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Abstract

We propose a simple extension of the Standard Model (SM) by adding an extra

U(1) symmetry which is hidden from the SM sector. Such a hidden U(1) has not been

considered before, and its existence at the TeV scale can be explored at the LHC.

This hidden U(1) does not couple directly to the SM particles, and couples only to

new SU(2)L singlet exotic quarks and singlet Higgs bosons, and is broken at the TeV

scale. The dominant signals at the high energy hadron colliders are multi lepton and

multi b-jet final states with or without missing energy. We calculate the signal rates

as well as the corresponding Standard Model background for these final states. A very

distinctive signal is 6 high pT b-jets in the final state with no missing energy. For a

wide range of the exotic quarks masses the signals are observable above the background

at the LHC.
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1 Introduction

The Standard Model (SM) is now well established as the effective theory of the quarks,

leptons and the gauge bosons below the TeV scale. However, it is almost universally believed

that the SM is not the final theory. Many extensions of the SM have been proposed to solve

some of the shortcomings of the SM. Grand unified theories have been proposed to unify

the three gauge couplings into one. Supersymmetric extensions have been proposed to solve

the gauge hierarchy problem. A singlet Higgs boson, with a Z2 symmetry has been added

to the SM which can serve as a plausible candidate for dark matter [1]. One or more extra

space-like compact dimensions has been added to the usual four dimensions to incorporate

TeV scale as the fundamental scale of gravity [2], or to unify the gauge and Higgs bosons,

and as well as the fermions, and understand the Yukawa interactions as part of the gauge

interactions [3]. Most of these extensions involve new gauge interactions, commonly an extra

U(1), as well as new particles beyond the SM.

Many kinds of extra U(1) gauge symmetries have been considered. These include the left-

right symmetric model [4], SO(10) or E6 GUTs, superstring E6 models [5], topflavor models

[6], and string-inspired supersymmetric models.[7] In most of these models, the SM fermions

and the Electroweak (EW) Higgs boson carry non-trivial charges under the U(1). Other

variations of the extra U(1) symmetry, such as a hadro-phobic U(1), lepto-phobic U(1), and

an extra U(1) which couples only to the third family of fermions have been considered [5].

Hidden sectors of matter are ubiquitous among models due to the need to break super-

symmetry, as well as the common addition of particle dark matter which cannot be charged

under the Standard Model gauge groups unless it is very heavy.[8] An extra U(1) can be a

natural way to link the “dark” sector with the Standard Model.

In this work, we consider an extra U(1) symmetry [9] in which the SM particles (the

SM fermions, gauge bosons and the EW doublet Higgs bosons) are neutral. We call this a

hidden extra U(1) [9]. Only new exotic quarks, and the EW singlet Higgs bosons couple

to this extra U(1) gauge boson. These exotic quarks and the EW singlet Higgs bosons act

as messenger particles between the hidden U(1) sector and the SM sector. This extra U(1)

symmetry is broken at the EW scale by the vacuum expectation value (VEV) of the EW
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singlet Higgs boson. Thus this extra gauge boson, the exotic quarks, and the singlet Higgs

boson all acquire masses at the EW scale, and can be searched for at high energy colliders,

such as the Tevatron and the LHC. The dominant signals of our scenario at the hadron

colliders are multi-b and multi-lepton final states, with little or no missing energy.

2 The Hidden U(1) Model

Our gauge symmetry is the usual Standard Model SU(3)C ×SU(2)L ×U(1)Y supplemented

by an extra U(1) symmetry, which we call U(1)′. We introduce two exotic quarks DL and DR

which are color triplets and singlets under the SU(2)L gauge symmetry, but charged under

the U(1)Y . We denote the gauge boson for the U(1)′ by Z ′. We also introduce a complex

Higgs field S which is a color and EW singlet, and has a charge q′ under the U(1)′. This

singlet Higgs field has a VEV vS at the TeV or EW scale, and breaks the U(1)′ symmetry.

