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Traditionally, inflationary models are analyzed in terms of parameters such as the scalar spectral
index ns and the tensor to scalar ratio r, while dark energy models are studied in terms of the
equation of state parameter w. Motivated by the fact that both deal with periods of accelerated
expansion, we study the evolution of w during inflation, in order to derive observational constraints
on its value during an earlier epoch likely dominated by a dynamic form of dark energy. We find that
the cosmic microwave background and large-scale structure data is consistent with winflation = −1
and provides an upper limit of 1 + w<∼ 0.02. Nonetheless, an exact de Sitter expansion with a
constant w = −1 is disfavored since this would result in ns = 1.

PACS numbers: 98.80.-k; 98.80.Es; 95.36.+x

I. INTRODUCTION

The nature of the dark energy has been seen as one
of the principal puzzles in cosmology, and in theoretical
physics as a whole, ever since the supernova observations
[1, 2] in 1998 confirmed the mounting suspicion that the
expansion rate of the Universe is accelerating. One of the
leading contenders is the cosmological constant, for which
the equation of state w equals −1, both on theoretical
grounds and because no confirmed deviations from w =
−1 have come from cosmological observations.

However, the current phase of accelerated expansion is
most likely not the only one in the history of the Uni-
verse: it is thought that a much earlier epoch of acceler-
ated expansion called inflation created the initial fluctu-
ations that led to large-scale structure and solved several
problems of the standard Big Bang cosmology. The spec-
trum of fluctuations that we observe today, particularly
in the cosmic microwave background (CMB) radiation,
indicates that they were created by a mechanism that
was able to act outside the normal causal horizon [3, 4].
It is commonly believed that the structure we see in the
CMB and in the distribution of galaxies arose from quan-
tum fluctuations that were stretched outside the Hubble
horizon by a phase of accelerated expansion, not dissim-
ilar to the one that is being observed today.

We know that inflation ended early in cosmic history,
before the epoch of Big Bang nucleosynthesis: an in-
flating Universe is nearly empty of matter and does not
form galaxies. As a consequence, inflation could not have
been driven by a pure cosmological constant. Since the
Universe apparently began to inflate again several bil-
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lion years ago, it is natural to ask whether hypothetical
observers present during primordial inflation would have
been able to distinguish between a cosmological constant
and an alternative model such as a scalar field by study-
ing the expansion history quantified by w. In this paper,
we will link the usual inflationary observables to w and
provide constraints on w during the period when the ob-
servable scales left the horizon.

II. THE EQUATION OF STATE OF THE
INFLATON

We assume that inflation started well before the ob-
servable scales left the horizon, i.e., that it lasted longer
than about 60 e-folds of expansion, so that the only sig-
nificant contribution to the energy density ρ is the one
from the inflaton itself and that the Universe can be taken
to be spatially flat. This implies that the Friedmann and
energy conservation equations are

H2 =
ρ

3M2
Pl

, (1)

ρ̇ = −3H(1 + w)ρ . (2)

Here we used the reduced Planck mass, M2
Pl ≡ 1/8πG in

our units where c = h̄ = 1, and the Hubble parameter
H ≡ ȧ/a where a is the scale factor. We can compute
the equation of state parameter w = p/ρ once we know
the expansion rate H,

1 + w = −2

3

Ḣ

H2
. (3)

It is of course equally possible to compute w directly from
the pressure and the energy density of the inflaton. How-
ever, the form given above is especially useful in the case
of single-field inflation, in which case the perturbations
generated are linked to H as there is only a single degree
of freedom present (exemplified by the potential of the
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inflaton field). This allows us to connect the expression
for w directly to quantities related to the perturbations.

This turns out to be especially simple when working
with the slow-roll parameters in the so-called Hamilton–
Jacobi formalism, see e.g. Ref. [5] for detailed derivations.
The first two slow-roll parameters are defined as

εH = 2M2
Pl

(
H ′

H

)2

, (4)

ηH = 2M2
Pl

H ′′

H
. (5)

Here ′ denotes a derivative with respect to the scalar field
φ. Since H ′ = Ḣ/φ̇ and φ̇ = −2M2

PlH
′, we find together

with Eq. (3) that

1 + w =
2

3
εH . (6)

