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One of the most pressing issues in cosmology is whether general relativity (GR) plus a dark
sector is the underlying physical theory or whether a modified gravity model is needed. Upcoming
dark energy experiments designed to probe dark energy with multiple methods can address this
question by comparing the results of the different methods in constraining dark energy parameters.
Disagreement would signal the breakdown of the assumed model (GR plus dark energy). We study
the power of this consistency test by projecting constraints in the w0 − wa plane from the four
different techniques of the Dark Energy Survey in the event that the underlying true model is
modified gravity. We find that the standard technique of looking for overlap has some shortcomings,
propose as an alternative the Multi-dimensional Consistency Test, and introduce the methodology
for projecting whether a given experiment will be able to distinguish a modified gravity model from
GR.

PACS numbers: 95.35.+d; 95.85.Pw

I. INTRODUCTION

General relativity (GR) is currently a bad fit to cosmological data unless a new substance, so-called dark energy,
is invoked. If GR really is an incomplete or incorrect theory and we are tasked with identifying the correct model,
a major hurdle will be determining how to confront upcoming data sets in the absence of a well-understood model.
What new parameters should be introduced and fit for when, e.g., data on weak gravitational lensing or galaxy clusters
are analyzed? Several authors have addressed this question [1–5], and it has recently become possible to test GR
using survey data [6–8].
Here we address a slightly less ambitious question: using multiple cosmological probes, how can we determine

whether cosmic acceleration is driven by dark energy or modified gravity (MG)? One approach (see, e.g., [9]) is to
analyze the data assuming that GR is correct and see whether the constraints on dark energy parameters from different
probes overlap. Non-overlapping constraints would be a strong signal that the underlying parameterization is wrong;
i.e, that GR+dark energy cannot account for the data and that a modified theory of gravity is called for. A similar
approach is to look at parameter constraints coming from separate dynamical effects such as the cosmic expansion or
perturbation growth [10]. Here we explore the former method in depth in the context of a concrete example.
We assume that the universe is governed by a toy MG model and consider projections from the upcoming Dark

Energy Survey (DES). We present the projected constraints from all four DES probes in the plane of dark energy
parameters w0 and wa, where the dark energy equation of state is assumed to be w = w0+wa(1−a) and a is the scale
factor of the universe. This straightforward plot is not the most powerful way to combine probes, so we introduce a
more quantitative formalism that should be useful for future attempts in this direction. The formalism assigns a χ2

for the combined probes which can be interpreted in the usual fashion so that a “bad” χ2 corresponds to disagreement
among the probes, and therefore a quantitative assessment of how well the model of GR+dark energy works.
Section II discusses modified gravity models in general and details the modified gravity model we adopt as our

working example. Section III then presents the DES projections in the (w0, wa) plane along with a description of
the shortcomings of this approach. In Section IV, we present a more quantitative approach (see also [11]), which we
call the Multi-dimensional Consistency Test (MCT), illustrate how to obtain MCT projections, deal with the issue of
degenerate directions, and finally conclude by applying this formalism to DES for the model under study.

II. PERTURBATIONS IN MODIFIED GRAVITY

The metric in the class of modified gravity models we consider retains its standard GR form

ds2 = − (1 + 2Ψ)dt2 + a2 (1 + 2Φ) d~x2 (1)
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where a is the cosmic scale factor and Φ and Ψ are the scalar gravitational potentials. Hu & Sawicki [4] proposed
introducing two functions which parameterize deviations from GR:

g ≡ Φ +Ψ

Φ−Ψ

f ≡ 8πGρma2δ

k2(Φ−Ψ)
− 1 (2)

where ρm is the background matter density. In GR, the two scalar potentials are equal and opposite and Poisson’s
equations holds, so both f and g vanish. In modified gravity models, though, both f and g can be non-vanishing and
are functions of both wavenumber k and scale factor a.
Other parameterizations can be rewritten in terms of f and g. For example, instead of g, η ≡ −Φ/Ψ is often used,

so that g = (η − 1)/(η + 1). Zhao et al. [5] introduce a function which governs the peculiar velocity potential

µ ≡ − k2Ψ

4πGρma2δ
. (3)

