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tiago 22, Chile.

19Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.

20Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory,

University Park, PA 16802, USA.

21Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA.

22Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL

60510, USA.

23Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue,

Chicago, IL 60637, USA.



– 3 –

ABSTRACT

We present the second report of our systematic search for strongly lensed

quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive

follow-up observations of 136 candidate objects, we find 36 lenses in the full sam-

ple of 77,429 spectroscopically confirmed quasars in the SDSS Data Release 5. We

then define a complete sample of 19 lenses, including 11 from our previous search

in the SDSS Data Release 3, from the sample of 36,287 quasars with i < 19.1 in

the redshift range 0.6 < z < 2.2, where we require the lenses to have image sepa-

rations of 1′′ < θ < 20′′ and i-band magnitude differences between the two images

smaller than 1.25 mag. Among the 19 lensed quasars, 3 have quadruple-image

configurations, while the remaining 16 show double images. This lens sample con-

strains the cosmological constant to be ΩΛ = 0.84+0.06
−0.08(stat.)

+0.09
−0.07(syst.) assuming

a flat universe, which is in good agreement with other cosmological observations.

We also report the discoveries of 7 binary quasars with separations ranging from

1.′′1 to 16.′′6, which are identified in the course of our lens survey. This study

concludes the construction of our statistical lens sample in the full SDSS-I data

set.

Subject headings: gravitational lensing: strong — quasars: general — cosmology:

observations

1. INTRODUCTION

Gravitationally lensed quasars are useful tools for a variety of astrophysical and cosmo-

logical studies (e.g., Turner et al. 1984; Blandford & Kochanek 1987; Schneider et al. 1992;

Kochanek et al. 2006). In particular, statistical analyses of lensed quasars serve as a use-

ful probe for the cosmological constant (Fukugita et al. 1990; Turner 1990) and the Hubble

constant (Oguri 2007a). The Hubble Space Telescope (HST) Snapshot survey (Maoz et al.
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1993) and the Cosmic-Lens All Sky Survey (CLASS; Myers et al. 2003; Browne et al. 2003)

have provided examples of complete lens samples that have allowed cosmological studies.

The HST Snapshot survey includes five lenses selected from 502 bright, relatively high-

redshift quasars, and was used to derive a limit on the cosmological constant (Maoz et al.

1993). It was also used to study galaxy evolution by combining with other lens surveys

(Chae 2010). CLASS contains 13 lenses from 8958 radio sources; the redshift distribution

of this sample is not well determined (e.g., Muñoz et al. 2003). This sample has also been

used to constrain cosmological models as well as the structure and evolution of lens galaxies

(e.g., Rusin & Tegmark 2001; Mitchell et al. 2005; Chae et al. 2006). While large samples of

galaxy-galaxy lenses are being assembled by various groups (e.g., Bolton et al. 2006, 2008;

Cabanac et al. 2007; Faure et al. 2008; Marshall et al. 2009; Kubo et al. 2009; Féron et al.

2009) and are used to study the structure of the lens galaxies, they are not well suited as a

cosmological probe because galaxy-galaxy lenses are often selected from samples of lensing

objects, not source objects, much complicating the statistics.

In order to construct a large statistical sample of lensed quasars that can be used as

a cosmological probe, we have conducted the Sloan Digital Sky Survey Quasar Lens Search

(SQLS; Oguri et al. 2006, hereafter Paper I) based on a sample of spectroscopically confirmed

quasars (Schneider et al. 2007) derived from the Sloan Digital Sky Survey (SDSS; York et al.

2000). To allow cosmological tests, the lens sample must be complete with well-defined

criteria. We refer to a sample that allows statistical tests as a “statistical sample”. Our lens

sample is, in fact, designed to be complete under prescribed conditions and therefore suitable

for statistical studies and cosmological tests, given the accurately defined selection function

(see Paper I) and the homogeneity of the SDSS data. In Inada et al. (2008), hereafter Paper

II, we presented a complete sample of 11 lensed quasars suitable for statistical analyses,

selected from the 22,683 quasars satisfying 0.6 < z < 2.2 and i < 19.11 out of the total of

46,420 quasars (Schneider et al. 2005) in the SDSS Data Release 3 (DR3; Abazajian et al.

2005). This sample derived from the DR3 gives cosmological constraints (Oguri et al. 2008a,

hereafter Paper III) that agree with the current cosmological model (e.g., Komatsu et al.

2009; Tegmark et al. 2006).

In this paper, we extend our source population to the SDSS Data Release 5 (DR5;

Adelman-McCarthy 2007), concluding the SDSS-I (the first phase of the SDSS project

through 2005 June). The selection process is the same as that used to create the DR3

statistical sample of lenses, as described in Paper II. Note that all lensed quasars described

in this paper have already been reported in their discovery papers. The main focus of this

1Here i is the Point Spread Function (PSF) magnitude corrected for Galactic extinction from the maps

of Schlegel et al. (1998).
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paper is to define the DR5 statistical sample, and to report quasars that turned out not to

be gravitational lenses. We briefly describe the source quasar sample from which we con-

structed the DR5 statistical lens sample in Section 2, and the selection of lens candidates in

Section 3. We present observational results for the lensing candidates in Section 4, and the

resulting DR5 lensed quasar sample and updates of cosmological constraints in Section 5.

Section 6 gives a summary of our results.

2. SOURCE QUASARS

The SDSS is a combination of photometric and spectroscopic surveys of a quarter of the

sky, primarily in a region centered on the North Galactic Cap. The surveys were carried out

using a dedicated wide-field 2.5-m telescope (Gunn et al. 2006) at the Apache Point Obser-

vatory in New Mexico, USA. The details of the photometric survey using five broad-band op-

tical filters (ugriz), including the astrometric accuracy and photometric zero point accuracy,

are described in Fukugita et al. (1996), Gunn et al. (1998), Hogg et al. (2001), Smith et al.

(2002), Pier et al. (2003), Ivezić et al. (2004), Tucker et al. (2006), and Padmanabhan et al.

(2008). The data of the photometric survey are processed by the photometric pipeline

(Lupton et al. 2001). The target selection pipeline (Richards et al. 2002) finds quasar can-

didates for the spectroscopic survey. The candidates are tiled on each plate according to

the algorithm of Blanton et al. (2003). Spectroscopic observations with a resolution of

R ∼ 1800 are carried out using a pair of multi-fiber double spectrographs covering 3800 Å

to 9200 Å. The SDSS data have been published in series of Data Releases (Stoughton et al.

2002; Abazajian et al. 2003, 2004, 2005, 2009; Adelman-McCarthy 2006, 2007).

We construct a source quasar sample following the procedure in Paper II. We start

with the 77,429 quasars in the DR5 spectroscopic survey selected over an area of 5740 deg2

(Schneider et al. 2007), and restrict the redshift range to 0.6 < z < 2.2 and magnitude

to i < 19.1, over which the quasar target selection is almost complete (see Paper I) and

does not significantly bias our lens candidate search. The lower redshift limit is imposed to

eliminate quasars associated with resolved host galaxies, which otherwise would dominate

our candidate list, based in part on the extent of the optical image. We further exclude

quasars in poor seeing fields, PSF WIDTH> 1.′′8, where identification of close pairs becomes

difficult. These selection criteria give a sample of 36,287 quasars2. Removing DR3 quasars

2See the SQLS webpage (http://www-utap.phys.s.u-tokyo.ac.jp/˜sdss/sqls/) for the list of the 36,287

quasars.

http://www-utap.phys.s.u-tokyo.ac.jp/~sdss/sqls/
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that have already been studied in Paper II, we are left with 13,636 quasars3 to be studied

in this work.

