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We show that the standard expression for the neutrino oscillation length can be confirmed

even in theoretical approaches that take into account entanglement between the neutrino

and its interaction partners. We show this in particular for the formalism developed in

arXiv:1004.1847 (ref. [1]). Finally, we shed some light on the question why plane-wave

approaches to the neutrino oscillation problem can yield the correct result for the oscillation

length even though they do not explicitly account for the localization of the neutrino source

and the detector.

I. INTRODUCTION

Is the standard expression [2] for the wavelength of neutrino oscillation correct? Does this

expression depend correctly on the underlying neutrino mass splittings, so that the splittings that

have been inferred from data using this expression are right?

The quantum-mechanical physics of neutrino oscillation has proved to be quite subtle, and has

been analyzed in a variety of ways over the years. There have been treatments based on plane

waves [2–5], on neutrino wave packets [6–10], and on quantum field theory [11–15] (A thorough

summary has been given recently by Akhmedov and Smirnov [16]). Most of these treatments have

yielded the standard expression for the probability of oscillation, but the correct way to derive
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this expression is still occasionally disputed. The most recent analysis [1], based on plane waves

and on an assumed entanglement between the oscillating neutrino and a recoil particle, finds an

oscillation wavelength that appears to be very different from the usual one.

In this paper, we recap the recent treatment of oscillation using entangled plane waves. We

express a number of concerns about such an analysis, and about plane wave treatments in general.

However, we also comment on why plane wave treatments, while not strictly correct and consis-

tent, nevertheless often yield the correct oscillation wavelength. We demonstrate that, in spite of

concerns, and in spite of the fact that the oscillation wavelength found by considering entangled

plane waves appears to be markedly different from the standard one, this wavelength, properly

understood, is physically completely equivalent to the usual one, and yields the same neutrino

mass splittings when applied to data.

II. PLANE-WAVE DESCRIPTION WITH ENTANGLEMENT

In this section we reproduce in abbreviated form the derivation of the oscillation wavelength

given recently by one of us [1]. The analysis focused on neutrinos produced in two-body decays

of the form P → ν + R, in which a parent P decays into a neutrino ν and a recoil R. In an

effort to avoid apparent paradoxes that can arise in standard plane-wave treatments of neutrino

oscillations, it was assumed that the neutrino and its recoil form a two-body entangled state. The

role of entanglement in neutrino and neutral kaon oscillations has been considered by others [17–

21]. In the analysis of [1], the oscillation wavelength that emerges corresponds to the separation

of the neutrino and its associated recoiling particle at a common time in the parent rest frame.

This wavelength is not the usual wavelength that would be observed in an experiment (because

the recoiling particle is not usually observed), but we show that the two wavelengths are physically

equivalent and lead to the same neutrino survival or appearance probability. That feature was

missed in [1].

In a two-body decay that yields a neutrino of flavor α, the two-particle final state is:

|Rνα〉 ∼ |R〉 |να〉D
−1 exp i(pD − Et). (1)

It has the form of a product wave function of the internal degrees of freedom of the neutrino and

recoil particle and a function of their relative motion, a spherical wave. The energy E is the energy

of the final state, which is the same as the energy of the initial state. The momentum of each

particle is p and their separation is D. This is the basic form of the two-body wave function that
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will be recast in Lorentz invariant form below. The neutrino and recoil particle are entangled in a

single quantum state. A key feature of this entanglement is the appearance of a single conserved

energy E and a single time coordinate t.

A neutrino of flavor α is a linear combination of mass eigenstates νi with masses mi,

|να〉 =
∑

i

U∗
αi |νi〉 , (2)

where the Uαi are elements of the Maki-Nakagawa-Sakata-Pontecorvo mixing matrix [2]. In the

approach that assumes entanglement, energy-momentum conservation requires that the energy

and momentum of the recoil in the decay P → ν + R depend on which νi was actually emitted.

In the rest frame of the parent, P = −p, where P and p are the 3-momenta of the recoil and

neutrino, respectively. In terms of the coordinates in that frame, one may write,

|Rν〉 ∼
∑

i

U∗
αi |R〉 |νi〉

[

e−iERt−ipxXe−iEνt+ipxx
]

i

= |R〉 e−iEat
∑

i

U∗
αi |νi〉

[

eipx(−X+x)
]

i
. (3)

Here, x and X are the positions of the neutrino and recoil, respectively, t is the time, and Eν and

ER are the energies of the neutrino and recoil, respectively. The energy Ea = Eν + ER = mP is

just the mass of the parent P . The index i on the plane-wave factors indicates that px, Eν , and

ER all depend on i. (However, (t, x) and (t,X) are the spacetime points where the neutrino and

recoil, respectively, are detected. They are defined by the experiment and do not depend on i.)

