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When neutrinos propagate over long distances, the mass eigenstate components of a flavor
eigenstate will become spatially separated due to their different group velocities. This can
happen over terrestrial distance scales if the neutrino energy is of order MeV and if the
neutrino is localized (in a quantum mechanical sense) to subatomic scales. For example, if
the Heisenberg uncertainty in the neutrino position is below 10−2 Å, neutrino decoherence
can be observed in reactor neutrinos using a large liquid scintillator detector.

PACS numbers: 14.60.Pq, 03.65.Yz, 03.65.Ta

Even though the existence of neutrino oscillations has been unambiguously proven experimen-
tally, the theoretical description of this phenomenon is still occasionally disputed, see for exam-
ple [1–11]. The reason is that neutrino oscillations, being a space- and time-dependent phenomenon,
cannot be fully described in terms of infinitely delocalized energy and momentum eigenstates as
is used in most other applications in high energy physics. The signature dependence of neutrino
oscillations on the distance between the neutrino source and the detector obviously cannot be
observed unless the source and the detector are localized. The uncertainty principle then implies
that the source, and consequently the neutrinos that it produces, must be in a superposition of
different momentum states. That is, the neutrino wave function cannot be a plane wave, but must
be a wave packet [12–22]. For the purpose of this paper, it will be sufficient to consider Gaussian
wave packets, but our results will apply also to more general wave packet shapes [22]. We write
the neutrino wave function as

〈x|να(t)〉 ∝
∑

j

U∗
αj exp

[

− (x− vjt)
2

4σ2
x

]

, (1)

where α and j are flavor and mass eigenstate indices, respectively, Uαj are the elements of the
leptonic mixing matrix, σx is the width of the wave packet, which depends on the properties of the
neutrino source1, and vj is the group velocity corresponding to the jth neutrino mass eigenstate.

As the neutrino propagates, the wave packets corresponding to different neutrino mass eigen-
states will become separated in space and time due to their different group velocities [12]. After a
propagation distance larger than σx/|vj−vk|, the wave packets of the jth and kth mass eigenstates
will have no significant overlap any more and their coherence will be lost. Coherence can be restored
if the detection process is delocalized over distances larger than the wave packet separation [23].
If this is not the case, neutrino oscillations will be suppressed. Flavor change is still possible,
but it will no longer depend on distance. Detailed calculations show that the να → νβ oscillation
probability for ultra-relativistic neutrinos with an average energy E ≫ mj at long baseline L can
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1 Clearly, the observability of oscillations depends on the localization of the detector in the same way as on that of
the source. Detector localization is incorporated into the description of oscillations in [18, 19, 22]
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be written as [24, 25]

P (να → νβ) ≃
∑

j,k

U∗
αjUαkU

∗
βkUβj exp

[

− 2πi
L

Losc
jk

−
(

L

Lcoh
jk

)2]

, (2)

with the oscillation lengths Losc

jk = 4πĒ/∆m2

jk and the coherence lengths

Lcoh

jk =
4
√
2E2

|∆m2
jk|

σx,eff = 7347 km

(

E

MeV

)2(7.7× 10−3eV2

∆m2
jk

)(

σx,eff

Å

)

. (3)

Here σx,eff is an effective wave packet width that depends on the spatial delocalization of the source
and that of the detector, and is dominated by the larger of the two.2

Eq. (3) shows that neutrinos from astrophysical sources always arrive at the Earth as completely
incoherent mixtures of mass eigenstates, while observation of decoherence effects in terrestrial
experiments would require a long baseline, low neutrino energy, and small σx,eff .

These requirements can be fulfilled for reactor neutrinos observed in a future large liquid scin-
tillator detector like Hanohano [26] or LENA [27]. The reactor neutrino event rate peaks at
E ∼ 4 MeV, and the distance from a multipurpose detector like Hanohano or LENA to the nearest
nuclear power station will be of order L & 100 km to avoid large backgrounds in geo-neutrino,
supernova relic neutrino, and proton decay studies.

It is more difficult to estimate the wave packet width σx,eff entering in eq. (3). Since it depends
on the quantum mechanical localization of the neutrino in space, we have to ask how well we can
in principle determine the position of the neutrino production and detection points, given perfect
experimental equipment.

For neutrinos emitted from free particles in flight, the spatial uncertainty of the production
process will be similar to the mean free path of the parent particle [28].

A neutrino emission or detection process in a solid or liquid is localized at least to interatomic
distance scales of σx,eff ∼ O(1 − 10 Å) because the emitting or absorbing atom is continuously
interacting with its neighbors. The latter can be viewed as a thermal bath in the sense that their
quantum states at different times are completely uncorrelated. An interaction of a particle with
a thermal bath constitutes a measurement in the quantum mechanical sense that localizes the
particle.