The Lagrangian for the gauge part of the interaction for the exotic D quark is given by

the usual gauge interaction under the SU(3)C symmetry with the gauge coupling g3. The

EW and U(1)′ interactions of the matter fields with the gauge bosons can be obtained from

the Lagrangian:

L = qiLi /D2q
i
L + ℓL

i
i /D2ℓ

i
L + ui

Ri /D1u
i
R + d

i

Ri /D1d
i
R + eiRi /D1e

i
R +Di /D′

1D (1)

where qL, ℓL are the SU(2)L quark and lepton doublets while uR, dR, eR, and D are the

SU(2)L up-, down-quark, lepton and exotic quark singlets, respectively. The different co-

variant derivatives are defined as

D2µ = ∂µ − i
g2
2
τ ·Wµ − i

g′

2
Y Bµ,

D1µ = ∂µ − i
g′

2
Y Bµ,

D′
1µ = ∂µ − i

g′

2
Y Bµ − igz′Yz′Z

′
µ,

(2)

where τ ’s are the Pauli matrices; Y , Yz′ are the charges of the matter fields under the U(1)Y

and the new gauge group U(1)′ respectively; while Z ′ represents the new gauge boson.

The Higgs potential, with the usual doublet Higgs H and the EW singlet Higgs S, is

V (H,S) = −µ2
H(H

†H)− µ2
S(S

†S) + λH(H
†H)2 + λHS(H

†H)(S†S) + λS(S
†S)2. (3)
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We can also write a mass term for the vector-like quark,

Lmass = MDDLDR. (4)

Note that the new exotic vector-like quark D is like a new flavor, and it has color, hyper-

charge, and an extra U(1)′ interaction, but no SU(2)L interaction. Since this new D quark

is vector-like with respect to both U(1) as well as U(1)′, the model is anomaly free. Without

any other interaction, the D quark will be stable. As none of the SM particles are charged

under the new U(1)′ symmetry, the new symmetry will remain hidden from the SM, provided

the gauge-kinetic-mixing terms are strongly suppressed. However, its gauge quantum num-

bers allow flavor changing Yukawa interactions with the bottom, strange, and down quarks

via the singlet Higgs boson S.

LExtra Yukawa = YDbDLbRS + YDsDLsRS + YDdDLdRS + h.c. (5)

Note that in order the above Lagrangian to be hypercharge singlet, the hypercharge of both

DL and DR must be equal to that of bR. This also requires that the U(1)′ charge (Yz′) for

the exotic quark D must satisfy Yz′ = q′. Such a term in the Lagrangian leads to mixing

between the down-type quarks with the new exotic vector-like quark D, giving rise to EW

decay modes for the heavy quark.

We assume that the parameters in the Higgs potential are such that H has VEV at the

electroweak (EW) and S has a VEV around the TeV scale. Then, in the unitary gauge, we

can write the H and S fields as

H(x) =
1√
2





0

vH +H0(x)



 , S(x) =
1√
2
(vS + S0(x)), (6)

where vH is the VEV of the doublet Higgs, and vS is the singlet VEV. From the minimization

of the Higgs potential, we obtain,

v2H =
µ2
H − λHS

2λS
µ2
S

λH − λ2

HS

4λS

, v2S =
µ2
S − λHS

2λH
µ2
H

λS − λ2

HS

4λH

. (7)

The scalar mass-squared matrix in the (H0, S0) basis is given by

M2 =





2λH v2H λHS vH vS

λHS vH vS 2λS v
2
S



 . (8)
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The masses of the two mass eigenstate Higgs scalars φH and φS as well as their mixing angle

β, in terms of the fundamental parameters of the Lagrangian, can be obtained from the

above mass matrix. In particular, the mixing angle β is given by

tan 2β =
λHSvHvS

λSv2S − λHv2H
. (9)

In addition to the usual gauge interaction for the H0 and S0, the interaction among the

Higgs from the potential V (H0, S0) after symmetry breaking is given by

V (H0, S0) = λHvHH0
3 +

λHSvS
2

(

H0
2S0 +H0S0

2
)

+ λSvSS0
3

+
λH

4
H0

4 +
λHS

4
H0

2S0
2 +

λS

4
S0

4.

(10)

The interaction among the Higgs mass eigenstates φH and φS can be obtained by using

H0 = φH cos β + φS sin β, S0 = −φH sin β + φS cos β. (11)

To explore the phenomenological implications of the model, we need to consider the

various mixings which lead to the effective interaction of these exotic particles to SM particles

and are responsible for their decays. We have already considered the mixing in the scalar

sector of the model which has interesting consequences for Higgs searches at colliders such

as LHC [10]. We also find that by allowing the Yukawa interactions given in Eq. 5, there

will be mixing between the down-type quarks with the new exotic quark D once the scalar

S gets a VEV. The mixing between the down-type quarks with the exotic D quark gives

rise to EW decay modes for the heavy quark. The heavy Z ′ also has additional interactions

which lead to interesting decay modes.

