub-peaks are indicators of potential cluster sub-structure, and probe the internal structures
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Fig. 5.— Flowchart for the implementation of the GMBCG algorithm
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of clusters.

We settle on the following post-percolation prescription: for a given candidate BCG

(denoted as A), we identify a cylindrical region in the ra/dec plane and redshift space

around the BCG (A). The radius of the cylinder is Rscale of BCG (A), and the height is

specified by the BCG (A)’s photo-z ±0.05. Then, if another candidate BCG (denoted as B)

falls inside this cylinder and BCG (B) is fainter than BCG (A) but BCG (B)’s clustering

strength is not more than 4 times of that of BCG (A), we will merge BCG (B) into BCG

(A). Setting the clustering strength threshold of BCG (B) at a level of 4 times more than

that of BCG (A) avoids merging a true BCG into a very bright galaxy. The value 4 is

obtained explicitly by testing in known situations in the SDSS, where bright foreground

objects (e.g. stars) confuse identification.

3.9. Comparison with MaxBCG Algorithm

It is interesting to explore the major differences between the GMBCG and maxBCG

algorithms (Koester et al. 2007b). maxBCG is a matched filter based algorithm with an

additional filter from the red sequence colors. Using this algorithm, a large optical cluster

catalog has been created (Koester et al. 2007a), which has high purity and completeness

based on tests on both a Monte Carlo catalog and a N-body mock catalog.

The difference between GMBCG and maxBCG can be summarized in three major

respects:

1. maxBCG is a generalized matched filter algorithm with the inclusion of a color filter

in addition to radial and luminosity filters. It varies the filter at a grid of testing

redshifts to maximize the match to a model filter. The redshift at which the model

filter maximizes the match with data is selected as the redshift of the cluster. GMBCG
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does not maximize the match for a redshift dependent filter. It uses a statistically

well-motivated mixture model to identify the red sequence plus BCG feature. The

radial NFW kernel serves as a smoothing kernel rather than a model filter. Therefore,

GMBCG will be less biased against clusters that do not follow the assumed model

filter in maxBCG.

2. maxBCG assumes an average ridgeline redshift model for all clusters while GMBCG

does not assume any model as a priori. It uses the Gaussian Mixture Model to detect

the red sequence and background in a cluster by cluster way. The advantage is that it

automatically adjusts the cluster and background parameters across a wide redshift

range.

3. In the maxBCG algorithm, the photo-zs of the clusters are estimated as a part of the

execution of the algorithm. In GMBCG, photo-zs are obtained from other methods

such as neural networks, nearest neighbour polynomial, etc. A photo-z can also be

estimated based on the measured red sequence colors as a by product.

For these reasons, GMBCG is more easily extendible to a wide redshift range and less

biased against atypical clusters.

4. GMBCG catalog For SDSS DR7

In this section, we apply the GMBCG algorithm to the Data Release 7 of the Sloan

Digital Sky Survey (SDSS DR7), and construct an optical cluster catalog of more than

55,000 rich clusters across 0.1 < z < 0.55. To check the quality of the cluster catalog, we

cross-match the GMBCG clusters to X-ray clusters and maxBCG clusters. We also create

a mock catalog based on DR7 data to test the completeness and purity of the catalog. The

details of the catalog construction are covered in the following section.
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4.1. Input catalog

The Sloan Digital Sky Survey (SDSS) (York et al. 2000) is a multi-color digitized CCD

imaging and spectroscopic sky survey, utilizing a dedicated 2.5-meter telescope at Apache

Point Observatory, New Mexico. It has recently completed mapping over one quarter of

the whole sky in ugriz filters. DR7 is a mark of the completion of the original goals of the

SDSS and the end of the phase known as SDSS-II (Abazajian & Sloan Digital Sky Survey

2008). It includes a total imaging area of 11663 square degrees with 357 million unique

objects identified.