Another reason why σx,eff cannot be larger than an interatomic distance is that we can in
principle measure the location of the production and detection vertices to that accuracy in an
experiment. Whenever we detect that a neutrino has been produced or absorbed (for example by
detecting the associated charged lepton), we can in principle quickly bombard the source with a
high-energy beam of probe particles to determine which nucleus has undergone a transition in the
process.

Finally, a spatial uncertainty much larger than a few Å would imply that all particles par-
ticipating in the process would have to be delocalized over many interatomic distances. Imagine
an energetic charged particle like an outgoing charged lepton traveling through a solid or liquid
material and interacting with the atoms. For concreteness, let us assume that it excites the atomic
shells, which subsequently relax by emitting scintillation light. If the energetic particle was delo-
calized over many interatomic distances, it would be impossible to tell which atoms is excited. The
resulting scintillation light would then behave as if it came from several atoms simultaneously and

2
σx,eff depends also on the temporal delocalization of the production and detection processes, which, however, is
usually similar to the spatial delocalization.
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would therefore exhibit interference patterns. We are not aware of any experimental evidence for
such interference patterns.

For neutrino emission or detection in a solid state crystal, the upper limit on the delocalization
scale can be even tighter than 1–10 Å. To be specific, consider neutrino production in a reactor
fuel rod. Once we know the position of the production vertex to within one lattice spacing—which
is possible according to the above arguments—we can make use of our knowledge of the crystal
structure to pin down the exact lattice site where the process must have occurred. In a crystal
at zero temperature, the emitting nucleus would be localized at its lattice site to within its own
size of order few× 10−15 m. At finite temperature T , it will oscillate about this position, with the
amplitude of these vibrations being of order [T/mΘ2

D]
1/2 ∼ 0.01–0.1 Å for Debye temperatures

ΘD of few hundred Kelvin and nuclear masses m ∼ 100 GeV. To arrive at this estimate, we have
assumed the nucleus to be bound in a harmonic oscillator potential V = 1

2
mω2x2 with characteristic

frequency ω = ΘD, and the thermal excitation energy to be of order T . We conclude that the spatial
uncertainty associated with a neutrino production process in a solid state source is roughly between
10−5 Å and 0.1 Å, depending on the temperature. Similar arguments apply to solid state neutrino
detectors.

At least for reactor neutrino experiments with liquid scintillator detectors, we can also set a
lower limit on σx,eff from the fact that the KamLAND experiment has observed neutrino oscillation
consistent with the results from solar neutrino experiments at baselines of O(100 km) [29].3 This
translates into the limit σx,eff & 10−3 Å.

From the above considerations we conclude that, for reactor neutrino experiments

10−3 Å . σx,eff . 101 Å (4)

or

100 km . Lcoh
21 . 1 000 000 km (5)

These estimates show that it may well be possible to detect neutrino wave packet decoherence
effects in terrestrial experiments; this would prove that the wave packet formalism is indeed well-
suited to describe neutrino oscillations, and a measurement of the coherence length would provide
interesting information about the quantum mechanics of the production and detection processes.

The experimental prospects for detecting neutrino decoherence have been studied previously
in the context of atmospheric neutrinos [32], short-baseline (O(km)) reactor experiments [33],
superbeams [34, 35], and a neutrino factory [33]. Here, we will study the prospects of observing
the predicted wave packet decoherence from eq. (4) by observing reactor neutrinos at very long
baselines of at least a few hundred km in a large liquid scintillator detector like Hanohano or
LENA. We have simulated this setup using GLoBES [36, 37], assuming a 5-year run of a LENA-
like [27] detector with a fiducial mass of 45 kt and a Gaussian energy resolution of 0.07×(E/MeV−
0.8)1/2 MeV. As systematic uncertainties, we include a 3% error on the reactor neutrino flux, a 50%
uncertainty on the geo-neutrino flux, a 0.5% energy calibration error, and a 0.5% spectral error,
uncorrelated between different energy bins. We study three different detector sites: The Pyhäsalmi
mine in Finland, the Deep Underground Science and Engineering Laboratory (DUSEL) in South
Dakota, USA, and a site in Hawaii. Unless otherwise noted, we take into account the neutrino flux
from all nuclear power stations in the world [38], as well as the geo-neutrino background, which