3. LENS CANDIDATES

Our SQLS selection procedure to identify lensed quasar candidates uses two different

algorithms; “morphological selection” to find small separation lensed quasars (θ . 2.′′5) which

are not deblended into multiple components by the SDSS photometric pipeline, and “color

selection” to find large separation lenses (θ & 2.′′5) whose lensed components are deblended

and thus registered as separate objects in the SDSS image catalog.

In brief, morphological selection finds quasars that appear as single objects but are

not well fit with the PSF. This is represented by the parameter star L for each color band

which gives the logarithmic likelihood that the object is fit by the PSF. The values used

in the star L cut (see Paper II) were tested against many simulated lensed quasars, as

described in Paper I. We then fit each system to a model with two PSFs using GALFIT

(Peng et al. 2002), to exclude objects that are single quasars, or obvious quasar-star or -

galaxy associations. If these objects are fit with two PSFs, the GALFIT for single filter

images results in either very small separations of the two centroids, or very large magnitude

differences in the two components: with data in several bands, the two decomposed objects

may become mutually inconsistent for their positions and/or colors. Therefore, we can select

lens candidates by choosing objects whose u- and i-band image fits are both “normal” and are

in good positional agreement (see, more quantitatively, Equation 16 of Paper I). In practice,

it is sufficient to use the u-band and one of the gri-band images for objects at z < 2.2. The

candidates which survive the GALFIT selection are visually inspected to exclude objects

that are clearly superpositions of a quasar and a galaxy, particularly using their bluer band

images where signals from quasar components (z < 2.2) are much more dominant than those

from galaxies. Of the 13,636 quasars, 50 morphologically-selected candidates survive this

selection. This selection is designed to pick up all lenses that satisfy the relative brightness

criterion (|∆i| < 1.25; see below) with separations between 1′′ and 2′′. The 50 candidates we

obtained are listed in Table 2.

The color selection algorithm applies to the case where the lensed images are deblended

by the photometric pipeline. We search for objects around each quasar having colors similar

3The number of DR3 quasars in this paper (22,651) differs slightly from that given in Paper II (22,683).

32 quasars in the DR3 are given different parameters (magnitudes) in the DR5 catalog and no longer meet

the criteria for our source sample. This does not affect the number of lenses or lens candidates in the DR3.
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to those of the quasar. To obtain a complete sample with image separations 1′′ < θ < 20′′

and i-band magnitude differences between two images |∆i| < 1.25, we search for objects with

θ < 20.′′1 and |∆i| < 1.3 allowing for some tolerance. Next we exclude some candidates whose

optical and radio flux ratios are inconsistent between the two components (Kochanek et al.

1999). We used the data from the Faint Images of the Radio Sky at Twenty centimeters

survey (FIRST; Becker et al. 1995) for candidates with image separations larger than 6′′,

which is the resolution of FIRST. We also reject some obvious quasar-galaxy pairs by visual

inspection. We exclude low-redshift and large-separation pairs with no detectable lensing

objects in the SDSS image, because a standard galaxy model predicts that at least one of the

member galaxies of the putative lens group/cluster should be detectable for such lens events

(see Paper II for quantitative details). We consider all lens candidates with separations

larger than the minimum deblending separation (∼1.′′5) of the SDSS photometric pipeline,

amounting to 88 candidates from the 13,636 quasars. Two objects out of the 88 candidates

are selected by both the morphological and color selection algorithms, and therefore 86

candidates are listed in Table 3. The numbers of objects selected by the two algorithms are

summarized in Table 1.

4. OBSERVATIONS

4.1. Summary of Follow-up Observations

The 136 lensed quasar candidates taken from the 13,636 quasars constitute our targets

for follow-up observations, but we remove two candidates that have already been examined.

One is the morphologically selected candidate SDSS J111816.95+074558.1 which is the well-

known lensed quasar PG1115+080 (Weymann et al. 1980). The other is the color selected

candidate SDSS J165502.02+260516.5, which is a pair of quasars with slightly different

redshifts from SDSS spectroscopy. The remaining 134 candidates were observed as described

in what follows using various telescopic facilities. The observations include optical and/or

near-infrared imaging and optical spectroscopy, and are tabulated in Table 2 and Table 3.

For the 49 morphologically-selected candidates after excluding SDSS J111816.95+074558.1,

we first carry out optical (i or I) and/or infrared (H , K, or K ′) imaging under good seeing

conditions (∼ 0.′′5−1.′′0) to confirm that the candidates indeed have two or more stellar com-

ponents and also a lens galaxy between the stellar components. We set the exposure time

such that we can detect faint extended objects down to I ∼ 23.0, H ∼ 18.5, and K ∼ 20.0

at S/N≃ 10, corresponding to the brightness at which one can detect lens galaxies if they

are located at a redshift half that of the source quasar. Figure 1 shows the relation between

the image separation and the rest-frame I (or i) band luminosity of the lens galaxies. The
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13 filled circles are the luminosities of the lens galaxies that are included in our statistical

sample and have measured redshifts (see Table 4). Open circles are upper limit on the lumi-

nosities of hypothetical lens galaxies of the candidates with “no lens object” (but not “binary

QSO”) in Table 2 or Table 3, assuming that the lens galaxy is located at half the source

redshift. The assumption is reasonable given that the maximum value of the ratio of lens to

source redshifts zl/zs in our statistical sample is 0.60, and that 90% of the lens galaxies are

located at zl/zs < 0.5. Open triangles refer to binary quasars which we discuss at length in

Section 4.2, where a more extreme lens redshift zl = zs is assumed. The figure indicates that

the luminosities of candidate lens galaxies with no detection are significantly fainter than

what would be expected for a given separation angle expected from our confirmed lensing

events. This is particularly true if we consider the fact that a positive correlation is expected

between luminosity and the separation angle, as simple lens models predict. The empirical

correlation between the mass and luminosity of early-type galaxies also predicts the mini-

mum apparent luminosities of lens galaxies (e.g., Rusin et al. 2003), and our detection limit

corresponds to luminosities typically much fainter than this predicted minimum. For this

reason we exclude as lensing candidates those cases which do not exhibit any signatures of

lens galaxy in our follow-up images. However, we obtained follow-up spectroscopy for four

candidates which were judged to be particularly good candidates based on the color and

morphology of their SDSS images, even though our follow-up images for these candidates

show no sign of lensing objects.

Some candidates were rejected because they turn out to be single quasars or quasar-

galaxy associations. For candidates that are not excluded at this step, we acquire spectra

of the stellar components. Of the seven targets with possible lensing objects, five of them

are lensed quasars (six in the list of morphologically selected systems when PG1115+080 is

included). The other two objects were found to be binary quasars (see Section 4.2). The

four additional spectroscopic targets described above were found not to be lensed quasars.

For the 85 color-selected candidates (after excluding SDSS J165502.02+260516.5), we

carry out either optical/near-infrared imaging or optical spectroscopy of the stellar compo-

nents. For imaging we first looked for archival data from the Subaru telescope (SMOKA;

Baba et al. 2002), and found that SDSS J134150.74+283207.9 could be rejected due to the

absence of any possible lensing objects in the deep Subaru image. Follow-up imaging of 50

candidates yields five cases that indicate signatures of possible lens galaxies. Subsequent

spectroscopy of these five objects shows that four of them are lensed quasars, and the re-

maining one, SDSS J160614.69+230518.0, is a quasar-star pair. We carried out spectroscopy

of the remaining 34 candidates without imaging, which yielded five pairs of quasars with

the same redshifts. Two of the five were found not to be lensed quasars because they have

different spectral energy distributions not consistent with being lensed pairs. The other
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three pairs were also rejected due to the lack of lensing objects in deep follow-up images

(see Section 4.2). We also carried out additional spectroscopy for four objects that did not

show a lensing object in the images, but which look visually like promising lens candidates.

We confirmed, however, that they each are a quasar-star pair. In conclusion we found four

lensed quasars among the color-selected candidates.