The equation of state during inflation is therefore directly
given by the first slow-roll parameter. To lowest order in
slow-roll this is also related to the tensor to scalar ratio
by r = 16εH . Without any further work we can deduce
that, since primordial gravitational waves have not been
observed, there is no observational requirement for a de-
viation from w = −1 during inflation. The upper limit
on r from the five-year Wilkinson Microwave Anisotropy
Probe (WMAP) data for a flat ΛCDM model without
running is about 0.43 [6], corresponding to a maximum
deviation from w = −1 of 0.02. We will derive precise
numerical constraints in the next section.1

This result is at first glance a bit puzzling: An equation
of state w = −1 leads to de Sitter expansion which in
turn creates a scale-invariant Harrison–Zel’dovich (HZ)
spectrum. However, the WMAP five-year data paper also
claims a 2.5 sigma deviation from a HZ spectrum. The
explanation is that the deviation of the scalar spectral
index ns from the HZ case (ns = 1) can be caused by the
second slow-roll parameter ηH , given to lowest order in
slow roll by

2ηH = (ns − 1 + 4εH) . (7)

Thus even if at a given time εH ≈ 0, it is still possible to
obtain ns 6= 1 through a non-zero ηH .

A non-zero ηH implies that w will evolve away from
−1. How quickly will it do that? Possibly fast enough
to lead to measurable deviations during the observable
number of e-foldings? We find

d ln(1 + w)

dN
=
d ln εH
dN

= 2(ηH − εH) (8)

where N = − ln a is the number of e-foldings. Since the
rate of change of εH is proportional to εH itself, it can

1 After we completed the calculations for this paper, the WMAP
team released the 7-year data (WMAP7). It gives results very
similar to WMAP5 and we would not expect qualitative, or even
significant quantitative, changes. For example, the upper limit
on r decreases only slightly to 0.37.

become very small if εH is very small. Close to de Sit-
ter the field freezes and moves only very slowly, but even
this slow motion leads to observable effects in the power
spectrum of the perturbations. This is unfortunately an
observational channel that is not available for the con-
temporary dark energy. Indeed, the ways in which we
probe inflation and today’s dark energy are very differ-
ent: we have no way to constrain directly the expansion
history during inflation, but we can see the spectrum of
the curvature perturbations generated during this epoch.
On the other hand, while we can observe directly the
recent expansion history of the Universe and infer the
equation of the state of the dark energy, the fluctuations
generated during the current bout of accelerated expan-
sion are impossible to observe both because of their tiny
predicted amplitude and because they become classical
only when outside the current horizon.

The likelihood of a tiny value of εH has been hotly de-
bated in the inflation literature (e.g. Refs. [7, 8]), since
it would prevent direct detection of inflationary gravita-
tional waves, e.g. by a CMB polarization satellite mission
[9]. Within the framework of the early large-field inflation
models, such as monomial potentials, a tiny εH and large
ηH would look rather unnatural, and hence the observed
ns ≈ 0.96 would suggest r ≈ 0.1− 0.2 and 1 + w ≈ 0.01,
both well within current experimental bounds. However
by contrast the paradigm of small-field models, such as
hybrid inflation, motivated by the need to keep the field
values small in a supergravity context, does suggest that
εH must be extremely small at horizon crossing, thus in-
dicating w very close to −1.

III. NUMERICAL INVESTIGATION

In order to obtain numerical constraints on w during
inflation, we need to link it to observational quantities.
In this paper we will use the spectrum of the primordial
fluctuations, as observed in the CMB. The link between
w and H given in Eq. (3) is fundamental, failing to hold
only if either the universe was very different from Fried-
mannian during inflation or if there were other contri-
butions to the expansion rate present. The first would
invalidate the whole inflationary framework, while in the
second case our w would correspond to an effective total
w.

To go from H to the primordial power spectrum re-
quires a specific model. Here we assume that inflation
was due to a single canonical scalar field, though with-
out making the common assumption of slow-roll. An
interesting future project is to relax this condition by
investigating a range of other models, for example K-
inflation models with a different sound speed [10]. While
this may change quantitative limits on w, we do not ex-
pect it to change the qualitative results. We also note
that our model imposes the Dominant Energy Condition
w ≥ −1 by construction.