For simplicity, we assume that only YDb is non-zero in Eq. 5 while the other Yukawa

coefficients are negligibly small. This would imply that the exotic quark mixes only with

the bottom quark, thus indirectly affecting the top-bottom vertex (Vtb in the CKM matrix)

as well as inducing a coupling between the exotic D quark with the top quark. The mixing

can be parametrized in terms of two mixing angles θL and θR which represent the mixing

angles of the bL and bR with DL and DR respectively. Expressing the gauge eigenstates for

the mixing quarks as b0 and D0, the mass matrix in the (b0, D0) basis is given by

M =





yb vH/
√
2 0

YDb vS/
√
2 MD



 . (12)
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This matrix can be diagonalized with a bi-unitary transformation Mdiag = RLMR†
R, where

RL andRR are unitary matrices which rotate the left-chiral and right-chiral gauge eigenstates

to the mass eigenstates respectively. The interaction of the physical mass eigenstates (b,D)

can then be obtained by writing the gauge basis states as

b0i = bi cos θi +Di sin θi, D0
i = −bi sin θi +Di cos θi. (13)

The rotation matrices Ri are given by

Ri =





cos θi sin θi

− sin θi cos θi



 , where i = L,R. (14)

The corresponding mixing angles for the left- and right-handed fields follow from diagonal-

izing the matrices MM† and M†M respectively and are given by

tan 2θL =
−2 YDb yb vS vH

2M2
D + Y 2

Dbv
2
S − y2bv

2
H

, tan 2θR =
−2

√
2YDb vS MD

2M2
D − Y 2

Dbv
2
S − y2bv

2
H

. (15)

3 Phenomenological Implications

In hadronic colliders such as the LHC and Tevatron, the dominant signals arise from the pair

productions of the exotic colored quarks, D and D, and their subsequent decays (because

D has hypercharge, the LEP2 bound of ∼ 100 GeV on its mass applies [11]). The other

important production process is the pair productions of the exotic quark in association with

the new U(1)′ gauge boson, DDZ ′. It turns out that this is the only way the new gauge boson

Z ′ can be produced on-shell at LHC because of its very suppressed or vanishing couplings

to the SM particles in this model. In the following subsections we discuss the signals from

the DD production. We also discuss the couplings of the extra gauge boson Z ′ with the SM

particles.

3.1 Signals from DD Productions

The heavy exotic quarks being colored particles will be produced copiously at the LHC

through strong interactions. The major contribution, as in the case of top quarks, would
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Figure 1: Pair production cross section for the exotic quarks at LHC as a function of its

mass (mD). We use the CTEQ6L1 parton distribution functions (PDF) [12] for the protons.

We have set the scale Q2 = m2
D.

come from the gluon induced subprocess (∼ 80%). In Fig. 1 we plot the pair production

cross section for the process

pp −→ DD (16)

at LHC for two different center-of-mass energies (7 TeV and 14 TeV). The figure clearly shows

that one can have quite large production cross section for such an exotic quark at the LHC

and its signals should be observable through its decay products. We have implemented the

model into CalcHEP [13] to calculate the production cross sections as well as the two-body

decays of the new particles in the model.

The heavy quark in the gauge eigenbasis couples directly to the Z ′ gauge boson through

the U(1)′ charge, with the gauge coupling strength gz′. However, its decay is more dependent

on the mixing parameters resulting from its mixing with the b quark, leading to a much richer
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phenomenology. The heavy exotic itself is a mixed mass eigenstate and we list its couplings

to the other particles of the model in Table 1.