We remark that our selection process would reject “dark lenses”, in which the mass-

to-light ratio of the lens galaxy is unusually large. The possibility of dark lenses has been

discussed in, e.g., Rusin (2002) and Ryan et al. (2008), although there are no unambiguous

cases of such dark lenses in the literature.

4.2. Newly Discovered Binary Quasars

We found 29 objects that have multiple quasar components among the 136 candidates.

Ten of them are lensed quasars, and four of them are known pairs of quasars with different

redshifts reported in Hennawi et al. (2006a). Eight systems are pairs of quasars, which we

found to have different redshifts. The remaining seven systems consist of quasar pairs with

identical redshifts. We, however, do not consider them to be lenses, for the reasons we discuss

in what follows.

SDSS J101211.29+365030.7: We detect C IV (∼4130Å) and C III] (∼5100Å) emis-

sion lines at z = 1.678 in both of the components separated by 16.′′6, in follow-up spectroscopy

at the ARC 3.5-m telescope. Deep optical and near-infrared imaging with a detection limit

(S/N≃ 10) corresponding to MI∼− 21.3 at z = 1.678, however, do not show a galaxy clus-

ter between the two quasar images, which would be necessary to produce this large image

separation. Therefore, this object, SDSS J1012+3650, is taken to be a binary quasar.

SDSS J151109.85+335701.7: The images of this candidate show two point sources

separated by θ = 1.′′1. We detected a signature of a possible lens galaxy when we subtract two

PSFs from the UH88 I-band image. We then obtained spectra of the two stellar components

and a deeper I-band image using the Subaru telescope under good seeing conditions (0.′′6).

The C II and Mg II emission lines redshifted to z = 0.799 have similar shapes in the two

objects. The slopes of the continua are also similar. We do not find, however, a galaxy

between the two quasars at a detection limit (S/N≃ 10) of MI∼− 19.9 (at z = 0.799) in the

Subaru image. This suggests that the residual flux arises from the host galaxies of the two

quasars.

SDSS J151823.05+295925.4: We obtained spectra of the two components using the

ARC 3.5-m telescope. The shapes of the C III] and Mg II emission lines at z = 1.249 are
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similar. However, we do not find any galaxies between the two quasars in a deep optical

image taken at UH88 to a detection limit (S/N≃ 10) of Mi∼− 20.6 at z = 1.249. Based on

the lensing criteria described in Section 4.1, we conclude that SDSS J1518+2959 is a binary

quasar with θ = 5.′′3.

SDSS J155218.09+045635.2: The spectra of the two components were obtained at

the ARC 3.5-m telescope. While the brighter component has a clear Broad Absorption Line

(BAL) feature in its C IV emission line at z = 1.567, the fainter one does not show a BAL

feature. In addition, we do not detect any signature of a massive galaxy cluster in the deep

UH88 I-band image, which would be necessary to account for the large image separation of

θ = 11.′′7.

SDSS J155225.62+300902.0: This system was considered to be a promising morphologically-

selected candidate, with a possible lens galaxy detected in UH88 I-band and UKIRT K-band

images. We took spectra of the two stellar components (θ = 1.′′3) using the Subaru telescope.

Although the Mg II emission line of the fainter component at z = 0.750 is slightly broader

than that of the brighter component, the two quasar have similar continua. As in the case of

SDSS J1511+3357, however, we find no galaxy between the two components at a detection

limit (S/N≃ 10) of MI∼−19.8 at z = 0.750 in the deep I-band Subaru image (seeing ∼0.′′6),

except for extended residuals around the two quasars that represent the host galaxies of the

quasars.

SDSS J160602.81+290048.7: The two stellar components separated by θ = 3.′′5 have

similar shapes for the Mg II emission lines at z = 0.770 and the continua in our follow-up

spectra taken at the ARC 3.5-m telescope. We do not find, however, a lens galaxy between

the two quasar components at a detection limit (S/N≃ 10) of Mi∼ − 19.3 at z = 0.770 in

the deep i-band image with the ARC 3.5-m telescope.

SDSS J163520.04+205225.1: We obtained spectra of the two components (θ = 13.′′6)

at the TNG 3.6m telescope. The C IV emission lines at z = 1.775 revealed that the fainter

component is probably a BAL quasar whereas the brighter component is not. Along with

the absence of a lens cluster of galaxies in deep images taken at the UH88 and KPNO 2.1m

telescopes, we conclude that this object is a binary quasar.

To summarize, two (SDSS J1552+0456 and SDSS J1635+2052) of the seven candidates

are found to be binary quasars from their different spectral energy distributions. The other

five objects are also classified as binary quasars, based on the failure to detect lensing objects

in our imaging follow-up observations, which were deep enough to detect galaxies down to

magnitudes significantly fainter than those of lensing galaxies for our confirmed lens sample

(see Figure 1).
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5. IDENTIFIED LENSED QUASARS

5.1. Statistical Sample

We construct a DR5 complete sample of lensed quasars with image separations of 1′′ <

θ < 20′′ and absolute i-band (or I-band) magnitude differences less than 1.25 mag for doubles.

We do not set any magnitude difference limits for quadruples. Simulations described in Paper

I suggest that our lens selection is almost complete within these ranges. From the 13,636

quasars we selected 136 candidates for lensing, among which we confirmed ten lensed quasars,

six based on morphological selection (including the known one, PG1115+080) and four based

on color selection. Eight of the ten meet the criteria we set for the separation angle and

the flux ratio, while SDSS J132236.41+105239.4 and SDSS J134929.84+122706.9 lie outside

the criteria. Including the 11 lensed quasars from the DR3 sample (Paper II), our DR5

statistical sample consists of 19 lensed quasars selected from a sample of 36,287 quasars,

as summarized in Table 4. The details of the 19 lensed quasars are given in the discovery

papers cited in Table 4. We note that we recover all previously known lenses (CASTLES

webpage4) that satisfy our criteria in the area of the DR5 spectroscopic survey.

Figure 2 shows the distribution of the image separations of the statistical sample. We

obtain updated constraints on cosmological parameters by simply repeating the calculation

done in Paper III, assuming a flat universe. The details of the calculation are given in

Paper III; in brief, we compute the expected numbers of small-separation lensed quasars

for different cosmological models, and compare them with our statistical lens sample in the

image separation range of 1′′ < θ < 3′′. We consider lensing by single elliptical galaxies which

are modeled by singular isothermal ellipsoids. We adopt the velocity function of Choi et al.

(2007). The magnification bias is estimated (see Equations 6, 7, and 8 of Paper III) using

the image separation-dependent magnification factor derived in Paper I and the quasar

luminosity function obtained by Richards et al. (2005). As in Paper III, we require that the

PSF magnitude of the quasar components must be brighter than the lens galaxy. Since our

calculation takes only early-type galaxies into account, we remove SDSS J1313+5151 whose

lens galaxy is fit by a Sérsic profile with n = 1 (Ofek et al. 2007) and looks somewhat bluer,

and hence is likely to be a late-type galaxy. From the subsample of 14 lenses, the cosmological

constant is constrained to be ΩΛ = 0.84+0.06
−0.08(stat.)

+0.09
−0.07(syst.). A hypothetical case that we

have 15 lenses in the subsample (we add one more lens with θ∼1.′′0) increases the value of

ΩΛ in ∼0.02. The largest source of systematic errors is the uncertainties in the velocity

function of the lens galaxies and its redshift evolution; see Table 2 and Section 4.3 of Paper

4 http://cfa-www.harvard.edu/castles/.

http://cfa-www.harvard.edu/castles/
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III for comprehensive discussions of the systematic errors. If we account for the statistical

error only, our result rejects ΩΛ = 0 at the 5σ level, as estimated from the full likelihood

distribution. Next we allow the dark energy equation of state to vary, and derive constraints

in the two-dimensional parameter space of ΩM and w. By combining our result with the

results from the SDSS baryon acoustic oscillation measurements in the SDSS galaxy two-

point correlation function (Eisenstein et al. 2005), we obtain ΩM = 0.23+0.04
−0.03(stat.)