In order to compute H during the observable range of
scales, we use the module provided by Lesgourgues and
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Valkenburg (LV) [11] which takes the slow-roll parame-
ters at the pivot scale as an input. The pivot scale is
fixed to be k∗ = 0.01/Mpc (roughly in the center of the
observable range); this is the scale at which the Hubble
parameter H is expanded as a Taylor series in (φ− φ∗),
with the scale factor set to a∗ = k∗/H∗. We then ap-
proach the problem from two slightly different angles.
To reconstruct the evolution of w from the time when
the observable scales left the horizon up to the end of in-
flation, we use the flow-equation formalism [12] to derive
the evolution of εH from the end of inflation to the ob-
servable scales. In this we proceed similarly to Ref. [13]
by selecting “initial” values for the first four slow-roll pa-
rameters at the end of inflation (in fact we only choose
three of them since εH is always equal to 1) and flowing
them back 60 e-foldings using the flow equations. The
values obtained at N = 60 are then used to compute the
observables using the LV module. The appropriate value
of N changes with the inflationary energy scale, and may
be smaller in low energy scales models. But this does not
impact our conclusions, since we are interested in the ex-
perimental constraints on w around the scales that are
directly probed by observations, and additionally, as our
later results show, the constraints remain fairly constant
over a range of N . This allows us to avoid more sophis-
ticated approaches to treating this uncertainty, as given
for instance in Ref. [14].

On the other hand, we do not really know what hap-
pened after the observable scales left the horizon, as we
do not have any observations concerning that period.
Based on this reasoning, Lesgourgues and Valkenburg
[11] argued that considering only the observable scales
makes it possible to work with a relatively low-order ex-
pansion of the scalar field potential without introducing
artificial constraints. We use the module provided by LV
to compute the observables in their framework and to
compare the results with those from the flow-equation
formalism.

In both cases we use CosmoMC [15] to perform a
Markov Chain Monte Carlo exploration of the parameter
space, which includes, depending on our method:

• the slow-roll parameters at N = 0, i.e. at the end
of inflation, for our first approch; the useful param-
eters at the pivot scale (fixed at N = 60) are com-
puted by solving numerically the flow equations;

• the slow-roll parameters at the pivot scale directly
for the second method.

Here we used the first four slow-roll parameters εH , ηH ,
2βH = ξH and 3βH [16] with the following ranges (at
N = 0 for the first method, and at the pivot scale for
the second): εH ∈ [0.0, 1.0] (fixed to 1.0 for the first
method), and ηH , ξH , 3βH ∈ [−10.0, 10.0]. CosmoMC
works together with CAMB [17] to compute the CMB
power spectrum and then uses the WMAP five-year like-
lihood code [6]. The inflationary power spectrum is cal-
culated using the Lesgourgues–Valkenburg module which
solves the perturbation mode equation. This setup allows

FIG. 1: The evolution of w(φ) for a range of cases accepted
by the CMB likelihood, around the field value φ∗ at the pivot
scale k∗ = 0.01/Mpc. The red and yellow curves lie within the
95% and 68% confidence regions for the LV formalism, blue
and purple give the same information for the flow-equation
formalism. From the outside inward, the colored regions are
red, yellow, blue, and purple.

us to compute chains of acceptable expansion histories
during inflation. These were then mapped into chains of
w(φ) (Fig. 1).

In principle Fig. 1 already shows the constraints on the
equation of state parameter during inflation. But, as is
easily seen in the figure, φ moves more and more slowly
as we approach w = −1, which makes the constraints
difficult to interpret. A better representation is w(N) in
terms of the number of e-foldings N before the end of
inflation, see Fig. 2. However, in the LV formalism the
field is never evolved until the end of inflation, so that N
is not defined. An alternative way to plot the results in
this situation is to map them instead to the horizon scale
at that epoch, k = aH. Since the perturbations freeze
in outside the horizon and turn into conserved curvature
perturbations, this scale corresponds to the one that they
have when they re-enter the horizon. We plot our con-
straints in this way in Fig. 3.

¿From the full evolution in Fig. 2 we see that w ap-
proaches −1 rapidly as we move into the past. The pre-
cise rate at which −1 is approached depends on the range
of models chosen at the end of inflation (see e.g. Ref. [18]).
Nonetheless, as shown in the inset, strong deviations from
w = −1 are expected in the last few e-folds. To illustrate
the scales involved: if we were to arbitrarily place today
at N = 7 (the right-hand limit of the inset) and reverse
time then N = 0 would roughly correspond to last scat-
tering (z ≈ 1100).