In terms of f and g,

µ =
1− g

1 + f
, (4)

so µ = 1 in standard GR. Another common way of parameterizing the effects of modified gravity was introduced by
Linder [1, 2] and treats the growth factor of matter perturbations

d ln δ

d ln a
= Ωm(a)γ (5)

where Ωm(a) ≡ Ωm,0/[H(a)/H0]
2. For a wide variety of models, taking γ to be a constant works well and is an

appealing way to confront data. In the context of the Hu & Sawicki formalism, γ is not another new parameter, but
rather is governed by the growth equation which becomes

Ωm(a)γ−1

[

(1− 2γ)
d lnH

d ln a
− 3γ + 2

]

+Ωm(a)2γ−1 =
3

2
µ =

3(1− g)

2(1 + f)
(6)

where H(a) is the expansion rate. In standard GR, one finds that γ ≃ 0.55. A choice of γ corresponds to a choice of
f and g. Therefore, one cannot choose all three independently.
In this work, we choose as the underlying “true” model a toy model in which γ = 0.68 and f = 0. This is

approximately the case in the Dvali-Gabadadze-Porrati (DGP) braneworld model [1, 12], though we will not be using
that model specifically and only mention it here as a motivation. The background expansion in DGP is different from
that of ΛCDM, but we have chosen our model to have w = −1. Thus, the only observable differences between our toy
model and ΛCDM will enter via the growth function, which determines the normalization of the linear matter power
spectrum as a function of redshift. This is a mild modification to GR since scale-dependent growth modifications are
indeed possible, and it has been shown that scale-dependent MG will be easier to detect [5]. In order to maintain
consistency, our choices of γ and f determine g via (6). Fig. 1 shows the resulting g(z); note that constant γ is not
consistent with a constant g model. It is worth noting here that the MG model will produce more structure at early
times than ΛCDM for fixed fluctuation amplitude today σ8. This is because structure grows more slowly in the MG
model, therefore the Universe was clumpier (closer to its present state) in the past.

III. DES PROJECTIONS FOR THE DARK ENERGY EQUATION OF STATE

For concreteness, we focus on the upcoming Dark Energy Survey, which will probe dark energy using thousands
of Type Ia supernovae (SN), many high redshift clusters (CL), the Baryon Acoustic Oscillation (BAO) scale, and
the cosmic shear signal extracted from weakly lensed shapes of millions of background galaxies (WL). There is a
well-established formalism, the Fisher matrix approach, for projecting constraints from experiments such as DES.
Ordinarily, one forms the Fisher matrix from which contours representing the 68% confidence region in the (w0, wa)
plane, say, can be drawn. These contours are drawn centered on the assumed underlying model. The Fisher matrix
formalism is valid when the joint likelihood function of the cosmological parameters is a gaussian.



3

FIG. 1: The post-Friedmann parameter g as a function of redshift. Standard general relativity corresponds to g = 0 or γ ≃ 0.55
(dashed curve). The fiducial value used in this paper is shown by the solid curve corresponding to a model in which γ = 0.68.

Here we are after something a little different. We want to determine not only how large the error contours will be,
but also where they would be centered in the event that an incorrect model is used to analyze the data. Our assumed
true model is a toy modified gravity model with γ = 0.68 and the same cosmic expansion as ΛCDM. We want to
know what answer an analyst would get if s/he fit for dark energy parameters while assuming that GR was correct
(γ = 0.55). What values of w0 and wa would be obtained? There is a simple extension [13] of the Fisher formalism
which provides an answer to this question. It involves three steps:

• Calculate the Fisher matrix for the parameters λα to be fit to the data. For a single experiment,

Fαβ =
∑

ij

(Cov−1)ij
∂Pi

∂λα

∂Pj

∂λβ
(7)

where Pi is the observed quantity in bin i, and (Cov)ij is the covariance matrix for bins i and j. The covariance
should be calculated using the cosmological model assumed to be true, while the derivatives should be calculated
using the model we will fit. Priors may be added to the Fisher matrix if they come from probes which are robust
in the case of MG (e.g. a prior on the Hubble constant, h).

• Calculate the difference in the quantity to be measured (e.g., a power spectrum) in the true model and in the
fitted model. Call this ∆Pi where subscript i labels the bins in which it is measured

• To first order in ∆Pj , the parameter λα will be mis-estimated, or biased, by an amount

∆λα =
∑

β

(F−1)αβ
∑

ij

(Cov−1)ij
∂Pi

∂λβ
∆Pj (8)

where Fαβ includes any priors.