In this paper, we will mainly detect clusters on the so called Legacy Survey area,

which “provided a uniform, well-calibrated map in ugriz of more than 7,500 square

degrees of the North Galactic Cap, and three stripes in the South Galactic Cap totaling

740 square degrees” (Abazajian & Sloan Digital Sky Survey 2008). We construct the

input galaxy catalog from the CasJobs (http://casjobs.sdss.org/CasJobs/) PhotoPrimary

view of the SDSS Catalog Archive Server with type set to 3 (galaxy) and i-band

magnitude less than 21.0. In addition, we also apply the following flags to keep the

catalog clean: SATURATED, SATUR CENTER, BRIGHT, AMOMENT MAXITER,

AMOMENT SHIFT and AMOMENT FAINT. We download the photo-z table and cross

match the objects to the galaxy catalog to attach photo-zs to each galaxy we selected.

In DR7, the photo-zs in the photo-z table are calculated based on a nearest neighbor

polynomial algorithm (Abazajian & Sloan Digital Sky Survey 2008).

In addition to the above selection requirements, we also throw away those galaxies

with bad measurements (photometric errors in g and r band greater than 10 percent).

In principle, we should search all galaxies as candidate BCGs. However, as BCG are

well-known and form a subset of the total galaxy population, the list (and computational

time) can be reduced. Based on Figure 3, we make cuts in color space as shown in the red
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regions of Figure 7. Additionally, each galaxy has a well-measured ellipticity through the

SDSS data processing pipeline based on adaptive moments (Bernstein & Jarvis 2002). We

require the ellipticity in the r-band to be less than 0.7 for candidate BCGs. This ellipticity

cut helps to remove edge on spiral galaxies which, when reddened by dust, often take on

the colors of much higher redshift red sequence galaxies, and hence can appear as false

projected BCGs. All these cuts keep ∼ 70% of the total galaxies in our candidate BCG

search list, effectively eliminating only those with quite atypical colors and morphologies.

After the above procedures, we prepare an input catalog for our cluster finder. It is

worth noting that we did not apply any star/galaxy separation procedures other than the

ones generated by the standard DR7 pipeline. This is a relatively tolerant selection that

may be contaminated by occasional bright stars that are not well separated from galaxies.

As described earlier, we handle these stragglers by comparing the measured luminosity

weighted clustering strength (Slum
cluster) with the non-luminosity weighted clustering strength

(Scluster) to reject those bright stars.

4.2. Richness Re-scaling

In the redshift range 0.1 ∼ 0.55, only the g − r or r − i ridgeline colors are used, and

the switch between them is determined by the photo-z of the candidate BCG. Since we

measure the richness by counting the number of galaxies falling within 2σ of the ridgeline,

the resulting richness from g − r or r − i are not directly comparable. In part this is due to

a changing degree of background contamination as the ridgeline moves through color space

(see Figure 14). Generally, the richness measured from r − i is higher than that measured

from g − r. To make the richnesses more consistent across the whole redshift range, we

rescale those measured from r− i color. Clearly, mass is the only true parameter with which

we should relate the two different richness. Therefore, a complete resolution of this problem
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Fig. 6.— Left panel shows the clustering strength distribution around a galaxy cluster (Abell

1689). In this case, the BCG is the highest peak. Right panel: SDSS image of A1689.
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Fig. 7.— BCG preselection in color - color space for the SDSS DR7 data. Red regions

indicate the area of g − r vs. r − i (left panel) and r − i vs. i − z (right panel) color-color

space in which we preselect BCGs. This preselection keeps ∼ 70% of the total galaxies.
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requires a carefully mapping of the mass-richness relation for richness in both redshift

ranges. However, for the moment, we settle for the simpler first order approach. That is, we

require the statistical distribution of richness measured from g − r color at redshift range

[0.41 - 0.43] and richness measured from r − i color at redshift range [0.43, 0.45] to be the

same since the true richness of the clusters in these narrow redshift ranges should vary only

mildly. The scaling relation that matches the two distributions is not necessarily linear. To

ensure the distribution to be the same, we match the richness at different percentile bins

of the two distributions and re-scale them linearly in each bin. Then, we fit a polynomial

to the scaling relation across all the bins to derive a “continuous” scaling relation. The

richness from the r − i color will be accordingly re-scaled by this relation. In Figure 8, we

show the richness distribution before and after the re-scaling. Since the scaling relation is

monotonously increasing, the scaled richness will not alter the cluster ranking based on the

original richness in the r − i region (it will affect the global ranking for sure). In a similar

fashion, we also re-scale the weighted richness and the clustering strength. In the following,

unless noted otherwise, the richness and clustering strength all refer to the rescaled values.

