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Abstract

Courant-Snyder (CS) theory for one degree of freedom has recently been generalized by Qin

and Davidson to the case of coupled transverse dynamics with two degrees of freedom. The

generalized theory has four basic components of the original CS theory, i.e., the envelope equation,

phase advance, transfer matrix, and the CS invariant, all of which have their counterparts in

the original CS theory with remarkably similar expressions and physical meanings. In this Brief

Communication, we further extend this remarkable similarity between the original and generalized

CS theory, and construct the Twiss parameters and beam matrix in generalized forms for the case

of a strong coupling system.
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In recent papers [1, 2] Qin and Davidson generalized the Courant-Snyder theory [3–5] for

one degree of freedom to the case of coupled transverse dynamics with two degrees of freedom

using a time-dependent canonical transformation technique. Although there are several

alternative parametrization methods for coupled transverse dynamics, such as the Teng-

Edward parametrization [6–8], the Mais-Ripken parametrization [9–12], the normal-form

method [13], and the Solution by LInear Matrices (SLIM) formalism [14], the Qin-Davidson

parametrization is noteworthy in the sense that it retains the four basic components of

the original Courant-Snyder theory, i.e., the envelope equation, phase advance, transfer

matrix, and the Courant-Snyder invariant, with remarkably similar expressions and physical

meanings to their counterparts in the original Courant-Snyder theory. This feature provides

a formulation closer in structure to the original Courant-Snyder theory, and enables one to

deal with more complicated coupled dynamics in the context of the well-established Courant-

Snyder formalism.

In this Brief Communication, we further investigate this remarkable similarity between

the original and generalized Courant-Snyder theory, and construct the Twiss parameters

(α, β, and γ) and the beam matrix (σ) in generalized forms for the case of a strong coupling

system. The generalized Twiss parameters define the shape and orientation of the 4D rms

hyper-ellipsoid which characterizes the equilibrium beam distribution in 4D phase space.

Since all of the beam particles initially enclosed by the hyper-ellipsoid remain within that

boundary along the transport channel (due to Liouville’s theorem), we need only follow the

evolution of the second moments of the beam distribution (i.e., the beam matrix), without

tracking the trajectory of each individual beam particle [5]. Of course, other parametrization

methods have their own particular generalizations of the Twiss parameters. However, none

of them are explicitly derived from the envelope equation, which makes the extension of the

original Courant-Snyder theory not as straightforward as the formulation described here.

The general form of the Hamiltonian for the coupled transverse dynamics is given by

[1, 2]

Hc =
1

2
uTAcu, (1)

where

Ac =

 κ(s) R(s)

RT (s) I

 , (2)

2



κ(s) =

 κx κxy

κxy κy

 , (3)

and u = (x, y, px, py)
T . Here, the 2 × 2 matrix κ(s) is time-dependent and symmetric

(κ = κT ), R(s) is an arbitrary, time-dependent 2× 2 matrix, and I is the 2× 2 unit matrix.

The variable s is the path length that plays the role of a time-like variable. The super-

script “T” denotes the transpose operation of a matrix, and px(py) is the scaled canonical

momentum variable conjugate to the transverse coordinate x(y) relative to the reference

orbit. For a combination of all the linear components of a focusing lattice, i.e., the dipole,

quadrupole, skew quadrupole, and solenoidal components, we obtain in the torsion-free

curvilinear (x, y, s)-coordinate system [15]

κ(s) =

 Ω2 + κq + 1
ρ2x

κsq − 1
ρxρy

κsq − 1
ρxρy

Ω2 − κq + 1
ρ2y

 , (4)

R(s) =

 0 −Ω

+Ω 0

 , (5)

where κq is the quadrupole focusing coefficient, Ω is one-half of the normalized relativistic

Larmor frequency associated with the solenoidal lattice [16], κsq is the skew quadrupole

coefficient, and ρx(ρy) is the local bending radius in the x(y)-direction associated with the

dipole field. Note that all of the elements in the matrices κ(s) and R(s) are generally

time-dependent.

Applying the final results of the generalized Courant-Snyder theory obtained in Refs.