Our first task then is to determine the expected values of the measurements for the four probes in the assumed modi-
fied gravity model and compare those to the predictions in standard GR+Dark energy. We consider a set of 8 standard
cosmological parameters with fiducial values {w0, wa,ΩDE,Ωk, h,Ωb, ns, σ8} = {−1, 0, 0.73, 0, 0.72, 0.046, 1, 0.8}where
Ωk is the curvature density, h is the Hubble constant in units of 100 km/s/Mpc, Ωb is the baryon density, ns is the
slope of the primordial spectrum, and σ8 normalizes the matter power spectrum at z = 0. For each probe, we compute
the constraints including projected priors from the Planck satellite [see e.g. 14].
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FIG. 2: Forecasted 1σ constraints on dark energy parameters from the DES probes, including only statistical errors and
assuming ΛCDM as the true model. The probes considered are baryon acoustic oscillations (black), supernovae (green), cluster
counts (magenta), and weak lensing (blue). Each constraint is combined with a prior expected from Planck CMB measurements;
additionally, the supernovae constraint includes an 8% prior on H0.

A. Supernovae, BAO, and the CMB

For two probes, supernovae and BAO, the answer is simple: these probes are sensitive only to background geometry
which is assumed identical in our MG and GR models, so the predictions for the distance moduli (from supernovae)
and correlation function peak (due to BAO) are identical to standard GR and ∆P = 0. The projected contours
therefore are centered on the point in parameter space corresponding to the fiducial values. The only work that needs
to be done is to determine the Fisher matrix which delineates the allowed region. This has been done before; here we
simply reproduce these results, shown projected onto the (w0, wa) plane in Figure 2. The CMB is mostly insensitive
to our choice of MG since γ only determines structure growth in the late Universe. The CMB power spectrum is
in fact affected by gravity modifications via the late Integrated Sachs-Wolfe effect [15, 16] and gravitational lensing,
but we ignore these effects, which should only reduce our sensitivity to MG. Our Planck prior is therefore unchanged
between the GR and MG cases. Details of these Fisher matrix calculations are provided in the appendix.

B. Clusters

DES will optically detect thousands of galaxy clusters out to a redshift of 1.6. The clusters will also be detected in
microwaves by the South Pole Telescope (SPT) via the Sunyaev-Zeldovich (SZ) effect, allowing tighter constraints on
the cluster masses. Binning the detected clusters by redshift, the observables for our cluster experiment will be the
total number of clusters in each bin, above a given mass threshold which allows detection by SPT.
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To conform with DES predictions, we assume the cluster mass function of Jenkins et al. (author?) [17] with the
parameters in their equation (B4). Let n(M, z) be the comoving number density of clusters with mass M at redshift
z. We take

n(M, z) = −ρc0
M

d ln σM

d ln M
f(M, z) (9)

f(M, z) = 0.316 exp
(

− 1| log
(

σM (z)−1
)

+ 0.67|3.82
)

, (10)

Here, ρc0 is the critical density today and σM is the RMS of the matter density field, smoothed by a top-hat filter of
radius R where R3 ≡ 3M/4πρc0. The RMS is calculated using linear theory:

σR(z)
2 =

∫

d ln k
k3Plin(k; z)

2π2
J2
1 (kR) , (11)

where J1 is the Bessel function of the first kind and Plin(k; z) is the linear matter power spectrum computed from the
fitting formula of (author?) [18]. The minimum mass limit of clusters detectable by SPT, Mlim(z), was calculated
in [19]. Let Ni denote the total number of clusters above this mass limit in the ith redshift bin. It is given by

Ni = 4πf sky

∫ zi+1

zi

dz
χ(z)2

H(z)

∫ ∞

Mlim(z)

dM n(M, z) (12)

where χ is comoving distance, zi denotes the lower edge of the ith bin, and f sky = 0.125 is the sky coverage of the
overlapping DES+SPT survey. We show Ni as a function of redshift for γ = 0.55 and γ = 0.68 in Figure 3. The
clusters are divided into 16 redshift bins of width ∆z = 0.1, assuming perfect measurements of their redshift and
mass.
Our toy MG model only differs from ΛCDM via the linear density growth, parametrized by γ in (5). In this case,

computing the effect of MG on clusters is easily implemented by computing the linear growth function as a function of
z for γ = 0.68 and then using it to normalize Plin(k; z) in (11). A more general MG model could change the dynamics
of collapsing halos, such as the halo formation time or the critical overdensity for halo collapse [20]. Studies of DGP
[21, 22] and f(R)-gravity [23] have shown that these models alter the critical spherical overdensity, δc, by only 1-2%
relative to ΛCDM. Furthermore, changes in halo formation times are already incorporated into the GR spherical
collapse mass function of (author?) [20], which has been shown to fit simulations well [e.g. 24–26]. Therefore our
assumption, that cluster numbers depend primarily on the linear growth function, is realistic.
Assuming that the error on the number of clusters in the ith redshift bin is dominated by counting error, the

covariance between bins is

Cov[Ni, Nj] = δijNi . (13)