The current experimental uncertainty on the dark en-
ergy w is about 0.1, comfortably enclosing w = −1, and
in the future will reach a precision of 0.02 or better.
We find that the current limits on w during inflation
are comparable, with a 95% limit of 1 + w < 0.02 at
k ≈ 0.01/Mpc, see Fig. 3. This agrees well with the
arguments in the previous section, but the figure shows
also the precise shape of the constraints. There is no
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FIG. 2: The complete evolution of w(N), from the flow-
equation results accepted by the CMB likelihood. Inflation is
made to end at N = 0 where w(N = 0) = −1/3 corresponding
to εH(N = 0) = 1. For our choice of priors on the slow-roll
parameters at N = 0, we find that w decreases rapidly to-
wards −1 (see inset) and stays close to it during the period
when the observable scales leave the horizon (N ≈ 40 − 60).

lower limit on w (apart from w ≥ −1 enforced by the
model construction). However, the tentative observation
of a deviation from a scale-invariant primordial power
spectrum implies through Eq. (7) that εH and ηH can-
not both be zero. Together with Eq. (8) this disfavours a
constant w = −1. But as discussed in Section II, (1 +w)
can remain small over the observable range of scales and
we find that this deviation is not visible in the figures.

The limits on w can be improved by extending the
lever arm of the measurements, for example by adding
galaxy survey data on smaller scales. We show the im-
pact of using both WMAP 5-year CMB data and Sloan
Digital Sky Survey (SDSS) Data Release 7 Luminous Red
Galaxy data (DR7 LRG) [19] in Fig. 4. The shape of the
constraints have not changed by much, but the limits
have become somewhat tighter. We can achieve another
small increase in precision by adding further CMB data
on smaller scales, but again the improvement is small so
we do not show those constraints.

We also notice that the prescription of LV allows for
a stronger variation of w. The flow-equation formalism
with the number of parameters and priors used here leads
to very little evolution of w during the observable period.
This does not mean that one of the two approaches is
wrong, but rather that they impose different additional
conditions. As always, it is important to be aware of
these effective (and somewhat hidden) priors.

IV. CONCLUSIONS

It seems very likely that there have been at least two
periods of accelerated expansion during the evolution of

FIG. 3: The evolution of w as a function of the comoving scale
k, using only the 5-year WMAP CMB data. Red and yellow
are the 95% and 68% confidence regions for the LV formalism.
Blue and purple are the same for the flow-equation formalism.
From the outside inward, the colored regions are red, yellow,
blue, and purple.

FIG. 4: The evolution of w as a function of the comoving
scale k, as in Fig. 3, but using in addition the SDSS DR7
LRG data. We only show the LV limits.

the Universe. During the first period, called inflation,
the perturbations that led to today’s structure were gen-
erated, while the second one has started only recently
and is attributed to a mysterious dark energy. In this
paper we ask what a similar physical origin would imply
for the dark energy.

One point that is immediately clear is that since in-
flation ended, there is reason to assume that it was not
due to a cosmological constant. This is supported by the
tentative detection of a deviation from an exact Harrison-
Zel’dovich spectrum with ns = 1 [6]: a period dominated
by a (possibly effective) cosmological constant would ei-
ther result in no perturbations at all or in perturbations
with an exactly scale-invariant spectrum, depending on
how precisely the de Sitter state is reached. The for-
mer possibility is clearly excluded, and while current ob-
servations are not yet conclusive on whether ns = 1 is
excluded, the Planck satellite should settle the question
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within the next few years, since it is expected to reach a
precision of σns

<∼ 0.005 [20]. A clear detection of ns 6= 1
would require either w′ 6= 0 or w 6= −1, with a constant
w = −1 being ruled out in both cases.

However, there is also no requirement for the equa-
tion of state parameter w to differ appreciably from −1
during inflation as w is directly proportional to the ra-
tio of tensor to scalar perturbations, and no primordial
gravitational waves have been detected so far. Thus, even
though it may be possible that Planck demonstrates that
inflation was not due to a cosmological constant, this does
not imply that w was measurably different from −1. In-
deed, we find that current data allows w to be arbitrarily
close to −1 as long as it changes just slightly during its
evolution. This direct link between w and the gravita-
tional wave background reinforces the importance of the
latter as a probe of early Universe physics: if it is de-
tected then we know immediately that w was measurably
different from −1 during inflation.