+0.03
−0.04(syst.)

and w = −1.4 ± 0.3(stat.)+0.3
−0.4(syst.).

The fraction of quadruple lenses in the DR5 statistical sample is 16% (see Table 4),

which is lower than the fraction in the CLASS survey of 46%. This might be ascribed to the

shallower slope of the luminosity function at the survey flux limit of SQLS than that at the

CLASS limit (see, e.g., Oguri 2007b, for more detailed discussion).

5.2. Additional Lensed Quasars

We also searched for lensed quasars in the DR5 sample which do not satisfy the con-

ditions, 0.6 < z < 2.2, i < 19.1 and PSF WIDTH< 1.′′8, with the understanding that the

resulting sample will not be complete. The candidate selection is somewhat extended from

that used to make the statistical sample. For high redshift (z > 2.2) quasars, for in-

stance, we use the star L criteria for the griz bands rather than the ugri bands (e.g.,

Inada et al. 2009). We discovered two lensed quasars, SDSS J0819+5356 (Inada et al. 2009)

at zs = 2.24 and SDSS J2343−0050 (ULAS J234311.93-005034.0; Jackson et al. 2008) with

i = 20.10 at zs = 0.787. The second of these lensed quasars was previously discovered by

Jackson et al. (2009) from the UKIDSS (UKIRT Infrared Deep Sky Survey; Lawrence et al.

2007) and SDSS. There are two lenses among the DR5 quasars known from other sur-

veys, SDSS J1004+1229 (J1004+1229; see CASTLES webpage) and SDSS J0820+0812

(ULAS J082016.1+081216; Jackson et al. 2008). They are not identified in our selection

algorithm because of the large magnitude differences |∆I| > 1.25 between the two images.

Together with 11 lenses that are derived from the DR3 sample but do not satisfy our selec-

tion criteria (Surdej et al. 1987; Bade et al. 1997; Morgan et al. 2001; Reimers et al. 2002;

Winn et al. 2002; Johnston et al. 2003; Morgan et al. 2003; Pindor et al. 2004; Inada et al.

2007, 2008; Oguri et al. 2008b), we present a list of 17 additional lensed quasars in the entire

DR5 quasar sample in Table 5. We note that SDSS J1322+1052 and SDSS J1349+1227

(Section 5.1) are included in this additional sample. The details of all lensed quasars in the

additional sample are also given in the references cited in Table 5.
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6. SUMMARY

We have completed our systematic lensed quasar search in the SDSS-I quasar sample

presented in the DR5 quasar catalog (Schneider et al. 2007). With follow-up observations

for 136 lens candidates, we found ten lensed quasars beyond our DR3 sample. Eight of

them, including one previously known, are catalogued in our complete statistical lensed

quasar sample within specified separation ranges and magnitude differences. These condi-

tions minimize our selection bias for lensed systems. Combining with the result from DR3,

we present a complete sample of 19 lensed quasars selected from 36,278 quasars, where three

of them have quadruple-image configurations. We then updated cosmological constraints

obtained in Paper III, and obtained results consistent with other cosmological observations

(e.g., Komatsu et al. 2009).

In addition to the 19 lensed quasars in our complete sample, the DR5 quasar catalog

contains at least 17 additional lenses. Two were discovered among the 136 lens candidates

considered here but excluded from our complete lens sample, and two were discovered from

quasars outside the source sample of the 36,278 quasars. The remaining 13 lenses include

two previously known lenses and 11 lenses from the DR3 sample (Paper II). These numbers

may be compared with those of the CLASS, which contains 13 lenses in their statistical

sample with well defined criteria and 22 lenses in total among 8958 quasars.

In this paper, we have also report the discovery of 7 binary quasars with nearly identical

redshifts, as well as 8 projected quasar pairs. These quasar pairs are a useful addition to

the studies of the small-scale correlation function and interaction of quasars (Hennawi et al.

2006a; Myers et al. 2008; Green et al. 2010) and the spatial distribution of absorbers (Bowen et al.

2006; Hennawi et al. 2006b; Tytler et al. 2009).

The quasar sample used in the present work is constructed from the full SDSS-I data set,

and hence the work represents the completion of our statistical lens sample in the SDSS-I.

We plan to continue our lens survey further to construct the SQLS lens sample from the

SDSS-II, using the DR7 quasar catalog (Schneider et al. 2010). More detailed analysis of

cosmological constraints will be presented elsewhere.
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Table 1. NUMBERS OF CANDIDATES

Number

SDSS DR5 spectroscopically confirmed quasars 77,429

DR5 quasars not passing the criteria (0.6 < z < 2.2, i < 19.1, and PSF WIDTH< 1.′′8) −41,142

Source quasar sample 36,287

DR3 quasars (checked in Paper II) −22,651a

Source quasars to complete the DR5 statistical lens sample 13,636

Initial morphologically selected candidates (using star L in ugri) 401

Rejected by GALFIT fitting −348

Rejected by visual inspection −3

Final morphologically selected candidates for follow-up 50

Initial color selected candidates 140

Rejected by FIRST image check −5

Rejected by visual inspection −6

Rejected by searching for possible lens objects −41

Final color selected candidates for follow-up 88

Final total (morphological+color) candidates for follow-up 136b

aThe number of the source quasars in the paper II is 22,683, but 32 DR3 quasars do not meet

the criteria in the DR5 catalog.

bTwo candidates are selected by both the morphological and color selection algorithms. They

are listed in Table 2 as morphologically selected candidates.
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Table 2. Morphologically Selected Candidates

Object redshifta ib θSDSS
c |∆i|c imaged specd comment Ref.

SDSS J024519.65−005113.0 1.545 18.78 1.12 1.24 UF(K) · · · QSO+galaxy · · ·

SDSS J030556.81+005701.7 0.893 19.00 2.09 1.46 UF(K) · · · QSO+galaxy · · ·

SDSS J074653.03+440351.3 1.998 18.71 1.07 0.04 8k(V RI),RE(r),Op(I) ES SDSS lens 1

SDSS J074942.51+171512.1 2.163 18.87 1.01 0.82 Te(I) · · · no lens object · · ·

SDSS J080009.98+165509.4 0.708 17.97 0.79 0.03 Te(I) · · · no lens object · · ·

SDSS J080623.70+200631.8 1.537 18.88 1.42 0.26 8k(V RI),QU(H),NR(K ′) ES SDSS lens 2

SDSS J082312.13+264415.7 1.855 18.16 1.40 1.42 Te(I) · · · QSO+galaxy · · ·

SDSS J082341.08+241805.4 1.811 16.90 0.58 0.04 8k(V ) · · · single QSO · · ·

SDSS J083240.71+060759.3 0.808 19.04 1.58 1.92 Te(I) · · · no lens object · · ·

SDSS J094713.15+024743.6 0.641 18.99 1.57 1.11 Te(I) · · · no lens object · · ·

SDSS J095237.05+290834.6 1.413 18.22 4.55 1.14 Te(I) · · · QSO+galaxy · · ·

SDSS J104901.21+121214.1 1.572 19.09 1.50 0.84 · · · EF QSO+unknown(not QSO) · · ·

SDSS J105545.44+462839.5 1.249 18.75 1.12 0.89 8k(V RI),FO(RI),Te(RI),NF(H) FO SDSS lens 3