Suppose that in the laboratory frame, the parent P is moving to the right along the x-axis

with speed β. The lab-frame location x′ of the neutrino when it is at the spacetime point (t, x) is

x′ = γ(x + βt). The corresponding lab-frame location X ′ of the recoil at the same time t in the

P rest frame is X ′ = γ(X + βt). Thus, the lab-frame distance between the neutrino and recoil at

time t in the P rest frame is x′ −X ′ = γ(x−X) ≡ D′. Consequently the state |Rν〉 of Eq. 3 may

be rewritten as

|Rν〉 = e−iEat |R〉
∑

i

U∗
αi |νi〉 e

iγ−1px,iD
′

, (4)

where px,i is the parent rest-frame momentum of the neutrino when the latter is νi. The leading

energy-dependent phase factor in Eq. 4 is unobservable. As a result, the interference effects of

neutrino oscillations arise solely from the different momenta in the components in the final state.

In the oscillation probability P (να → νβ) = |〈Rνβ|Rνα〉|
2, the i− j interference term depends on

D′ through the phase factor exp [iγ−1(px,i − px,j)D
′]. Thus, the wavelength λ′D,ij of oscillation in
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the recoil-neutrino separation D′ is determined by

γ−1(px,i − px,j)λ
′
D,ij = 2π. (5)

Now, to leading order in ∆m2
ij = m2

i −m2
j ,

px,i − px,j = −∆m2
ij

1

2mP

m2
P +m2

R

m2
P −m2

R

, (6)

where mR is the mass of the recoil. Thus, apart from an irrelevant sign,

λ′D,ij ≃
4πγmP

∆m2
ij

m2
P −m2

R

m2
P +m2

R

. (7)

To compare this result with the standard expression for the wavelength of neutrino oscillation,

it is useful to rewrite it in terms of the “neutrino beam energy” E′
0, defined as the energy that

massless neutrinos would have in the laboratory. Since E′
0 = γ(1 + β)(m2

P −m2
R)/2mP , and the

speed βR of the recoil in the P rest frame obeys 1 + βR = 2m2
P /(m

2
P +m2

R), we have

λ′D,ij =
4πE′

0

∆m2
ij

1 + βR

1 + β
. (8)

Equations 7 and 8 define a wavelength in laboratory coordinates for the separation D′ between

the neutrino and the recoil. In the standard expression [2] for neutrino oscillation, the survival

probability oscillates as a function of the lab-frame distance L′ between the neutrino source and

the detector with a wavelength λ′L,ij given by

λ′L,ij =
4πE′

0

∆m2
ij

. (9)

We will show that these two expressions, Eqs. 8 and 9, in fact give equivalent results for

the laboratory wavelength of neutrino oscillations measured in the standard fashion by detecting

neutrinos at a known distance from a source region.

III. PHYSICAL EQUIVALENCE OF WAVELENGTHS

Since the wavelengths λ′D,ij and λ′L,ij describe oscillations in two different variables, D′ and L′,

let us see how these variables are related. We take the decay P → ν+ R to occur at the spacetime

point (t, x) = (t′, x′) = (0, 0). Suppose that the neutrino is then detected at a subsequent time

t in the P rest-frame. Then, in that frame, if the neutrino’s speed is βν , it will have traveled a

distance L = βνt to its point of detection. The P rest-frame separation D between the neutrino
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and the recoil when the neutrino is detected will be D = βνt + βRt. Thus, since the neutrino is

ultrarelativistic, with βν ≃ 1,

D

L
= 1 + βR. (10)

Now, in the laboratory frame, the distance L′ between the neutrino source (i.e., the location of P

when the decay P → ν + R occurred) and the point of detection is L′ = γ(L + βt) ≃ γ(1 + β)L,

where we have once again used βν ≃ 1. Furthermore, as we have already seen, at the neutrino

detection time t in the P rest-frame, the laboratory-frame distance D′ between the neutrino and

the recoil is related to its P rest-frame counterpart D by D′ = x′ −X ′ = γ(x−X) = γD. Thus,

the variables D′ and L′ to which the wavelengths λ′D,ij and λ′L,ij refer are related by

D′

L′
=

γD

γ(1 + β)L
=

1 + βR

1 + β
. (11)

By comparison, from Eqs. 8 and 9,

λ′D,ij

λ′L,ij

=
1 + βR

1 + β
. (12)

That is, the ratio between the “new” wavelength λ′D,ij of oscillation in D′, and the standard

wavelength λ′L,ij of oscillation in L′, is exactly the same as that between D′ and L′.