3 The possibility cannot be ruled out that KamLAND is affected by neutrino decoherence at a subdominant level.
In this case, a reanalysis would be required, leading to modifications of the global fit of the solar oscillation
parameters. The experiment we propose in this paper would be able to determine if such a reanalysis is indeed
necessary. Decoherence effects in KamLAND have been studied for example in [30, 31].
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Figure 1: The neutrino spectrum in a 45 kt (fiducial) liquid scintillator detector located in the Pyhäsalmi
mine in Finland for different values of the wave packet width σx,eff . The red curve is the geo-neutrino
background, while the black dots are the reactor neutrino signal.

dominates the event rates below E . 3.3 MeV.4 The reactor neutrino spectrum we are using is
based on [29, 39], while the geo-neutrino spectrum has been kindly provided to us in machine-
readable form by the author of ref. [40]. The cross sections for neutrino detection in inverse beta
decay are from ref. [41].

In fig. 1, we show the effect of decoherence on the neutrino spectrum expected at the Pyhäsalmi
mine in Finland. For large σx,eff , where Lcoh ≫ L, an oscillation pattern is visible, even though
it is smeared due to the overlap of signals from different reactors at various baselines. For small
σx,eff oscillations are completely smoothed out by decoherence.

To quantify this observation and determine the discovery potential for decoherence effects, we
have simulated the expected event spectrum for different values of σx,eff , and have then performed
a fit assuming no decoherence. The resulting χ2 is plotted in fig. 2. We find that prospects for
observing decoherence are best at the Pyhäsalmi site due to the proximity of only few nuclear
reactors. This keeps washout of oscillations due to the superposition of many reactor spectra at
many different baselines small. On the other hand, there is no nearby reactor that would make the
detector blind to events from distant reactors that could carry information about decoherence. In
the DUSEL scenario, there are no nearby reactors either, but washout due to the larger number
of nuclear reactors in the eastern United States is a problem. In Hawaii, on the other hand, the
nearest nuclear reactors are thousands of kilometers away, so that the number of events is too small
for the presence or absence of an oscillation pattern to be seen. Moreover, at such long baselines,
consecutive oscillation maxima are very close in energy, so the detector resolution becomes an issue.
Thus we conclude that the optimal detector site for a decoherence measurement is one that has a
few (but not too many) nuclear reactors at baselines of several 100 km.

Fig. 3 shows that this condition is fulfilled in many locations around the world. In the top
panel, we have mapped the locations of nuclear power stations [38] (as of 2000), while the bottom
panel shows the significance at which wave packet decoherence can be detected if the wave packet
width is 0.005 Å, close to the lower end of the allowed range from eq. (4). We have checked that
a larger values σx,eff = 0.01 can only be detected in few places in Japan, while even larger values
cannot be detected anywhere in the world with the experimental setup we have simulated. Note
that for each grid point in fig. 3, we have simulated only the 32 closest nuclear reactors to speed

4 Note that the data on reactor sites available to us dates from 2000, so some recently commissioned stations may
not be included. To partly compensate for this, we assume all stations that were under construction in 2000 to be
operational at full power by now.
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Figure 2: Discovery reach for neutrino decoherence in a 45 kt (fiducial) detector located at DUSEL, Hawaii,
or Pyhäsalmi. Only the Pyhäsalmi site allows for good sensitivity to decoherence effects.

up the numerical computations.
In conclusion, we have presented theoretical arguments showing that neutrino wave packets in a

reactor experiment should have a width between 0.001 Å and 10 Å. The lower limit is based on the
observation of oscillations at KamLAND, while the upper limit has been estimated by considering
the localization of typical neutrino production and detection processes. These numbers imply that
wave packet decoherence due to different group velocities of different neutrino mass eigenstates
can occur over distances of 102–106 km for O(few MeV) neutrinos. In higher energy experiments
or in experiments in which neutrinos are produced by decay in flight of some parent particle, the
wave packet width can be much larger, while in a hypothetical experiment in which O(few MeV)
neutrinos are emitted and detected by nuclei bound in solid state lattices at very low temperature,
the localization can be of O(few × 10−5) Å, corresponding to a coherence length of order 1 km.
We have then performed detailed numerical simulation to show that wave packet decoherence is
observable in a future large liquid scintillator detector like Hanohano or LENA, but only if the
coherence length is at the lower end of the expected range and if the detector site is far (few
hundred kilometers), but not too far (. 1 000 km) from the nearest nuclear power station.

The authors are indebted to Walter Potzel and Michael Wurm for very useful discussions on
large liquid scintillator detectors. Fermilab is operated by Fermi Research Alliance, LLC under
Contract No. DE-AC02-07CH11359 with the US Department of Energy.
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