4.2.1. Catalog Cleaning and Masking

We apply the GMBCG algorithm to the input catalog and generate a full catalog of

galaxy clusters for the SDSS DR7. We search clusters from redshift 0.05 < z < 0.60, but

only include in the final catalog the redshift range 0.1 < z < 0.55 to reduce redshift range

edge effects. The luminosity weighted and non-luminosity weighted clustering strength (see

above) are employed. For stars, the luminosity weighted clustering strength is much greater

than its non-luminosity weighted counterpart. By hand scaning the corresponding images,

we found the cuts as shown in Figure 4.2.1 are good for removing the contaminated stars.

In addition to the above cuts, we also mask out those clusters that are close to the
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brightest stars. We apply the bright star mask from the NYU VAGC (valued added galaxy

catalog) release for SDSS DR7 (Blanton et al. 2005) and mask out all clusters that fall

inside the bright star mask polygons.

4.2.2. Catalog Facts

Cleaning and masking trims the final catalog down to 380,000 clusters, which we will

refer as full catalog. When we apply a richness cut N scaled
gals ≥ 8, we are left with about

55,000 rich clusters, which we release with this paper. We refer this as the “public catalog”

and its sky coverage is shown in Figure 10. In Table 3, we list the tags in the public cluster

catalog and their corresponding definitions. The redshift and richness distributions of the

clusters in the public catalog are shown in Figure 11. Images of example clusters at different

redshifts are shown in Figure 12.

An inherent assumption in GMBCG is that the BCG’s photo-z should be determined

much better than the rest of galaxies. We now test that assumption. In the public catalog,

about 11,000 BCGs have spectroscopic redshift. In Figure 13, we show the performance

of photo-z for BCGs. The rms of the difference between BCG and photo-z is ∼ 0.015,

which is almost the same as the photo-zs from maxBCG clusters (Koester et al. 2007a), an

indication that the assumption is secure.

4.3. Bimodality in color Space

As we have shown in previous sections, the apparent color distribution around a cluster

generally shows bi-modality. However, there are situations where the cluster is so big that

its members completely dominate the field within the aperture we impose; in this case, the

color distribution may be uni-modal. In our implementation of the GMBCG algorithm,
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Table 3: Tags in the cluster catalog

Tag Name in catalog Definition

OBJID Unique ID of each galaxy in SDSS DR7

RA Right Ascention

DEC Declination

PHOTO-Z photo-z from the photo-z table in DR7

PHOTO-Z ERR Errors of photo-z

SPZ Spectroscopic redshift

GMR g − r colora

GMR ERR Error of g − r color

RMI r − i color

RMI ERR Error of r − i color

MODEL MAG Dust extinction corrected model magnitudeb

MODEL MAG ERR Error of model magnitude

S CLUSTER Clustering strength, Scluster

GM SCALED NGALS Number of member galaxies inside GM SCALEDR from BCG

GM NGALS WEIGHTED Weighted richness.

aAll colors are calculated using model magnitude

bFor details, see http://www.sdss.org/DR7/algorithms/photometry.html
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we also consider this situation as a potential cluster as long as the width of the dominant

uni-modal distribution is narrow enough (width < 0.16).

In the case of a bimodal color distribution, the separation between the two Gaussian

components will vary as redshift changes, leading to different degrees of overlap. This

overlap of the two Gaussian components measures the fraction of projected galaxies when

we impose the color cuts on the red sequence galaxies. Therefore, the richness for the

clusters should be appropriately weighted to account for the projection. In Figure 14, we

show the color distribution of clusters at different redshifts. From the plot, the 2σ (σ is

the standard deviation of the Gaussian component corresponding to red sequence) cut we

imposed for selecting red sequence members coincides with point at which the likelihood of

red sequence galaxy becomes equal to that of background/blue galaxies.