[1, 2] to the Hamiltonian in Eq. (1), we express the solution for the transverse dynamics in

terms of a time-dependent linear map from the initial condition u0, i.e.,

u(s) = Mcu0, (6)

where the transfer matrix Mc is given by

Mc = Q−1S−1P−1S0, (7)

Q−1 =

 QT
4 0

0 QT
4

 , Q4 =

 cos θ − sin θ

sin θ cos θ

 , (8)

S−1 =

 wT 0

w−1w′wT w−1

 , (9)
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P−1 =

 P T
1 −P T

2

P T
2 P T

1

 , (10)

S0 =

 (w−10 )T 0

−w′0 w0

 . (11)

Here, Q,S, P , and S0 are all symplectic matrices. Furthermore, θ′ = Ω is the rate of the

Larmor rotation phase, and w =

 w1 w2

w3 w4

 is the 2 × 2 envelope matrix satisfying the

following non-commutative matrix envelope equation [1, 2]

w′′ + wκ̃ = (w−1)Tw−1(w−1)T , (12)

with κ̃ = Q4κQ
−1
4 , and (w0, w

′
0) denotes the initial conditions at s = 0 for w and w′. The

prime denotes a derivative with respect to s. The 4D rotation matrix P−1 is determined

from the generalized phase advance equations

P ′1 = P2βI , P
′
2 = −P1βI , (13)

where βI = (wwT )−1 is the matrix phase advance rate. The generalized Courant-Snyder

invariant is

Ic = uTQTSTSQu, (14)

which is essentially the radius-squared of the 4D rotation in the normalized phase space

coordinates ū = SQu.

Now, we generalize the Twiss parameters by noting that, after a beam distribution reaches

an equilibrium by phase-space filamentation, the contours of constant phase-space density

become matched to the beam’s single-particle trajectories [17]. Using the fact that κ̃ is

symmetric, we rewrite the matrix envelope equation (12) in two parts according to

(wTw)′′ + κ̃(wTw) + (wTw)κ̃ = 2
[
(wTw)−1 + wT

′
w′
]
, (15)

w′′wT = wwT
′′
. (16)

To obtain Eq. (15), we operate on Eq. (12) with wT (· · · ) + (· · · )Tw. Similarly, Eq. (16) is

derived after operating on Eq. (12) with (· · · )wT −w(· · · )T . Due to the symmetric property

of the matrix equations, Eq. (15) gives three independent coupled differential equations,

whereas Eq. (16) gives only one. On the other hand, from the generalized form of the

4



Courant-Snyder invariant in Eq. (14), we note that the beam particle is moving along the

4D hyper-ellipsoid, which is determined in the Larmor frame [16] by the matrix

STS =

 (wTw)−1 + wT
′
w′ −wT ′

w

−wTw′ wTw

 . (17)

Comparing Eqs. (15) and (17), we define the generalized Twiss parameters according to

α = −wTw′, (18)

β = wTw, (19)

γ = (wTw)−1 + wT
′
w′. (20)

Here, the generalized Twiss parameters α, β, and γ are 2 × 2 matrixes, and β = βT and

γ = γT , while α 6= αT in general. The differential equation for the beta-function matrix β

becomes

β′′ +
[
(κ̃β) + (κ̃β)T

]
= 2γ, (21)

and the derivative of β yields

β′ = wT
′
w + wTw′ = −(α + αT ), (22)

both of which are non-commutative generalizations of their counterparts in the original

Courant-Snyder theory with remarkably similar expressions. Here, we define β = wTw,

which is different from the definition in Refs. [1, 2], where β was defined as the inverse of

the matrix phase advance rate, i.e., β = β−1I = wwT . Of course, for the uncoupled case,

wTw = wwT .

Equation (16) provides very valuable additional information. Integration by parts of Eq.

(16) yields

w′wT − wwT ′
= const.×

 0 1

−1 0

 , (23)

where the integration constant is arbitrary, and can be determined from the initial conditions

(w0, w
′
0). Since the time-dependent matrix S in Eq. (9) should be symplectic, we require

SJST = J with J =

 0 I

−I 0

 . This symplectic condition can be written explicitly as

w′wT = wwT
′
. (24)
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Therefore, the initial conditions should be chosen in such a way that const. = 0 in Eq. (23).