Thus, although the new λ′D,ij of Eq. 8 has emerged from an approach that entails entanglement,

while the standard λ′L,ij of Eq. 9 has come from analyses that generally do not, these two wave-

lengths differ only because they refer to two different, alternative distance variables. Thus, they

are physically equivalent. Properly used to fit given oscillation data, they would yield precisely

the same neutrino squared-mass splitting ∆m2
ij.

IV. WHY IS THE SAME ∆m2 OBTAINED?

So long as the standard approaches and the approach that invokes entanglement are all valid

ways of deriving the neutrino oscillation wavelength, the wavelengths derived by these approaches

obviously must be correct and physically equivalent. In the previous section, we have demonstrated

the physical equivalence for a particular approach that invokes entanglement and that obtains the

wavelength for oscillation in the separation D′ between the neutrino and its recoiling partner at a

given time t in their common parent’s rest frame. But this must be a more general result. Consider

a “gedanken” neutrino oscillation experiment, with some relevant properly defined distance D′′
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between the neutrino and its recoiling partners, and with D′′ proportional to the usual source-to-

detector distance L′. Then, the ratio between the wavelengths of oscillation in D′′ and L′ will be

D′′/L′, so that these two wavelengths will be physically equivalent.

Another way of understanding intuitively why the standard expression for the oscillation length

is obtained even when the neutrino and the recoiling particle are considered as an entangled state

is the following: Let us choose a frame in which the component of the recoil that is entangled with

neutrino mass eigenstate ν1 of mass m1 is at rest; i.e. p′′R1 = 0. We denote kinematic quantities in

this frame by a double prime. From simple kinematic arguments, it follows that

p′′Rj =
∆m2

j1mR

m2
P −m2

R

+ . . . (13)

E′′
R,j = mR + . . . , (14)

where ‘. . . ’ denotes terms that are at least 4-th order in the neutrino masses, divided by combi-

nations of mR and mP . The complex phase of the jth component of the entangled state has the

form

−E′′
Rjt

′′ + p′′RjX
′′ −E′′

νjt
′′ + p′′νjx

′′ . (15)

We see that, at leading order, the first term is a constant that does not contribute to the phase

differences relevant to neutrino oscillations and can therefore be omitted. We will now show that

the second term is higher order as well. Since we are using a plane wave approach here, it is not

immediately obvious what X ′′ is; after all, plane waves are delocalized over space. We will argue

below that it is reasonable to impose the relations x′′ = v′′ν t
′′ and X ′′ = v′′Rt

′′ by hand, where

it is justified to take v′′ν and v′′R to be the averages of the group velocities associated with the

individual components of the neutrino and the recoil, respectively. In the frame where p′′R1 = 0,

all v′′Rj are proportional to ∆m2
j1, so that no matter how exactly the average v′′R is defined, p′′RjX

′′

is second order in ∆m2
j1 and therefore negligible. Consequently, the phase reduces to the standard

expression

−E′′
νjt

′′ + p′′νjx
′′ (16)

that does not depend on the properties of the recoil. Due to Lorentz invariance, the phase must

therefore be the standard one in any frame.
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V. PLANE WAVES VS. WAVE PACKETS

It is clear that, due to the Heisenberg uncertainty principle, neutrinos produced and detected

in localized regions of spacetime must have a nonzero spread in energy and momentum. Many

authors have argued that to take this spread into account, a fully consistent theoretical treatment

of neutrino oscillations requires wave packets [6–8, 11, 13, 15]. Other authors have argued that

wave packets are unnecessary [22].

Indeed, in most neutrino oscillation experiments, wave packet effects, such as wave packet

separation due to different group velocities [6], are negligible, and simplified plane wave approaches

can correctly predict experimental results. The deeper reason for this can be understood if we

note that the coordinate space representation of a typical Gaussian neutrino wave packet,

ψj(x, t) ∝ e−iEj0t+ipj0x exp

[

(x − vjt)
2

4σ2
x

]

, (17)

is simply a plane wave, multiplied with an enveloping Gaussian. Here, the index j distinguishes

different neutrino mass eigenstates, pj0 and Ej0 are the average momentum around which the

wave packet’s momentum distribution is peaked and the associated energy; vj = pj0/Ej0 is the

group velocity, and σx is the width of the wave packet in coordinate space. The neutrino oscillation

probability depends on the phase differences between wave packets associated with different mass

eigenstates j. We observe that, at each fixed spacetime point, these phase differences depend only

on Ej0 and pj0
1. They do not depend on σx, so they are independent of the precise shape of

the wave packets, and, in particular, remain unchanged in the limit σx → ∞ corresponding to

plane waves. They do, however, vary over space and time. In the full wave packet picture, the

enveloping Gaussian ensures that only space-time points along the trajectory x ∼ vt, and located

at the detector site, x ≃ L, contribute to the oscillation probability 2. In a plane wave approach,

this has to be ensured by imposing x = vt and x = L by hand.