The resulting projections in the dark energy parameter plane are shown in Figs. 2 when the underlying model is
ΛCDM. Fig. 5 shows the projected constraints if the underlying model is MG with γ = 0.68. Fig. 5 shows that to
get the extra clusters that this MG model would produce, the fitter favors a larger w, thereby introducing more dark
energy at early times. This tends to leave σ8 closer to its present value, so mimics the increase in cluster abundance
at high z.

C. Lensing

We begin with a review of relevant weak lensing equations [for a full introduction see e.g. 27–30]. The lensing
convergence at a particular sky position, κ(θ), can be expressed as the matter density contrast, δ(x), projected over
comoving distance, χ, along the line of sight:

κi(θ) =

∫ ∞

0

dχ δ(θχ, χ)Wi(χ). (14)

The subscript i denotes the redshift bin from which source galaxies have been selected, and Wi(χ) is the lensing kernel
for that bin, defined below. The cosmic convergence power spectra and cross spectra, Cl;ij , are defined as

〈κ̃i(l)κ̃j(l
′)〉 ≡ (2π)2δ2(l+ l

′)Cl;ij (15)
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FIG. 3: The SPT+DES number of detectable clusters Ni in redshift bins of width ∆z = 0.1 along with projected error bars in
each bin. Solid curve assumes GR γ = 0.55, and the dashed curve assumes modified gravity with γ = 0.68. We plot the ratio
of the two curves in the lower panel.

where l is the Fourier conjugate to θ, and we are working in the small angle limit, rather than decomposing the
fields into spherical harmonics. Note that δ2 is a 2-dimensional Dirac delta function and the angle brackets denote
an ensemble average.
Measurements of galaxy ellipticities allow us to estimate the cosmic shear power and cross spectra, not the con-

vergence, but these are equal at first order in the gravitational potentials. For N redshift bins, the weak lensing
observables are the N(N + 1)/2 total spectra for a given l. The leading order calculation of Cl;ij is

Cl;ij =

∫ ∞

0

dχ

dA(χ)2
Wi(χ)Wj(χ)Pδ (k;χ) (16)

where the function dA modifies distances in a curved Universe. For K ≡ (H2
0Ωk)

−1,

dA(χ) ≡







χ for K = 0 (flat)
|K|−1/2 sin(|K|1/2χ) for K > 0 (closed)
|K|−1/2 sinh(|K|1/2χ) for K < 0 (open)

. (17)

Pδ (k;χ) is the 3D matter power spectrum for k = ℓ/dA(χ) at a distance χ, accounting for the growth of structure.

Equation (16) uses the Limber approximation, which assumes that the only matter density modes δ̃(k) contributing
to the lensing signal are those modes with k transverse to the line of sight.
The lensing kernel is given by

Wi(χ) =
W0

ngal
i

dA(χ)

a(χ)

∫ ∞

χ

dχs pi(z)
dz

dχs

dA(χs − χ)

dA(χs)
(18)

with W0 = 3
2ΩmH2

0 . Here, pi(z) is the true (spectroscopic) distribution of galaxies in the ith redshift bin, and ngal
i

is the total projected number density of galaxies in that bin. Binning is done according to the galaxies’ photometric
redshifts (or “photo-z”s), which we take to be unbiased estimators of the true redshifts with gaussian scatter σz .
To avoid degrading parameter constraints, it is actually more important to have a small uncertainty in the bias and
scatter of the photo-zs rather than a small scatter [31].
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The redshift distribution of source galaxies in the survey is taken to be

dngal

dz
∝ z2 exp[−(z/z0)

1.5] . (19)

The median redshift of this distribution is zmed ≈ z0
√
2, and the distribution is normalized so that the total projected

number density of galaxies is

∫ ∞

0

dz
dngal

dz
=

∑

i

ngal
i ≡ ngal . (20)