For the uncoupled case, on the other hand, it always holds that w′wT = wwT
′
. It should

be noted that Eq. (24) gives only one independent differential equation [see the explicit

expression in Eq. (27)], and cannot replace the matrix envelope equation. The condition in

Eq. (24) makes the expression for S−1 much simpler, i.e.,

S−1 =

 wT 0

w−1w′wT w−1

 =

 wT 0

wT
′
w−1

 , (25)

and readily gives the matrix version of the familiar relation between α, β, and γ, i.e.,

βγ = I + wTwwT
′
w′ = I + α2. (26)

It should be emphasized here that, when solenoidal magnetic fields are present, the particle

motion cannot be properly treated as a betatron motion (i.e., rotation around the reference

orbit) in terms of the phase-space variables in the laboratory frame [18]. Strictly speaking,

the above definitions of the Twiss parameters are meaningful only in the Larmor frame, in

which the beam particles are indeed making the betatron motion.

So far, we have constructed the Twiss parameters in the context of the generalized

Courant-Snyder theory. Once the matrix envelope equation (12) is solved, we can effec-

tively describe the 4D hyper-ellipsoid on which the trajectories of the beam particles lie. To

numerically integrate Eq. (12), we need to specify eight initial values, i.e., (w1, w2, w3, w4)0

and (w′1, w
′
2, w

′
3, w

′
4)0, which satisfy (w′wT −wwT ′

)0 = 0. In terms of the elements of w, this

condition can be expressed as

(w′1w3 + w′2w4 − w′3w1 − w′4w2)0 = 0. (27)

Therefore, we have indeed only seven unknown initial values. In a closed (or periodic) lattice

system, it is desirable to find periodically matched solutions for w to construct the Twiss

parameters. The periodic matching conditions are

(w1, w2, w3, w4)0 = (w1, w2, w3, w4)L, (28)

(w′1, w
′
2, w

′
3, w

′
4)0 = (w′1, w

′
2, w

′
3, w

′
4)L, (29)

where L is the lattice periodicity length. When w is the solution of the matrix envelope

equation (12), it follows automatically from Eq. (23) that

(w′1w3 + w′2w4 − w′3w1 − w′4w2)0

= (w′1w3 + w′2w4 − w′3w1 − w′4w2)L. (30)
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Hence, one of the eight constraints in Eqs. (28) and (29) is redundant, and only seven of

them are indeed independent.

It is interesting to note that the matrix envelope equation (12) admits an orthogonal

symmetry. Suppose that we have an arbitrary constant orthogonal matrix C, where CTC =

I. Operating on Eq. (12) with C(· · · ), and rearranging terms with I = CTC, readily give

Cw′′ + Cwκ̃ = C(w−1)Tw−1CTC(w−1)T

=
[
(Cw)−1

]T
(Cw)−1

[
(Cw)−1

]T
. (31)

If w is the solution of the matrix envelope equation (12), imposing the condition in Eq. (27)

and the periodic boundary conditions in Eqs. (28) and (29), then it follows automatically

from Eq. (31) that w̃ = Cw is also a solution that satisfies (w̃′w̃T − w̃w̃T
′
)0 = 0 and

(w̃, w̃′)0 = (w̃, w̃′)L. Indeed, this multiplicity of solutions is found in the original Courant-

Snyder theory as well. For example, the sign of the envelope function w is not determined

from the 1D envelope equation, but only the positive solution is used in calculations, for

convenience [5]. On the other hand, it should be emphasized that the matrix β = wTw =

wTCTCw = w̃T w̃ is unique for all the solutions of w in the same orthogonal group. In the

similar manner, we can readily show that the matched solutions for α and γ are also unique.

To describe the beam distribution in the 4D phase space, we now consider a multivariate

Gaussian in the following form

f(u) =
1

(2π)2
√

det(σ)
exp

[
−1

2
uTσ−1u

]
, (32)

where σ = 〈uuT 〉 is the beam matrix, and 〈· · · 〉 indicates the statistical average over the

beam distribution. For simplicity, we assume 〈u〉 = 0, i.e., any centroid offset is neglected,

or the coordinates are redefined with respect to the offset [19]. When an equilibrium state is

reached in the 4D phase space, we can further assume that the contours of constant phase-

space density are determined by a single invariant Ic. Of course, the general linear coupled

motion is characterized by two invariants in each eigenmode, and thus, two mode emittances