Another argument not to invoke wave packets is the observation by Kiers, Nussinov, and

Weiss [9] that a continuous flux of neutrino wave packets with identical momentum distributions

cannot be distinguished from an ensemble of plane wave neutrinos, whose individual momenta fol-

low the same momentum distribution. In fact, the density matrices describing the two ensembles

are identical.

1 Note that interference can only occur between wave packet components located at the same point in spacetime.
2 Here, v should be understood as an average of the individual vj , which is a valid concept as long as the wave

packets have not yet separated. Also note that |v| ≃ c, with small corrections to this relation being a negligible

second-order effect in the small neutrino masses.



8

Even though the above arguments show that plane wave approaches to neutrino oscillations can

be justified, there are inconsistencies with the quantum field theoretic (QFT) formalism, where

the production and detection processes are explicitly included in the calculation and the neutrino

is treated as an internal line in a Feynman diagram (see Fig. 1). Since energy and momentum

are exactly conserved at the production and detection vertices, the intermediate neutrino can only

be an on-shell energy-momentum eigenstate (as it has to be if it propagates over macroscopic

distances) if its interaction partners—the external lines of the Feynman diagram—are also energy-

momentum eigenstates. However, it is clear that the external energies and momenta in this case

cannot be the same for diagrams involving different neutrino mass eigenstates. Since in quantum

mechanics interference is only possible between amplitudes for processes that describe different

paths leading to the same final state, this means that no oscillations are possible [13].

A similar argument can also be invoked to show that, in the QFT treatment, entanglement

between the neutrino and its interaction partners cannot persist asymptotically for t → ∞. Such

asymptotic entanglement would lead to different external states in diagrams involving different

neutrino mass eigenstates, so interference between these diagrams would be impossible. If we take

the point of view that initially the neutrino is entangled with at least some of its interaction part-

ners, we are led to the conclusion that these particles must be disentangled by further interactions

for oscillations to take place. (This has been noticed previously in ref. [17].) Disentanglement is

achieved when the particles interact with their environment. These interactions localize them and

thus introduce momentum uncertainties that are usually large enough to allow external particle

states entangled with different neutrino mass eigenstates to interfere in spite of their different

energies and momenta.

With this in mind, one can justify a plane wave approach even in QFT. The procedure is

to compute the amplitudes corresponding to different neutrino mass eigenstates and then sum

them coherently (before squaring), keeping in mind that such coherent summation is only justified

if the final state particles undergo further interactions that introduce energy and momentum

uncertainties larger than the energy and momentum differences between the different entangled

states.

If one wishes to avoid such reasoning, one can also directly incorporate the effect of the localizing

secondary interactions into the Feynman diagram computation by treating the external particles as

wave packets with appropriate energy and momentum spreads. Different neutrino mass eigenstates

will then simply couple to different (though usually overlapping) portions of the external wave
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ν

P (q)

R(k)

T (q′)

S(k′)

FIG. 1: The Feynman diagram of neutrino oscillations. P and R are the parent particle and the recoil,

respectively, while, T is the target atom at the detector, and S denotes the outgoing “signal” particles.

packets’ momentum distributions. Feynman diagrams involving different neutrino mass eigenstates

can thus have identical external states, so that interference and therefore neutrino oscillations

emerge.

VI. CONCLUSIONS

For the reasons we have explained, one must be cautious when following a plane wave approach

to neutrino oscillation, whether or not the approach incorporates entanglement. A plane wave ap-

proach does not include the neutrino source and detector localizations that are physically essential

if oscillation with distance is to be observed. Consequently, such an approach cannot be used to

discover all the implications of these localizations. However, the explicit inclusion of localization

effects, which is automatic in wave packet treatments, can be replaced for some purposes by phys-

ical reasoning in a plane wave approach. Indeed, the oscillation wavelength derived from a plane

wave analysis, with or without entanglement, can be perfectly correct. In particular, as we have

shown, the wavelength that emerges from a recent new analysis [1] that invokes entanglement is

physically equivalent to the (correct) wavelength obtained by standard wave packet or plane wave

treatments. Thus, one may continue to have confidence in the neutrino mass-squared splittings

∆m2 that have been deduced by applying the standard wavelength expression to data.
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