SDSS J110456.56+130711.1 1.778 18.47 1.07 1.11 Te(I) FO QSO+star · · ·

SDSS J111816.95+074558.1 1.736 15.96 2.26 1.92 · · · · · · known lens (PG1115) 4

SDSS J112508.26+303141.3 1.960 17.62 0.43 1.17 Te(I) · · · single QSO · · ·

SDSS J113831.39+151215.3 0.659 18.42 0.50 2.06 Te(I) · · · single QSO · · ·

SDSS J114217.47+451447.7 1.782 18.95 3.93 0.26 · · · DA QSO+star · · ·

SDSS J114443.69+350539.6 0.604 18.74 0.79 1.86 Te(I) · · · single QSO · · ·

SDSS J115619.49+460313.8 1.235 18.11 0.44 1.75 Te(I) · · · single QSO · · ·

SDSS J115800.91+120439.4 1.615 18.57 1.84 1.24 Te(I) · · · QSO+galaxy · · ·

SDSS J120118.92+401318.1 1.933 18.56 1.54 1.51 Te(I) · · · QSO+galaxy · · ·

SDSS J120239.66+455429.7 1.071 18.46 0.40 0.94 Te(I) · · · single QSO · · ·

SDSS J120348.93+325542.5 1.217 18.89 0.47 1.80 Te(I) · · · single QSO · · ·

SDSS J120730.01+125057.6 0.752 18.20 0.54 1.08 Te(I) · · · single QSO · · ·

SDSS J120912.45+143602.3 1.497 18.10 0.42 0.48 Te(I) · · · single QSO · · ·

SDSS J121357.15+083202.2 0.811 18.01 0.41 0.87 Te(I) · · · single QSO · · ·

SDSS J122848.03+151018.4 1.118 17.59 0.40 1.38 Te(I) · · · single QSO · · ·
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Table 2—Continued

Object redshifta ib θSDSS
c |∆i|c imaged specd comment Ref.

SDSS J130225.24+332933.2 0.922 18.19 0.50 1.34 Te(I) · · · single QSO · · ·

SDSS J132236.41+105239.4 1.716 18.24 1.88 1.38 8k(V ),Te(V RI),NF(H) WF SDSS lens 5

SDSS J134322.04+314827.7 0.930 18.32 0.49 0.33 Te(I) · · · single QSO · · ·

SDSS J135143.59+245248.8 1.286 19.06 1.47 1.34 Te(I) · · · no lens object · · ·

SDSS J135306.34+113804.7 1.623 16.48 1.33 0.97 8k(V RI),QU(H),Ma(gi) ES SDSS lens 2

SDSS J135404.14+110725.7 1.318 18.26 1.34 1.31 Te(I) · · · no lens object · · ·

SDSS J141202.70+354247.2 1.360 19.02 1.00 1.42 Te(I) · · · QSO+galaxy · · ·

SDSS J141910.20+420746.9 0.874 17.04 0.45 1.38 Te(I) · · · single QSO · · ·

SDSS J142030.50+353328.6 1.689 18.79 1.35 2.06 8k(I) · · · QSO+galaxy · · ·

SDSS J142326.96+093216.5 0.633 19.03 1.58 1.75 Te(I) · · · no lens object · · ·

SDSS J143344.39+113941.9 1.447 18.42 0.73 1.31 Te(V ) · · · single QSO · · ·

SDSS J143452.44+133459.5 1.689 18.26 0.55 1.34 Te(I) · · · single QSO · · ·

SDSS J144618.91+114446.2 1.243 17.66 0.43 0.65 Te(I) · · · single QSO · · ·

SDSS J145307.06+331950.5 1.192 18.89 1.69 1.17 · · · ES QSO+star · · ·

SDSS J150020.24+340038.9 0.732 18.90 0.63 1.51 Te(I) · · · single QSO · · ·

SDSS J151109.85+335701.7 0.799 18.96 1.10 0.69 8k(V ),Te(I),FO(I) FO binary QSO (z = 0.799, 0.799) · · ·

SDSS J152938.10+300351.1 0.641 18.36 0.44 1.99 Te(I) · · · single QSO · · ·

SDSS J153325.42+361915.5 0.681 18.90 0.42 0.87 Te(I) · · · single QSO · · ·

SDSS J155000.01+300223.6 0.657 18.68 0.45 0.48 Te(V ) · · · single QSO · · ·

SDSS J155225.62+300902.0 0.750 18.85 1.25 0.57 8k(V I),Op(I),FO(I),UF(K) FO binary QSO (z = 0.752, 0.752) · · ·

SDSS J165743.05+221149.1 1.780 17.88 1.17 1.20 MM(z),UF(K) · · · QSO+galaxy · · ·

SDSS J221227.74+005140.5 1.773 18.88 1.76 1.55 UF(K) · · · no lens object · · ·

aRedshifts from the SDSS DR5 quasar catalog.

bi-band PSF magnitudes with Galactic extinction corrections from the SDSS DR5 quasar catalog.

cImage separations (θSDSS) in units of arcsec and absolute i-band magnitude differences (|∆i|) between the expected two components, derived
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from fitting the SDSS i-band image of each candidate with two PSFs using GALFIT.

dInstruments (and filters) used for the follow-up observations. UF: UFTI at UKIRT, 8k: UH8k at UH88, Te: Tek2k CCD at UH88, Op: Optic

CCD at UH88, QU: QUIRC at UH88, WF: WFGS2 at UH88, RE: RETROCAM at MDM 2.4m, ES: ESI at Keck, NR: NIRC at Keck, EF: EFOSC2

at ESO 3.6m, NF: NICFPS at ARC 3.5m, DA: DIS III at ARC 3.5m, FO: FOCAS at Subaru, Ma: MagIC at WB 6.5m, MM: MiniMo at WIYN.

References. — (1) Inada et al. 2007; (2) Inada et al. 2006; (3) Kayo et al. 2009; (4) Weymann et al. 1980; (5) Oguri et al. 2008b.
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Table 3. Color Selected Candidates

Object redshifta ib θSDSS
c imaged specd comment Ref.

SDSS J004018.21+005530.9 2.019 18.62

SDSS J004018.68+005525.9 2.080 19.13 8.53 · · · DA QSO pair 1

SDSS J014917.10−002141.6 1.688 18.35

SDSS J014917.47−002158.5 2.160 19.46 17.67 · · · DA QSO pair 1

SDSS J032029.75+000650.0 1.704 19.05

SDSS J032030.90+000658.0 · · · 20.34 18.99 UF(K) · · · no lens object · · ·

SDSS J034347.00−000706.5 1.975 18.85

SDSS J034347.48−000658.9 · · · 19.30 10.49 UF(K) · · · no lens object · · ·

SDSS J072653.68+394706.9 1.599 18.92

SDSS J072653.66+394710.6 · · · 18.84 3.69 Te(I) · · · no lens object · · ·

SDSS J074550.99+503423.1 1.737 18.98

SDSS J074550.78+503430.3 · · · 19.84 7.44 Te(I) · · · no lens object · · ·

SDSS J075403.19+193740.9 1.540 19.05

SDSS J075403.60+193734.2 · · · 19.98 8.87 · · · DA QSO+star · · ·

SDSS J080932.70+193847.2 1.670 18.49

SDSS J080931.82+193849.3 · · · 19.28 12.68 Te(I) · · · no lens object · · ·

SDSS J081210.96+070826.2 1.862 17.65

SDSS J081210.93+070838.7 · · · 16.89 12.39 Te(I) · · · no lens object · · ·

SDSS J083228.49+563234.2 0.683 18.94

SDSS J083228.53+563237.3 · · · 18.91 3.09 Te(I) DA QSO+star · · ·

SDSS J084109.72+250200.2 1.227 19.06

SDSS J084109.88+250216.0 · · · 20.13 15.89 Te(I) · · · no lens object · · ·

SDSS J084359.79+073229.7 2.175 19.02

SDSS J084359.89+073215.9 · · · 20.28 13.97 Te(I) · · · no lens object · · ·

SDSS J085705.91+270149.0 1.419 19.08

SDSS J085706.14+270147.6 · · · 20.06 3.36 Te(I) · · · no lens object · · ·

SDSS J090323.94+313445.6 1.217 18.99

SDSS J090324.19+313443.6 · · · 19.23 3.78 Te(I) · · · no lens object · · ·
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Table 3—Continued

Object redshifta ib θSDSS
c imaged specd comment Ref.