(not necessarily equal) are often used to describe an arbitrary beam distribution in 4D phase

space. For a strong coupling system, however, there are rapid changes in the orientation of

the eigenplanes themselves, in addition to the phase advance of the beam particles on each

eigenplane. In this case, it is a natural approximation to assume equipartitioning of energy

between the two degrees of freedom after many lattice periods, because of the phase-space
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filamentation (across the eigenplanes) associated with the nonlinear coupling terms [20],

nonlinear space charge effects [21], and some stochastic processes [22]. For this equilibrium

beam distribution, further emittance growth will be minimized, and the phase-space volume

occupied by the beam particles is scaled with a single emittance without changing the shape

and orientation of the hyper-ellipsoid. The rms hyper-ellipsoid is then determined by the

exp[−1/2] contour of the Gaussian distribution function f(u) [23]. By setting Ic equal to

the transverse rms emittance ε⊥ for the rms hyper-ellipsoid (which makes ε2⊥ =
√

det(σ) as

in the usual convention), we find

1 = uTσ−1u =
1

ε⊥
uTQT

 γ αT

α β

Qu,

and obtain the following expression for the beam matrix

σ = ε⊥Q
T

 γ αT

α β

−1Q. (33)

If Eq. (25) is applied, we find γ αT

α β

−1 =

 β −α

−αT γ

 , (34)

and thus obtain a remarkably similar expression for the beam matrix as in the the original

Courant-Snyder theory. Note that Eq. (34) is valid because w′wT = wwT
′
. We can readily

show that
√

det(σ) = ε2⊥, as expected, and the volume enclosed by a 4D rms hyper-ellipsoid

is V4D = (π2/2)
√

det(σ) = (π2/2)ε2⊥, and the so-called trace invariant [18] is calculated to be

I2 = −1
2
tr(JσJσ) = 2ε2⊥. We also note that Ic = ε⊥ only for the rms hyper-ellipsoid, while

the average of the generalized Courant-Snyder invariant over the entire beam distribution

is 〈Ic〉 =
∫∞
0
dIc(Ic/2ε⊥)2 exp [−Ic/2ε⊥] = 4ε⊥. Finally, we assemble all of the calculations

together into the following explicit form:

σ =


〈x2〉 〈xy〉 〈xpx〉 〈xpy〉

〈yx〉 〈y2〉 〈ypx〉 〈ypy〉

〈pxx〉 〈pxy〉 〈p2x〉 〈pxpy〉

〈pyx〉 〈pyy〉 〈pypx〉 〈p2y〉


= ε⊥

 QT
4 0

0 QT
4

 β −α

−αT γ

 Q4 0

0 Q4

 . (35)
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Here, we note that σ = σT , and the beam matrix at the initial position σ0 is related to σ by

σ = Mcσ0M
T
c . For experimental measurements [19], the beam matrix is often expressed by

the trace-space (geometrical) variables X = (x, y, x′, y′)T as

Σ =
〈
XXT

〉
= U−1σ(UT )−1, (36)

with u = UX and U(s) =

 I 0

R I

 . Note that the transformation U is not symplectic.

The (x, y)-plane is the most obvious projection which shows the beam cross section under

the influence of the coupling [15, 24]. In general, the beam cross section becomes tilted due

to the coupling, and the tilt angle varies along the beam transport channel. It can be readily

shown that the 4D rms hyper-ellipsoid is projected onto a tilted ellipse given by

(Q4u)Tβ−1(Q4u) = ε⊥. (37)

Therefore, the physical meaning of the beta-function matrix β is a description of the char-

acteristic boundary of the tilted beam in the configuration space of the Larmor frame. Note

that, in general, det(β) = [det(w)]2 6= const., which implies that the area of the beam cross

section is not invariant. Similarly, the alpha-function matrix α describes not only the usual

focusing and defocusing motions, but also the angular momentum induced by the coupling.

In this Brief Communication, by extending the generalized Courant-Snyder theory [1, 2],

we have constructed the Twiss parameters and beam matrix in generalized forms for the

case of a strong coupling system. The final expressions for the Twiss parameters (α, β, and

γ) and the beam matrix (σ) are remarkably similar to those of the original Courant-Snyder

theory, and can therefore provide a compact and practical framework for the design and

analysis of the beam transport channels with strong transverse coupling.
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