The two body decay width for D of mass mD, in its rest frame can be written down as

Γ(D → X2X3) =
1

16πmD

λ1/2

(

1,
m2

X2

m2
D

,
m2

X3

m2
D

)

|M|2 (17)

where the function λ(x, y, z) = x2 + y2 + z2 − 2(xy+ yz+ zx). Using the effective couplings

given in Table 1, one can write down the explicit decay amplitudes for the exotic quarks

decaying into vector (V ) and scalar (Φ) modes.

|M|2(D → fV ) = K2

[

3

(

m2
D +m2

f − 2m2
V +

(m2
D −m2

f )
2

m2
V

)

(c2V + c2A)

−18mDmf (c
2
V − c2A)

]

|M|2(D → fΦ) = K2
[

3
(

m2
D +m2

f −m2
Φ

)

(c2S + c2P ) + 6mDmf (c
2
S − c2P )

]

(18)

We can now estimate the decay probabilities of the heavy exotic D quark. To highlight

distinct scenarios, we choose two different sets of input values for the free parameters as

representative points in the model listed in Table 2. Note that the input parameters for

the model also affect some EW observables, e.g. the Z boson decay width or the mass

limits for Higgs boson and other heavy exotics that appear in our model. We have checked

that the input parameters given in Table 2 are allowed and do not contradict any existing

experimental bounds [11]. In Fig. 2 we present the decay branching ratios (BR) of the heavy

quark D as a function of its mass (mD) for the representative points I & II given in Table 2.

The curves in Fig. 2(a) represent Point-I from Table 2. When D is lighter than mt + MW

then it always decays to Z b through mixing if its coupling to the lighter Higgs boson is

very suppressed. This would happen when the lighter scalar state is dominantly an SU(2)

doublet. The tW− mode starts picking up and becomes comparable to the Z b mode for

heavier D. tW− is a common decay mode in 4th-generation models and theories with top

or bottom partners as studied in Ref.[14] and results in multi-lepton signals.

The curves in Fig. 2(b) represent Point-II, where the choice of parameters give a very sup-

pressed mixing angle θL. The couplings of Z b and tW to the exotic quark are proportional

to sin θL and hence also get suppressed. As soon as the scalar modes become kinematically

accessible, they completely dominate the decay properties of the exotic quark.
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K cV cA

bbZµ
e

12 sin 2θW
4 cos 2θW + 3 cos 2θL − 1 3(1 + cos 2θL)

DDZµ
e

12 sin 2θW
4 cos 2θW − 3 cos 2θL − 1 3(1− cos 2θL)

bDZµ
−e

4

sin 2θL
sin 2θW

1 1

bbZ ′
µ

gz′Yz′

4
cos 2θL + cos 2θR − 2 cos 2θL − cos 2θR

DDZ ′
µ

−gz′Yz′

4
cos 2θL + cos 2θR + 2 cos 2θL − cos 2θR

bDZ ′
µ

−gz′Yz′

4
sin 2θL + sin 2θR sin 2θL − sin 2θR

tb W+
µ

−e cos θL

2
√
2 sin θW

1 1

tD W+
µ

e sin θL

2
√
2 sin θW

1 1

K cS cP

bbφH
cos θR√

2
yb cos β cos θL + yDb sin β sin θL 0

DDφH
sin θR√

2
yb cos β sin θL − yDb sin β cos θL 0

bbφS
− cos θR√

2
yb sin β cos θL − yDb cos β sin θL 0

DDφS
− sin θR√

2
yb sin β sin θL + yDb cos β cos θL 0

bDφH
1

2
√
2

yDb sin β cos(θL + θR)

− yb cos β sin(θL + θR)

yDb sin β cos(θL − θR)

− yb cos β sin(θL − θR)

bDφS
1

2
√
2

yDb cos β cos(θL + θR)

+ yb sin β sin(θL + θR)

yDb cos β cos(θL − θR)

+ yb sin β sin(θL − θR)

Table 1: The effective coupling of the exotic D quark with the other particles in the model. The

electromagnetic coupling with photon and the strong coupling with gluon is the same as any down-

type quarks in the SM. Couplings are of the form Kγµ(cV − cAγ
5) and K(cS − cP γ

5). Note that

we have put Vtb = 1.
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Parameters I II

(λH , λS, λHS) (0.11, 0.16, 0.005) (0.2, 0.05, 0.1)

vS 1000 GeV 800 GeV

YDb 0.15 0.05

mφH
115 GeV 127 GeV

mφS
566 GeV 268 GeV

mZ′ 1000 GeV 800 GeV

Table 2: Representative points in the model parameter space and the relevant mass spectrum

used in the analysis.
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(a) Parameter Set I (b) Parameter Set II

Figure 2: Illustrating the decay probabilities of the D quark as a function of its mass mD.