SDSS J090505.55+085826.4 1.082 19.03

SDSS J090505.51+085829.3 · · · 20.22 2.88 Te(I) · · · no lens object · · ·

SDSS J092722.27+343321.2 1.393 18.71

SDSS J092721.58+343309.1 · · · 19.99 14.87 · · · DA not QSO · · ·

SDSS J093514.07+372140.7 1.798 18.34

SDSS J093514.41+372145.1 · · · 18.35 5.91 · · · DA QSO+star · · ·

SDSS J094115.37+305810.3 1.193 19.02

SDSS J094115.49+305808.6 · · · 20.24 2.39 Te(I) · · · QSO+galaxy · · ·

SDSS J094132.43+112913.1 1.535 18.57

SDSS J094131.42+112917.3 · · · 18.45 15.51 · · · DA QSO+star · · ·

SDSS J094903.46+280021.9 1.563 18.96

SDSS J094903.56+280023.2 · · · 19.69 1.72 UF(K) FO QSO+star · · ·

SDSS J095126.56+324601.4 1.552 18.41

SDSS J095127.53+324549.1 1.928 19.59 17.30 · · · DA QSO pair · · ·

SDSS J095454.99+373419.9 1.884 18.36

SDSS J095454.74+373419.8 1.540 19.19 3.14 · · · DA QSO pair 1

SDSS J095820.72+291901.1 1.537 18.65

SDSS J095821.77+291855.5 · · · 19.60 14.75 Te(I) · · · no lens object · · ·

SDSS J101211.29+365030.7 1.678 18.81

SDSS J101211.07+365014.3 1.678 20.01 16.60 Te(I),NF(H) DA no lens object, binary QSO · · ·

SDSS J101753.63+414931.4 2.114 18.86

SDSS J101752.33+414922.6 · · · 18.97 17.08 · · · DA QSO+star · · ·

SDSS J102335.90+384909.4 1.362 18.95

SDSS J102336.00+384908.2 · · · 19.13 1.71 Te(I) · · · no lens object · · ·

SDSS J103149.35+371055.2 2.116 19.06

SDSS J103150.14+371052.6 · · · 17.76 9.73 · · · DA QSO+star · · ·

SDSS J103419.11+124608.0 2.104 18.77

SDSS J103419.16+124609.9 · · · 18.69 1.95 Te(I) · · · no lens object · · ·
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Table 3—Continued

Object redshifta ib θSDSS
c imaged specd comment Ref.

SDSS J104655.40+292045.7 1.139 18.94

SDSS J104654.72+292052.3 · · · 19.47 11.03 Te(I) · · · no lens object · · ·

SDSS J111727.07+420003.0 1.154 19.01

SDSS J111727.08+420000.3 · · · 20.25 2.78 Te(I) · · · no lens object · · ·

SDSS J112331.19+134954.5 1.352 18.99

SDSS J112331.15+134952.9 · · · 19.72 1.73 Te(I) FO QSO+star · · ·

SDSS J112856.75+143352.2 1.533 18.37

SDSS J112856.01+143349.4 · · · 18.58 11.22 Te(I) · · · no lens object · · ·

SDSS J113358.60+063625.7 1.570 17.97

SDSS J113358.01+063630.2 · · · 19.02 9.90 Te(I) · · · no lens object · · ·

SDSS J120450.54+442835.8 1.142 18.79

SDSS J120450.78+442834.2 1.814 19.20 3.06 · · · DA QSO pair 1

SDSS J120629.64+433217.5 1.790 18.47

SDSS J120629.65+433220.6 1.790 19.16 3.04 8k(V RI) DA SDSS lens 2

SDSS J121646.05+352941.5 2.012 19.08

SDSS J121645.93+352941.6 2.012 19.86 1.45 Te(V RI),NF(H) WF SDSS lens 3

SDSS J121653.10+350503.7 1.854 18.52

SDSS J121654.53+350510.8 1.800 19.33 18.82 · · · DA QSO pair · · ·

SDSS J122109.50+364732.2 1.859 18.92

SDSS J122109.47+364739.0 0.470 19.87 6.76 · · · DA QSO pair · · ·

SDSS J122332.63+412939.2 0.804 18.72

SDSS J122334.17+412945.6 · · · 18.77 18.36 · · · DA not QSO · · ·

SDSS J123140.73+395722.9 1.572 18.98

SDSS J123139.73+395721.7 · · · 19.56 11.63 · · · DA QSO+star · · ·

SDSS J123449.46+084320.2 1.830 18.86

SDSS J123448.88+084303.9 · · · 19.51 18.49 · · · DA QSO+star · · ·

SDSS J123823.37+463439.1 1.411 19.08

SDSS J123821.84+463445.8 1.457 19.97 17.15 · · · DA QSO pair · · ·
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Table 3—Continued

Object redshifta ib θSDSS
c imaged specd comment Ref.

SDSS J125104.28+151144.9 2.075 18.60

SDSS J125103.79+151159.8 · · · 19.24 16.52 · · · DA not QSO · · ·

SDSS J131019.76+401724.2 2.054 18.81

SDSS J131019.52+401713.9 · · · 20.10 10.75 · · · DA QSO+star · · ·

SDSS J131339.98+515128.3 1.875 17.72

SDSS J131340.02+515129.4 1.875 17.96 1.05 Te(V RI) LR SDSS lens 4

SDSS J131403.48+415203.9 1.845 18.45

SDSS J131403.33+415203.7 · · · 19.37 1.80 Te(I) · · · no lens object · · ·

SDSS J132405.28+282333.5 0.904 18.48

SDSS J132405.19+282331.9 · · · 19.69 2.03 Te(I) · · · no lens object · · ·

SDSS J133615.14+285911.8 1.423 18.89

SDSS J133614.88+285859.5 · · · 19.03 12.83 WF(i) · · · no lens object · · ·

SDSS J134150.74+283207.9 1.376 18.71

SDSS J134150.49+283148.1 · · · 19.99 20.07 SC(I)e · · · no lens object · · ·

SDSS J134533.26+113045.2 1.355 18.75

SDSS J134532.93+113036.8 · · · 19.72 9.77 · · · DA QSO+star · · ·

SDSS J134929.84+122706.9 1.722 17.46

SDSS J134930.01+122708.8 1.722 18.68 2.99 FO(I),QU(H) DA,FO SDSS lens 1,5

SDSS J140530.91+350319.5 1.599 18.36

SDSS J140529.53+350328.0 0.584 18.34 19.02 · · · DA QSO pair · · ·

SDSS J140951.68+384406.1 1.675 18.51

SDSS J140950.88+384417.9 · · · 18.82 15.12 · · · DA QSO+star · · ·

SDSS J141348.55+475113.4 2.175 19.00

SDSS J141348.27+475112.8 · · · 18.55 2.98 NF(H) · · · no lens object · · ·

SDSS J141938.37+125227.0 1.929 19.04

SDSS J141937.83+125233.7 · · · 20.15 10.39 WF(i) · · · no lens object · · ·

SDSS J141951.10+474350.6 1.563 18.56

SDSS J141951.14+474357.4 · · · 19.28 6.76 WF(i) · · · no lens object · · ·
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Table 3—Continued

Object redshifta ib θSDSS
c imaged specd comment Ref.