This information is important for getting consistent richness estimates across the

redshift range. The 2 σ clip we use to select member galaxies will lead to different levels of

background galaxy contamination at different redshifts. The weighted richness introduced in

§ 3.4.4 takes this overlap into account automatically and thus is a better richness estimator

than the direct cluster member counts based on the top-hat 2σ color cuts. However, the

weighted richness is not always better than the direct number counts. There are two cases

that demand caution when the weighted richness is used. In first case there is only one

Gaussian component, which does not permit a weighted richness. The second case is that

there are situations where the relative weight estimates from the ECGMM is not reliable,

e.g. very small, leading to a very small weighted richness. In this case, we recommend the

direct richness counts, i.e. N scale
gal .
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5. Evaluating the catalog

Any cluster finding algorithm can be evaluated by two simple criteria: completeness

and purity. Completeness quantifies whether the cluster finder can find all true clusters,

while purity quantifies whether the clusters found by the cluster finder are real clusters.

However, calculating the completeness and purity requires that we know in advance what

is a true cluster. Ideally, the true cluster here should correspond to a dark matter halo.

This issue can only be completely resolved when we have a high resolution simulation

that can properly reflect the galaxies’ colors as well as their interaction with dark matter

halos. However, creating a realistic galaxy catalog from the N-body simulation has proven

to be very challenging, complicated by various factors such as unknown physics processes,

limited resolution of simulation, unknown behaviour of galaxies at high redshift, and other

complications that affect the evolution of galaxy colors and distribution. Therefore, in

practice, we need to slightly change the definition of true cluster to certain model clusters

we defined in terms of observational features.

In this section, we introduce a simple but realistic mock catalog to test our cluster

finder. The result can tell us the purity and completeness of our cluster catalog with respect

to the model clusters we put in. In addition, as a check of completeness of the cluster

catalog, we also cross match our clusters to X-ray clusters and clusters from maxBCG

catalog. Considering uncertainties in cluster richness measurement, we will use the full

catalog in this section to accommodate the richness variances.

5.1. Mock catalog

Inserting model clusters into a realistic background is a widely used method to create

mock catalogs for evaluating cluster finding algorithms (Diaferio et al. 1999; Adami et al.
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2000; Postman et al. 2002; Kim et al. 2002; Goto et al. 2002; Koester et al. 2007a). In

practice, there are different schemes to make the mock catalog as realistic as possible. In

this paper, we develop a Monte Carlo scheme that is similar to those used in (Goto et al.

2002; Koester et al. 2007a), but with additional features. We construct mock catalogs in

four steps:

1. The background galaxy distribution: To make a realistic background, we consider 25

stripes from our input galaxy catalogs from SDSS DR7. We remove the rich clusters

(richness greater than 20 in our cluster catalog, about 4% of the total galaxy in the

input catalog) and shuffle the remaining galaxies’ positions (ra/dec), while keeping

their colors and other properties unchanged, creating a ’base’ catalog.

2. Model cluster selection: We select 49 rich clusters whose redshift ranges from 0.1 to

0.55 from our cluster catalog. About 60% of these clusters have a match with known

x-ray clusters (see §5.4) and all of them have been visually checked to be very rich.

Each cluster has a BCG and about 30-100 member galaxies brighter than 0.4L∗.

3. Model mock clusters re-sampling : Pick a BCG randomly from the 49 model clusters

and then select a fixed number of member galaxies from the corresponding model

cluster’s members. The fixed number is randomly chosen from [10, 15, 20, 25, 30, 35,

40, 45, 50]. The relative positions, colors and luminosities of these galaxies all remain

unchanged with respect to BCG. In this way, we can generate a re-sampled model

cluster of a given richness.

4. Putting re-sampled model clusters into base catalog: For every stripe of the base

catalog, we select 500 re-sampled model clusters (roughly the number of clusters

removed in step 1) and put them into the background galaxy catalog so that their

corresponding BCGs replace 500 randomly chosen galaxies in the base catalog. Then,
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we will have a Monte Carlo catalog that are based on the real photometry of the

SDSS DR7 data.

By construction, the Monte Carlo catalog is based on actual SDSS photometry, and

produces a mock catalog with reasonably realistic background galaxies.