We find if the Z ′ boson is light, then as soon as the D → Z ′b mode opens up, the

remaining modes drop out very quickly for Point-I while for Point-II it becomes comparable

to the scalar mode for very large mass mD. It is worth pointing out here that the dominant

decay mode for the Z ′ when mZ′ < mD is to bb̄ with 100% branching probability. However
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Figure 3: Illustrating the decay probabilities of the Z ′ as a function of its mass mZ′ .

for Z ′ heavier than D the dominant decay of Z ′ is to Db̄ and D̄b as shown in Fig. 3; and

as soon as mZ′ > 2 mD it decays dominantly to D̄D with maximum probability. We should

also point out that the Z ′ phenomenology in our model is quite different from other models

with U(1) extension of the SM. As there exists no coupling between any SM fermion pair

Branching Ratios Branching Ratios

Decays I II Decays I II

φH → bb̄ 0.672 0.510 φS → φHφH 0.25 0.27

φH → cc̄ 0.031 0.024 φS → W+W− 0.42 0.51

φH → τ+τ− 0.093 0.072 φS → ZZ 0.20 0.22

φH → gg 0.104 0.096 φS → tt̄ 0.13 –

φH → WW ∗ 0.088 0.266

Table 3: Branching Ratios for various Higgs decay modes for parameter sets I and II.
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(other than b quark) or with the EW gauge bosons (no kinetic mixing), it is not possible

to produce this particle directly through exchange of SM particles at LEP or Tevatron and

so the strong constraints that exist on the mass of similar Z ′ exotics through the effective

four-fermion operators [15] do not apply in our case and neither do the search limits from

the Tevatron experiments [16]. Thus the Z ′ in our model can be light but remain invisible in

the existing experimental data. We will however not discuss the Z ′ signals any further and

only focus on the signals arising from the production of the exotic D quarks in the model.

To understand the full decay chain of the D quark to final state particles we also list the

decay probabilities of the scalars φH and φS in Table 3 for the two representative points I &

II.

Thus the above decay patterns suggest that one can have the following interesting final

states from the decay of the exotic quarks

pp → DD →



























































































(Zb)(Zb̄) =⇒ bb̄+ 2Z

(tW−)(t̄W+) =⇒ tt̄ +W+W−

(tW−)(Zb̄) =⇒ tb̄+ ZW−

(φHb)(φH b̄) =⇒ bb̄+ 2φH → bb̄+ 2(W+W−)

(φHb)(φH b̄) =⇒ bb̄+ 2φH → 3(bb̄)

(φSb)(φS b̄) =⇒ bb̄+ 2φS → 3(bb̄)

(φHb)(φS b̄) =⇒ bb̄+ φHφS → bb̄+ 3φH → 4(bb̄)

(φSb)(φS b̄) =⇒ bb̄+ 2φS → bb̄+ 4φH → 5(bb̄)

(19)

where the first four suggest multi-lepton and multi-jet final states with two or more b-jets,

while the remaining give more exotic signatures like N b-jet final states where N can be as

large as 10. Note that the above decays only illustrate some of the possible decay chains

and we have not listed other possible combinations of the D decays which can also lead to

similar final states.

In Table 4 we list the probabilities for the decay modes for a few specific values of the D

quark mass. We also show the corresponding cross sections for the pair production of these

exotics at LHC for the center of mass energies of
√
s = 7 TeV and

√
s = 14 TeV. The decays

11



Branching Ratios

mD

σ(DD̄)(pb) D → tW D → bZ D → bφH D → bφS

7 TeV 14 TeV I II I II I II I II

250 12.15 87.760 0 0 0.603 0.055 0.397 0.945 0 0

300 4.265 34.368 0.251 0.014 0.438 0.024 0.311 0.715 0 0.247

400 0.791 7.692 0.381 0.005 0.351 0.005 0.268 0.308 0 0.681

500 0.194 2.270 0.434 0.003 0.316 0.002 0.250 0.225 0 0.770

600 0.059 0.820 0.121 0.002 0.078 0.001 0.063 0.194 0.738 0.803

Table 4: Cross sections and branching probabilities for specific mass values of D quark for

the representative points I and II.

suggest a large multiplicity of b quarks in the final state. It turns out that six-b final states

for the signal is very promising. However, there exists no estimate for this final state in the

literature, arising from the SM. We present below a leading-order (LO) estimate of the cross

section for the six-b SM background from QCD for LHC energies.