SDSS J142815.63+095443.5 1.467 18.48

SDSS J142815.71+095444.8 · · · 19.59 1.63 Te(I),NF(H) · · · no lens object · · ·

SDSS J143307.88+342315.9 1.950 19.05

SDSS J143308.03+342317.1 · · · 19.85 2.10 FO(I),WF(i) · · · no lens object · · ·

SDSS J143624.30+353709.4 0.767 18.71

SDSS J143623.21+353707.6 · · · 18.78 13.41 · · · DA QSO+star · · ·

SDSS J143715.91+101010.1 1.022 18.23

SDSS J143715.87+101008.5 · · · 19.12 1.76 Te(I) · · · no lens object · · ·

SDSS J144410.84+304809.6 1.731 18.17

SDSS J144410.13+304802.7 · · · 18.91 11.53 WF(i) · · · no lens object · · ·

SDSS J151823.05+295925.4 1.249 18.86

SDSS J151823.34+295939.8 · · · 18.72 14.76 · · · DA QSO+star · · ·

SDSS J151823.43+295927.6 1.249 19.88 5.28 WF(i) DA no lens object, binary QSO · · ·

SDSS J152626.52+413135.5 2.096 19.02

SDSS J152626.60+413147.6 1.100 19.44 12.06 · · · DA QSO pair · · ·

SDSS J153937.74+302023.6 1.644 18.67

SDSS J153937.10+302017.0 1.650 19.73 10.63 · · · DA QSO pair · · ·

SDSS J154515.93+051713.0 2.134 18.95

SDSS J154515.57+051729.0 · · · 18.75 16.87 · · · DA QSO+star · · ·

SDSS J155130.62+375421.3 1.448 18.93

SDSS J155132.07+375410.9 · · · 20.09 19.97 · · · DO QSO+star · · ·

SDSS J155218.09+045635.2 1.567 18.20

SDSS J155217.94+045646.8 1.567 18.62 11.69 Te(I) DA no lens object, binary QSO · · ·

SDSS J160127.53+091255.9 1.765 18.90

SDSS J160127.56+091258.9 · · · 19.60 2.97 CI(I),NF(H) · · · no lens object · · ·

SDSS J160602.81+290048.7 0.770 18.31

SDSS J160603.02+290050.9 0.770 18.38 3.45 SP(i) DA no lens object, binary QSO 6

SDSS J160614.69+230518.0 1.206 18.89
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Table 3—Continued

Object redshifta ib θSDSS
c imaged specd comment Ref.

SDSS J160614.80+230518.1 · · · 19.27 1.37 Te(I),NF(H),UF(K) WF different SED, not QSO · · ·

SDSS J161055.42+354404.7 1.549 18.96

SDSS J161056.18+354418.3 · · · 19.40 16.36 CI(I),WF(i) · · · no lens object · · ·

SDSS J161526.64+264813.7 2.179 18.40

SDSS J161526.35+264819.2 · · · 19.56 6.74 · · · DA QSO+star · · ·

SDSS J161527.21+264813.7 · · · 19.63 7.54 · · · DA QSO+star · · ·

SDSS J162919.93+231919.9 0.852 18.50

SDSS J162919.09+231933.4 · · · 18.68 17.81 · · · DA QSO+star · · ·

SDSS J163520.04+205225.1 1.775 19.03

SDSS J163519.51+205213.9 1.775 20.07 13.61 Te(I),CI(I) DA,DO no lens object, different SED, binary QSO · · ·

SDSS J164212.07+220049.0 1.552 18.55

SDSS J164211.45+220038.0 · · · 19.37 14.08 FO(I) · · · no lens object · · ·

SDSS J164302.96+132738.2 1.526 18.88

SDSS J164302.69+132724.5 · · · 19.35 14.28 CI(I),WF(i) · · · no lens object · · ·

SDSS J164655.14+194300.8 1.951 19.02

SDSS J164656.25+194310.5 · · · 19.61 18.34 WF(i) · · · no lens object · · ·

SDSS J164723.58+203314.4 0.814 18.24

SDSS J164723.80+203308.6 · · · 18.94 6.55 Te(I) · · · no lens object · · ·

SDSS J165156.72+280036.9 0.862 18.65

SDSS J165156.98+280036.4 · · · 19.72 3.38 Te(I) · · · QSO+galaxy · · ·

SDSS J165326.37+193326.5 1.534 19.10

SDSS J165326.23+193316.3 · · · 18.27 10.45 WF(i) · · · no lens object · · ·

SDSS J165502.02+260516.5 1.892 17.64

SDSS J165501.32+260517.5 1.881 17.77 9.55 · · · · · · SDSS QSO, different SED, QSO pair · · ·

SDSS J165609.48+250857.5 2.165 18.98

SDSS J165608.98+250853.8 · · · 19.03 7.84 CI(I) DO QSO+star · · ·

SDSS J170438.29+212149.3 1.438 18.80

SDSS J170438.69+212202.1 · · · 19.36 13.95 CI(I),WF(i) · · · no lens object · · ·
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Table 3—Continued

Object redshifta ib θSDSS
c imaged specd comment Ref.

SDSS J170555.21+214801.8 1.249 18.93

SDSS J170555.06+214801.7 · · · 19.84 2.18 UF(K) · · · no lens object · · ·

SDSS J221953.73−010037.5 1.700 18.97

SDSS J221953.54−010032.1 · · · 19.56 6.14 UF(K) · · · no lens object · · ·

SDSS J234348.33+000202.8 1.812 19.08

SDSS J234348.49+000203.4 · · · 20.14 2.38 UF(K) · · · no lens object · · ·

Note. — Two candidates, SDSS J080623.706+200631.89 and SDSS J145307.064+331950.54, that are

identified by the morphological selection algorithm as well, are listed in Table 2.

aRedshifts from the SDSS DR5 quasar catalog.

bi-band PSF magnitudes with Galactic extinction corrections from the SDSS DR5 quasar catalog.

cImage separations (θSDSS) in units of arcsec between the two components from the SDSS imaging

data.

dInstruments (and filters) used for the follow-up observations. DA: DIS III at ARC 3.5m, NF: NICFPS

at ARC 3.5m, SP: SPIcam at ARC 3.5m, UF: UFTI at UKIRT, Te: Tek2k CCD at UH88, 8k: UH8k at

UH88, WF: WFGS2 at UH88, QU: QUIRC at UH88, FO: FOCAS at Subaru, LR: LRIS at Keck, DO:

DOLORES at TNG 3.6m, CI: CCD Imager at KPNO 2.1m.

eThe data are obtained from the SMOKA (Baba et al. 2002).

References. — (1) Hennawi et al. 2006a; (2) Oguri et al. 2005; (3) Oguri et al. 2008b; (4) Ofek et al.

2007; (5) Kayo et al. 2009; (6) Myers et al. 2008.
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Table 4. DR5 Statistical Sample

Object Nimg zs
a zl

b MI
c θmax

d fI
e Source Comment Ref.