5.2. Completeness and Purity

To test the completeness and purity of our cluster finder, we run it on the mock catalog

created above. Then, we cross match the detected clusters and the model clusters using

a simple cylinder matching, i.e. searching in a cylinder of Rscale in radius and ±0.05 in

redshift. When we test the completeness, we firstly sort the model cluster list by the cluster

richness and then match the detected clusters to them through the cylinder match. While

we test the purity, we sort the detected cluster list by their richness and then match the

model clusters to them via the cylinder match. In both cases, we will consider only those

unique and exclusive matches, meaning that a model cluster will not be used any more once

it is matched to a detected cluster for purity test and a detected cluster will not be used

any more once it is matched to a model cluster for the completeness test. If more than one

cluster falls in the cylinder, we choose the richest one. After doing the matching, at a given

redshift bin and above a given Ngal, the completeness and purity can then be defined as

completeness =
Nmatch

model (z,Ngal)

Nmodel(z,Ngal)
(7)

purity =
Nmatch

found (z,N
scaled
gal )

Nfound(z,N scaled
gal )

(8)

where Nmatch
model (z,Ngal) denote the number of model clusters that are matched to the found

clusters by , Nmodel(z,Ngal) is the total number of model clusters , Nmatch
found (z,N

scaled
gal ) is the

number of found clusters that are matched to model clusters and Nfound(z,N
scaled
gal ) is the
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total number of found clusters. The results of the completeness and purity are plotted in

Figure 15. The plot show that the GMBCG algorithm can yield a highly complete and pure

cluster catalog.

5.3. Cross-Matching of GMBCG clusters to MaxBCG Clusters

As a further test of the completeness of the GMBCG catalog, we make a comparison

to the maxBCG catalog (Koester et al. 2007a). The maxBCG catalog consists of 13,823

clusters in the redshift range 0.1 < z < 0.3 with a lower threshold on richness set at

N200 = 10. It is derived from DR5 of the Sloan Digital Sky Survey and covers a slightly

smaller area than the new GMBCG catalog.

Several complications arise in the process of performing cluster-to-cluster matches

between catalogs, namely redshift uncertainties, centring differences between the two

algorithms, and scatter in the richness measurements. Although many similarities exist

between the maxBCG and GMBCG algorithms, it is not always the case that they

choose the same central galaxy for a given cluster. When matching clusters, a careful

cut must be made in the two-dimensional physical separation in order to allow for this

centring ambiguity, while at the same time minimizing matches due to random projection.

Uncertainty in the photometric redshifts can yield a similar problem along the line of

sight; a cut in ∆z = |zmaxBCG − zGMBCG| must be made to accommodate these errors.

Finally, the richness measurements themselves have large scatter, i.e. clusters that appear

in one catalog may have richness values below the richness threshold of the counterpart

catalog, rendering them unavailable to match. These problems ultimately will determine a

reasonable matching scheme to that can be used to quantify the agreement between the

GMBCG catalog and the maxBCG catalog. We now consider these effects.
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The uncertainty in redshift estimates for maxBCG clusters is σz ∼ 0.015 (Koester et al.

2007a). In the GMBCG catalog, the uncertainty of the photo-zs at redshift below 0.3 is

∼ 0.016 (Figure13). Therefore, a redshift difference of ∼ 0.05 between the two catalogs is an

appropriate selection window for matching. As for the radial separation, given the fact that

the maxBCG clusters are percolated within a separation of R200 ∼ 1.0− 2.0 Mpc (Koester

et al. 2007b), a radial separation of ∼ 2.0 Mpc is appropriate for our matching search.

Generally speaking, the smaller the matching separation, the higher the probability of real

matches. Also, the lower the richness of the maxBCG cluster, the less likely they are true

clusters. Therefore, we will represent our matching with respect to both the separation and

the richness of maxBCG clusters.

We hold the maxBCG clusters as target and match the clusters from our full GMBCG

catalogs to them. In other words, it is essentially a completeness test of the GMBCG

catalog. We then execute the cylindrical matching algorithm described above. The

matching yields that 13,374 out of 13,823 (∼ 96.8%) clusters in maxBCG catalog have a

match in the GMBCG catalog. Those non-matched clusters are mostly at low richness end,

which is mainly due to the low end cuts placed on the catalog. There are also 8,818 of the

13,374 matched clusters (∼ 65.9%) that have identical BCGs in both catalogs. In the left

panel of Figure 16, we show the matching fraction of the GMBCG clusters to maxBCG

clusters at different maxBCG richness and separation. As a comparison, we create a control

catalog of the same size as the GMBCG catalog, but with the ra and dec randomized. The

matching results of this control catalog to maxBCG clusters are shown in the right panel of

Figure 16.
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5.4. Cross-Matching of GMBCG to ROSAT X-ray Clusters

Optical identification of peaks in the galaxy distribution represents only one of many

methods used to find clusters. Other observables employed in cluster detection include

thermal emission of x-rays from the hot intra-cluster medium, weak-lensing distortion of

background sources, and the Sunyaev-Zeldovich effect of hot gas on the cosmic microwave

background. Each method has certain advantages and disadvantages. Each also provides a

distinct proxy for the mass of a cluster, which can be used to probe cosmological constraints.