3.2 Calculation of Six-b Final States from QCD

The six-b final state is interesting, independent of our particular model. The presence of six

b jets allow the jets to be tagged. All other 6-jet final states involve mixtures of light quarks

and gluons, and one cannot separate light jets from gluon jets. Therefore the six-b final

state itself presents an interesting test of QCD. Furthermore by computing the full Matrix

Element, we can test the validity of the differential cross section by looking at differential

observables. While we only use the six-b cross section as a background to our signal, this

is the first time such a six-b cross section in QCD has been estimated, and this also is an

important result of this paper.

Any six-final state process is a challenge to compute. The phase space is 20 dimensional,

there are thousands of diagrams, and thousands of distinct color configurations. While six-
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jet final states are produced every day by Monte Carlo generators such as PYTHIA [17]

and HERWIG [18], the mechanism they use creates additional jets from an initial 2 → 2 or

2 → 3 process via a showering procedure that resums leading logarithms, splitting an extra

gluon from the hard final state partons.

As is well known, the showering procedure cannot produce the correct correlations among

3 or more hard jets, nor can it compute the total cross section for 3 or more hard jets. It

assumes that each parton is independent of all the others. For a single radiation it is

strictly correct in the limit that the extra radiation is soft and/or collinear with the inital

parton. However for multiple radiations it ignores the QCD connection among the radiations,

assuming that each radiation factorizes from the others. There is also quantum mechanical

interference in different radiations which result in the same final state that is ignored.

This means that one should not examine in detail observables such as the angles between

jets, invariant masses of jet pairs, or the thrust, when one hard jet came from the showering

procedure. This showering technique is however extremely useful as long as one is not

sensitive to the details of correlations in the differential cross section, as this method is

computationally simpler than a full Matrix Element calculation.

Therefore to have an accurate Monte Carlo with six jets in the final state, one must

compute the full Matrix Element, which automatically includes all color flows and interfer-

ence. This is accurate to approximately the 10% level, at which point NLO loop corrections

become important. Note that due to the b quark mass, there is no soft radiation which

benefits significantly from the usual Sudakov logarithm resummation. The b mass acts as a

regulator, relegating this cross section strictly into the “hard” regime, in which the Matrix

Element is valid. Even if all six b’s are at rest, the energy in the final state is 30 GeV, and

any virtual gluon must have a virtuality q2 ∼ 10 GeV.

For this calculation we have chosen the tool MadEvent, which is an event generator built

upon the Matrix Element generator MadGraph [19]. We have modified these tools to be able

to cope with thousands of diagrams and thousands of color configurations. Computing 5 and

6 final state QCD processes has a number of challenges, all of which are technical rather

than physics-based. MadEvent is in principle capable of computing any process with any
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number of final state particles, however several internal restrictions caused previous versions

to fail on processes such as 6 b’s. Although the program is equipped to handle the large color

configurations, some input/output statements restrict this computation to a smaller number

of color flow configurations which makes it incapable of calculating the six b final states at a

hadron machine like the LHC. These have been repaired to calculate the six b cross section

in the SM from QCD at the LHC.

3.3 Signal and Background Analysis

A simple minded estimate of the cross section using σ×BR shows that the final states which

would be of interest at the LHC would involve at least 2 b-jets in the final state. Besides

the two hard b-jets, one expects charged leptons in the final state coming from the decays

of the weak gauge bosons. It is also worth noting that when the D quark decays to the

Higgs bosons, one would get a large multiplicity of b-jets in the final states as the Higgs with

MφH
< 2MW dominantly decays to b-jets. To select our events for the final states given in

Table 5, we have imposed the following kinematic cuts:

• All the b-jets must have a pbT > 20 GeV and lie within the rapidity gap of |ηb| < 3.0.

• All charged leptons (ℓ = e, µ) must have a pℓT > 20 GeV and lie within the rapidity

gap of |ηℓ| < 2.5.

• The final states also must satisfy ∆Rbb > 0.7, ∆Rbℓ > 0.4, and ∆Rℓℓ > 0.2 where

∆Rij =
√

(∆ηij)2 + (∆φij)2.

• All b-jet pairs must have a minimum invariant mass Mbb > 10 GeV.