We have also found that the current experimental lim-
its on w during inflation imply 1 + w < 0.02 at a scale
of k ≈ 0.01/Mpc. If we take seriously the idea that early
and late-time acceleration are based on similar mecha-
nisms, then this might suggest that dark energy probes
need to reach at least this precision in order to have
a reasonable chance of detecting any deviation from Λ.
Following the arguments from the end of section II, one
could argue for a target precision of about 0.01 for mea-
suring w, beyond which there may well be a “w desert”
extending to very low values of (1 + w). This precision
also roughly leads to a decisive Bayes factor in favour of
ΛCDM if no deviation from −1 is detected (when looking
at constant w, see e.g. Ref. [21] for the methodology).

However, the absence of an observational lower limit
on w during inflation should not be taken as argument
against measuring the recent expansion history and evo-
lution of perturbations. Firstly, there is no direct evi-

dence that the two periods of accelerated expansion are
due to the same underlying physical mechanism. Sec-
ondly, even if that is so, it is likely that we are observing
a very different epoch of the inflationary phenomenon to-
day than in the early Universe. The acceleration became
observationally relevant only very recently, less than one
e-folding ago. If the onset of acceleration coincides with
it becoming visible, then we could expect strong devi-
ations from w = −1, since also at the end of inflation
w deviated strongly from −1, see Fig. 2. On the other
hand, it is also possible that the dark energy has been
present much longer but was buried beneath the matter
and has but surfaced recently. In this case inflation in-
dicates that it is natural for a scalar field dark energy to
have an equation of state close to p = −ρ.

Finally, inflation and the current epoch are accessi-
ble in very different ways: from inflation we observe the
curvature perturbations generated out of quantum fluc-
tuations, while for the recent history of the Universe we
instead observe directly the evolution of the expansion
history as well as possibly the impact of the dark en-
ergy perturbation or of deviations from General Relativ-
ity onto light deflection and the distribution of galaxies.
If the physics underlying the accelerated expansion of in-
flation and dark energy are related, then the two sets of
observations are complementary and mutually reinforc-
ing, and observational results for either period of accel-
erated expansion may help to shed light on the other one
as well.

Acknowledgments

M.K. and A.R.L. are supported by STFC (UK). It is
a pleasure to thank Chiara Caprini for helpful and inter-
esting discussions.

[1] A. G. Riess et al., Astronomical J. 116, 1009 (1998).
[2] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[3] D. Spergel and M. Zaldarriaga, Phys. Rev. Lett. 79, 2180

(1997).
[4] S. Scodeller, M. Kunz and R. Durrer, Phys. Rev. D 79,

083515 (2009).
[5] A.R. Liddle and D.H. Lyth, Cosmological Inflation

and Large-Scale Structure, Cambridge University Press
(2000).

[6] E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009).
[7] D.H. Lyth, Phys. Rev. Lett. 78, 1861 (1997).
[8] S. Chongchitnan and G. Efstathiou, Phys. Rev. D 73

083511 (2006).
[9] D. Baumann et al., AIP Conf. Proc. 1141, 10 (2009).

[10] C. Armendariz-Picon, T. Damour and V. Mukhanov,
Phys. Lett. B 458, 209 (1999).

[11] J. Lesgourgues and W. Valkenburg, Phys. Rev. D 75,
123519 (2007).

[12] M.B. Hoffman and M.S. Turner, Phys. Rev. D 64, 023506
(2001); W. H. Kinney, Phys. Rev. D 66, 083508 (2002).

[13] S.H. Hansen and M. Kunz, Mon. Not. Roy. Ast. Soc. 336,
1007 (2002).

[14] H.V. Peiris and R. Easther, JCAP 07, 024 (2008).
[15] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).
[16] A.R. Liddle, P. Parsons and J.D. Barrow, Phys. Rev. D

50, 7222 (1994).
[17] A. Lewis, A. Challinor and A. Lasenby, Astrophys. J.

538, 473 (2000).
[18] R. Easther, W.H. Kinney and B.A. Powell, JCAP 08,

004 (2006).
[19] B.A. Reid et al., arXiv:0907.1659 (2009).
[20] The Planck blue book, ESA (2005).
[21] P. Mukherjee et al., Mon. Not. Roy. Astron. Soc. 369,

1725 (2006).

http://arxiv.org/abs/0907.1659

	I Introduction
	II The equation of state of the inflaton
	III Numerical investigation
	IV Conclusions
	 Acknowledgments
	 References