It is important that our cluster finding algorithm be able to detect those clusters found by

alternative means. X-ray cluster catalogs are the most appealing candidate for exploring

this question. Numerous x-ray catalogs exist with large sky coverage overlapping the DR7

survey area. Follow up optical examination is frequently performed on these catalogs to

confirm their identity as clusters and is required to obtain redshifts.

Matching complications likewise arise when comparing to X-ray catalogs. It is not

always the case that the BCG lies exactly on the X-ray peak. There also exists significant

scatter in the x-ray luminosity-richness relation (Rykoff et al. 2008). Furthermore, the

DR7 catalog contains clusters down to a richness threshold much lower then current x-ray

catalogs can detect. The main goal of this subsection is to test the extent to which our

algorithm is able to identify the most luminous x-ray clusters.

We compare the DR7 catalog to three x-ray identified cluster catalogs: NORAS

(Böhringer et al. 2000), REFLEX (Böhringer et al. 2004) and 400 deg2 (Burenin et al.

2007). NORAS and REFLEX consist of clusters identified from extended sources on the

ROSAT all-sky survey x-ray maps. Together they cover the northern and southern galactic

caps and are flux limited at 3× 10−12 ergs s−1cm−2 in the 0.1 - 2.4 KeV energy band. The

400 deg2 catalog is composed of serendipitous clusters found in the high galactic latitude

ROSAT pointings. It is flux limited at 1.4 s−1cm−2 in the 0.5 - 2.0 KeV energy band.
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Sources from all three catalogs have been confirmed as clusters through follow up optical

identification. Combining these catalogs yields 229 unique clusters in the survey area

spanned by DR7.

A cylindrical search is performed on the combined x-ray catalogs in order to determine

if these clusters were found by the GMBCG algorithm, effectively a completeness test

of GMBCG. We consider two clusters a match if they have a physical separation in the

projected plane sep < 2.0 Mpc and a redshift difference |zxray − zphoto| < 0.05. By this

criteria, 227 out of 229 X-ray clusters are matched with at least one GMBCG cluster. In

Figure 17, we show the images of the two non-matched X-Ray clusters. For the GMBCG

clusters, the higher the richness and clustering strength, the more likely they are true

clusters. Recalling that the shorter the matching separation, the higher probability of a true

match, in Figure 18 we show the contour plots of the matching ratio in terms of separation

and cluster richness and clustering strength. The results confirm high completeness: we can

reliably recover about 90% of the X-Ray clusters with separation less than 0.5 Mpc and

richness greater than 8.)

6. Discussion

In this paper, we present a new cluster finding algorithm, GMBCG, and publish the

largest ever optical cluster catalog, with more than 55,000 rich clusters. GMBCG identifies

galaxy clusters by detecting the BCG plus red sequence feature that exists only in galaxy

clusters and is not possessed by field galaxies. This feature provides a powerful means

for detection of galaxy clusters with minimal line-of-sight projection contamination. The

effectiveness of this algorithm is based on the assumption that a BCG plus red sequence

feature is “universal” among galaxy clusters. Though this feature is preserved in almost all

clusters known to us, we cannot exclude the possibility that there are some clusters that do
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not have this feature. In particular, this is more likely at very high redshift where clusters

are forming. However, even if such “blue” clusters exist, it will be very challenging to detect

them using photometric data in optical bands in a consistent way across a range of richness

values.