In Table 5 we present the cross-sections for the signal for two different mass values of the

exotic D quark after passing through the above mentioned kinematic cuts. As expected,

the favored final states are dependent on the high b-jet multiplicity. At the hadron collider

such as LHC, one favors final states with leptons. However b-jets can also be triggered upon

and identified and thus can prove to be useful in isolating new physics signals such as ours

which involve at least two or more b-jets. Looking at Table 5 we find that we get a good
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mD = 300 GeV mD = 500 GeV

Final
√
s = 7 TeV

√
s = 14 TeV

√
s = 7 TeV

√
s = 14 TeV

States I II I II I II I II

6b+X 181.92 718.79 1394.32 5521.23 4.94 10.79 531.10 115.02

nb+ ℓ+X (n ≥ 2) 452.50 188.22 3559.94 1465.42 32.17 27.88 43.37 313.96

2b+ 2ℓ+X 146.53 14.95 1127.15 117.08 8.71 6.61 11.77 75.56

4b+ 2ℓ+X 51.07 24.36 384.24 183.73 1.85 2.06 20.33 22.20

Table 5: Illustrating the final state cross sections after the decay of D quarks. All cross

sections are in units of femtobarn (fb).

signal rate for the inclusive 6b + X final state. The SM background for multi-b final state

is quite large [20]. However no estimate of a 6b final state exists in the literature, which we

find relevant for our signal. We have used the Madgraph+MadEvent package to estimate the

leading order partonic cross section for the 6b final state at LHC. With the above mentioned

kinematic cuts, we find that for LHC energy of
√
s = 14 TeV, the SM background for 6b

final state is ∼ 70 fb and falls to less than 10 fb for the
√
s = 7 TeV option. This implies

that the signal in our model is much larger than the SM background even for larger mass

values of the exotic D quark. The other signals which are worth looking for in this model is

one or two charged leptons with varying b-jet multiplicities. We have listed the interesting

ones in Table 5. The final state with 2ℓ+4b+X also stands out against the SM background,

where one gets the SM cross sections to be quite small as it is already αEW/αs suppressed

compared to the 6b cross section. The SM background is much larger for the final states

ℓ+ nb+X where n = 2 and 2ℓ+ 2b+X , where the significant SM background results from

the tt̄ production. For the final states ℓ+ nb+X one can get rid of the huge tt̄ background

by demanding n ≥ 3. This helps in improving the significance of the signal, even though

we also lose a large fraction of the signal events in the process. For the other final state, we

find that at leading order, at LHC with pp collision energy of
√
s = 7 TeV, the 2ℓ+ 2b+X
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SM background is ∼ 3.3 pb. As the leading two b-jets in our signal come from the decays of

the heavy exotic D quark, we put a stronger pT cut of 100 GeV. This reduces the signal by

two-thirds. However the SM background is reduced by more than an order of magnitude,

and becomes ∼ 232 fb for
√
s = 7 TeV collisions while it is ∼ 1.63 pb for

√
s = 14 TeV which

does look promising for the signal with large enough luminosities at the LHC. We must point

out that we have not incorporated any efficiency factors for our final state particles. Most

notably, all numerical estimates involving b-jets for signal as well as the SM background will

have to be scaled with the b-tagging efficiency of around 50-60% expected at the LHC [21].

4 Summary and Conclusions

In this work, we have proposed a new extension of the SM, by introducing a hidden U(1)′

symmetry. The difference with the previously studied U(1)′’s is that all the SM particles are

singlets under our proposed new U(1)′, and hence hidden. Such a symmetry may be present

at the TeV scale, and may manifest at the LHC giving new signals observable at the LHC.

The model incorporates a new EW singlet Higgs, as well as new vector-like charge −1/3

quarks. We have studied the pair productions of these new quarks and their subsequent

decays. The dominant final states include multiple b jets with high pT , or b jets plus charged

leptons with high pT and missing energy, and stands out beyond the SM background. The

most distinctive final state signal is the 6b quark with high pT and no missing energy. A lot

of effort have been put in both for the ATLAS and CMS detectors to improve the b-tagging

efficiency. So the calculation for this 6b final state is also of great importance in the SM, and

has not yet been calculated. We have calculated this 6b signal in our model, and have also

estimated the SM expectation using MadGraph and MadEvent. We found that the signal

in our model stands well above that expected from the SM.
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