SDSS J0246−0825 2 1.682 0.723 −21.9 1.04 0.34 DR3 SDSS lens 1,2,3

SDSS J0746+4403 2 2.003 0.513 −22.6 1.08 0.97 DR5 SDSS lens 4,5

SDSS J0806+2006 2 1.540 0.573 −22.3 1.40 0.76 DR5 SDSS lens 3,6

SDSS J0913+5259 2 1.377 0.830 −24.5 1.14 0.70 DR3 known lens SBS 0909+523 2,7,8

SDSS J0924+0219 4 1.524 0.394 −23.0 1.78 0.43 DR3 SDSS lens 2,9,10,11

SDSS J1001+5027 2 1.838 · · · · · · 2.86 0.72 DR3 SDSS lens 2,12

SDSS J1001+5553 2 1.405 0.390 −24.4 6.17 0.94 DR3 known lens Q0957+561 2,13,14

SDSS J1004+4112 5 1.732 0.680 −23.9 14.62 0.23 DR3 SDSS lens 2,15

SDSS J1021+4913 2 1.720 · · · · · · 1.14 0.40 DR3 SDSS lens 2,16

SDSS J1055+4628 2 1.249 · · · · · · 1.19 0.33 DR5 SDSS lens 5

SDSS J1118+0745 4 1.720 0.311 −22.2 2.43 0.25 DR5 known lens PG1115+080 17,18,19

SDSS J1206+4332 2 1.789 · · · · · · 2.90 0.74 DR5 SDSS lens 12

SDSS J1216+3529 2 2.012 · · · · · · 1.49 0.41 DR5 SDSS lens 20

SDSS J1226−0006 2 1.121 0.517 −22.5 1.24 0.45 DR3 SDSS lens 2,21

SDSS J1313+5151 2 1.875 0.194 −21.6 1.24 0.92 DR5 SDSS lens 22

SDSS J1332+0347 2 1.445 0.191 −21.6 1.14 0.70 DR3 SDSS lens 2,24

SDSS J1335+0118 2 1.570 0.440 −22.2 1.56 0.37 DR3 SDSS lens 2,21,24

SDSS J1353+1138 2 1.629 · · · · · · 1.41 0.40 DR5 SDSS lens 6

SDSS J1524+4409 2 1.210 0.320 −22.7 1.67 0.56 DR3 SDSS lens 2,20

aSource redshifts from follow-up observations

bMeasured lens redshifts.

cAbsolute magnitudes of the detected (brightest) lens galaxies. The combinations of evolution- and K-corrections are

included (Poggianti 1997).

dMaximum image separations in units of arcsec.
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eFlux ratios between the brightest lensed image and the farthest lensed image from the brightest image, in the I-band

images.

References. — (1) Inada et al. 2005; (2) Paper II; (3) Eigenbrod et al. 2007; (4) Inada et al. 2007; (5) Kayo et al.

2009; (6) Inada et al. 2006; (7) Oscoz et al. 1997; (8) Lubin et al. 2000; (9) Inada et al. 2003a; (10) Ofek et al.

2007; (11) Eigenbrod et al. 2006a; (12) Oguri et al. 2005; (13) Walsh et al. 1979; (14) Young et al. 1980; (15)

Inada et al. 2003b; (16) Pindor et al. 2006; (17) Weymann et al. 1980; (18) CASTLES webpage (C. S. Kochanek et

al., http://cfa-www.harvard.edu/castles/.); (19) Kundić et al. 1997; (20) Oguri et al. 2008b; (21) Eigenbrod et al. 2006b;

(22) Ofek et al. 2007; (23) Morokuma et al. 2007; (24) Oguri et al. 2004.

http://cfa-www.harvard.edu/castles/
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Table 5. DR5 Additional Lensed Quasars

Object Nimg zs
a zl

b θc fI
d Source Comment Rejecte Ref.

SDSS J0134−0931 5 2.216 0.765 0.68 0.03 DR3 known lens PMN J0134−0931 z > 2.2, i > 19.1, θ < 1′′ 1,2,3,4

SDSS J0145−0945 2 2.719 0.491 2.23 0.15 DR3 known lens Q0142−100 z > 2.2, |∆I| > 1.25 4,5,6

SDSS J0820+0812 2 2.024 0.803 2.30 0.17 DR5 known lens ULAS J0820+0812 |∆I| > 1.25 7

SDSS J0813+2545 4 1.500 · · · 0.91 0.06 DR3 known lens HS 0810+2554 θ < 1′′ 4,8

SDSS J0819+5356 2 2.237 0.294 4.04 0.23 DR5 SDSS lens z > 2.2, |∆I| > 1.25 9

SDSS J0832+0404 2 1.115 0.659 1.98 0.22 DR3 SDSS lens |∆I| > 1.25 4,10

SDSS J0903+5028 2 3.584 0.388 2.80 0.46 DR3 SDSS lens z > 2.2, i > 19.1 4,11

SDSS J0911+0550 4 2.800 0.769 3.26 0.41 DR3 known lens RX J0911+0551 z > 2.2 4,12,13

SDSS J1004+1229 2 2.650 0.950 1.54 0.09 DR5 known lens J1004+1229 z > 2.2, i > 19.1, |∆I| > 1.25 14,15

SDSS J1138+0314 4 2.442 0.445 1.44 0.35 DR3 SDSS lens z > 2.2 4,16

SDSS J1155+6346 2 2.890 0.176 1.83 0.50 DR3 SDSS lens z > 2.2 4,17

SDSS J1322+1052 2 1.716 · · · 2.00 0.21 DR5 SDSS lens |∆I| > 1.25 10

SDSS J1349+1227 2 1.722 · · · 3.01 0.30 DR5 SDSS lens |∆I| > 1.25 18

SDSS J1406+6126 2 2.126 0.271 1.98 0.58 DR3 SDSS lens i > 19.1 4,19

SDSS J1633+3134 2 1.511 · · · 0.66 0.30 DR3 known lens FBQ 1633+3134 θ < 1′′, |∆I| > 1.25 4,20

SDSS J1650+4251 2 1.547 · · · 1.20 0.17 DR3 SDSS lens |∆I| > 1.25 4,21

SDSS J2343−0050 2 0.788 · · · 1.51 0.85 DR5 known lens ULAS J2343−0050 i > 19.1 22

Note. — See text for the selection of each lensed quasar.

aSource redshifts from follow-up observations

bMeasured lens redshifts.

cMaximum image separations in units of arcsec.

dFlux ratios between the brightest lensed image and the farthest lensed image from the brightest image, in the I-band images.
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eThe reason that each lens is excluded from the statistical sample.

References. — (1) Winn et al. 2002; (2) Gregg et al. 2002; (3) Hall et al. 2002; (4) Paper II; (5) Surdej et al. 1987; (6) Eigenbrod et al.

2007; (7) Jackson et al. 2009; (8) Reimers et al. 2002; (9) Inada et al. 2009; (10) Oguri et al. 2008b; (11) Johnston et al. 2003; (12) Bade et al.

1997; (13) Kneib et al. 2000; (14) Lacy et al. 2002; (15) CASTLES webpage (C. S. Kochanek et al., http://cfa-www.harvard.edu/castles/.). (16)

Eigenbrod et al. 2006b; (17) Pindor et al. 2004; (18) Kayo et al. 2009; (19) Inada et al. 2007; (20) Morgan et al. 2001; (21) Morgan et al. 2003;

(22) Jackson et al. 2008.

http://cfa-www.harvard.edu/castles/


– 36 –

1 10

−18

−20

−22

−24

ab
so

lu
te

 m
ag

ni
tu

de

image separation [arcsec]

Fig. 1.— The absolute magnitudes (MI or Mi) of lens galaxies in our DR5 statistical

sample (filled circles; 13 systems with known lens redshifts, listed in Table 4) are compared

with detection limits of putative lens galaxies (open circles and open triangles) for our lens

candidates with comments of “no lens object” and/or “binary QSO”. We concluded these lens

candidates are not lensed quasars given the absence of lens galaxies to our detection limits.

The absolute magnitudes for the putative lens galaxies are computed assuming zl = 0.5zs
(open circles). For the five binary systems (Section 4.2), we assumed an extreme case of

zl = zs (open triangles). The combinations of evolution- and K-corrections derived from the

spectral model of Poggianti (1997) are included.
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Fig. 2.— The image separation distribution of the SQLS DR5 statistical lens sample, in bins

of ∆ log θ = 0.2. Individual lensed quasars are listed in Table 4. The dotted lines indicate

upper and lower limits of the image separation for our statistical lens sample.
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