The GMBCG algorithm uses the BCG’s photo-z to determine the metric aperture

size, and uses the red sequence color to select member galaxies. It separates the process of

getting photo-zs and detecting clusters. This differentiates it from matched filter algorithms

(including maxBCG). For the SDSS data the precision of the photo-zs for the BCGs from

the machine learning algorithms are within a factor of 2 of the photo-z’s from maxBCG,

which means there is not a serious disadvantage in this choice. Using existing photo-zs

significantly boosts the computation efficiency. GMBCG can produce a cluster catalog for

the full SDSS DR7 within 23 hours on a DELL computer with a single quad core CPU and

8G RAM. As long as the photo-z is not catastrophically bad, GMBCG can detect the BCG

plus red sequence feature of clusters; though richness measurements may be affected by

imprecise redshift estimates.

It is worth noting that for cosmological application, we generally want to know the

best mass proxy. Recent work has shown that weighted richnesses are among the best

optical mass proxies, rather than the direct counts of member galaxies (Rozo et al. 2008).

However, this does not mean that we should abandon the direct member galaxy count and

identification. On the contrary, it will be very interesting to have the member galaxies

explicitly determined for cluster science, i.e., the formation and evolution of clusters.

Though GMBCG works very well for the current SDSS DR7 data, there is still room

for improvement, especially for deeper data. For example, GMBCG does not work well

for very low richness clusters, say richness less than 4 for SDSS DR7 data. This is mainly

because GMM/ECGMM will not reliably detect the red sequence at such low richness.
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GMBCG relies on the good photo-zs for BCGs, which may be risky at very high redshift

where photo-z precision is not guaranteed. The current GMBCG implementation relies on

the photo-z to decide the color to search for the red sequence. This is not a serious issue

for the current data set, but will be preferable to perform a more comprehensive analysis on

color space spanned by all colors. These are beyond the scope of this paper and additional

improvements are left to future work on deeper data, such as SDSS co-added data and the

incoming Dark Energy Survey data (The Dark Energy Survey Collaboration 2005).
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Fig. 8.— Richness (N scaled
gal ) before and after the re-scaling. This demonstrates that rescaling

removes much of the difference in richness measurements between the g-r and r-i bands.
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Fig. 9.— Density contour of BCGs in the space of luminosity weighted and non-luminosity

weighted clustering strength. Blue contours show the results for all candidate BCGs. The

green region shows cuts applied to candidate BCGs, as described in §4.2.1, which removes

bright stars that pass the star/galaxy separation in the SDSS data processing pipeline.
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Fig. 10.— Sky coverage in the GMBCG public catalog based on SDSS DR7. Each point

shows the position of one cluster on the sky.
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Fig. 11.— Redshift and richness distribution of GMBCG clusters in the public catalog. Left

panel shows the redshift distribution of clusters, cut at 0.1 < photo− z < 0.55. Right panel

shows the scaled richness distribution, GM scaled Ngals, for clusters with GM scaled Ngals

> 8.
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Fig. 12.— Sample cluster images from SDSS DR7 cluster catalog. The BCG spectroscopic

redshift is given in green.

Fig. 13.— The difference between photo-z and spec-z for the BCGs in the public catalog.
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Fig. 14.— The bimodal distribution of red sequence galaxy colors and background/blue

galaxies. The results are based on the average results of clusters falling in each redshift bin

as indicated in the plots. The green vertical lines are the 2σ clip of the red sequence peak.
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Fig. 15.— The completeness and purity of the GMBCG catalog based on the Monte Carlo

catalog. In the completeness plot, Ngal is the number of member galaxies of our input model

clusters. In the purity plot, N scaled
gal is the number of member galaxies measured by the

cluster finder. Since there are residual red galaxies in the catalog before we put clusters in,

the measured cluster richness (N scaled
gal ) is generally higher than our input richness
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Fig. 16.— Left panel is the contour of matching fraction of the maxBCG clusters to the

GMBCG clusters as a function of richness (Ngals R200) and separations. In the right panel,

we show the matching results from the control catalog of random positions.

Fig. 17.— Two non-matched X-Ray clusters. The cluster on right panel actually has a BCG

identified in the GMBCG catalog, but it is not recorded as a match because of the photo-z

of the BCG is assigned as 0.549, falling outside of our redshift matching envelope.
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Fig. 18.— Contour of the matching ratio to ROSAT clusters for different separation and

richness/clustering strength. The percentages are calculated by the ratio of the matched

clusters with matching separation less than the point on the contour while richness/clustering

strength greater than the point on the contour.
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