For DES, we take zmed = 0.68, ngal = 12, and σz = 0.08. The galaxies are divided into 7 photo-z bins with bin
boundaries defined by z=(0, 0.37, 0.51, 0.63, 0.75, 0.89, 1.10, 2.0), which give them approximately equal projected
number densities.
Equation (2) describes the relation between the lensing potential Φ − Ψ and the matter density δ in a modified

gravity scenario. Since our modified gravity model has f = 0, this relation is unchanged from GR, and the weak
lensing power spectrum can be computed from the matter power spectrum via (16). We need to compute the non-
linear matter power spectrum in both the GR and MG cases. To compute the shape of the linear power spectrum
in GR, we use the fitting formula of Eisenstein and Hu [18]. The redshift dependence of the linear power is given by
the growth function, which can be easily adapted to incorporate the growth index, γ, in the MG case. We compute
the nonlinear matter power spectrum in GR via the Halofit fitting formula of Smith et al. [32] 1, which takes the
linear power spectrum as its input. Solar system observations indicate that that GR is valid on small non-linear
scales, therefore a viable MG theory must agree with GR in that limit [33, and references therein]. Halofit does not
impose such behavior on the non-linear power spectrum, therefore it must be adapted in the MG case. One way to
accomplish this is to compute the linear power spectra in the GR and MG cases and then apply Halofit to both;
a realistic non-linear spectrum for MG can then be constructed by interpolating between the two results so that we
enforce the GR prediction for density modes that have gone very non-linear. Such an interpolation was proposed by
[4]:

PMG(k, z) =
PMGX(k, z) + cnl(z)Σ

2(k, z)PGR(k, z)

1 + cnl(z)Σ2(k, z)
, (21)

where PGR is the non-linear power in GR and PMGX comes from the naive application of a non-linear fitting formula to
the linear MG power spectrum. The interpolation is moderated by two functions obtained from perturbation theory
[34]:

Σ2(k, z) =

(

k3

2π2
Plin(k, z)

)α1

, cnl(z) = A(1 + z)α2 (22)

Here, Plin(k, z) is the linear power spectrum in MG and the parameters α1, α2, and A are calibrated by N-body
simulations [26, 35]. For our working model, we take A = 0.3, α1 = 1 and α2 = 0.16, which are their values in
DGP, ignoring their weak dependence on ΩM and σ8. We remind the reader that we are not using DGP specifically,
particularly since we are keeping the background expansion of ΛCDM. The ability of future weak lensing surveys to
measure these nonlinear parameters was investigated by [36].
The differences between the GR and MG predictions for Cl;ii are plotted in Figure 4 for a few redshift bins. These

differences are the ∆Pi defined above, although for clarity, here we have divided them by the GR prediction. As
expected, there is more power in the MG gravity model at early times. To avoid bias, we impose a conservative cutoff
of l ≤ 1000 since smaller scales contain non-linear and baryonic effects which are not completely understood even in
GR [37].
To compute the weak lensing Fisher matrix, we need to compute the covariances between the observable spectra.

The total observed power in a given redshift bin will be a combination of signal and noise:

Cobs
l;ij ≡ Cl;ij + δij

γ2
rms

ngal
i

(23)

1 The formula was only calibrated for flat ΛCDM models and open models. It has been extrapolated to closed models and assumed to

approximately hold for w 6= −1.
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FIG. 4: Fractional difference between weak lensing power spectra predictions for GR and our MG model with γ = 0.68. Since
we fix σ8, the models diverge with increasing redshift. Agreement is enforced towards large l by the interpolation in (21).

where γrms is the intrinsic scatter of one polarization of the galaxy shears. The covariance between the observables is

Cov[Cobs
l;ij , C

obs
l′;mn] =

δll′

(2l+ 1)∆lf sky

(

Cobs
l;imCobs

l;jn + Cobs
l;inC

obs
l;jm

)

(24)

where ∆l is the l-bin width [38]. Our results are insensitive to ∆l since the cosmic shear power spectra are relatively
featureless. For DES, f sky = 0.12 and γrms = 0.16. Figs. 2 and 5 show the DES projections for lensing. If the true
model were MG (Fig. 5), then the lensing constraint would shift to more early dark energy (higher w) to accommodate
the slower growth of structure.

D. Initial Results and Shortcomings

Figure 5 suggests that, if the underlying model were modified gravity with γ = 0.68, then the allowed regions
from the 4 probes of DES would be consistent with one another. They would show some tension but certainly not
enough to reject the notion that dark energy and GR are the correct description of nature. This is a somewhat
disappointing conclusion as the two models make very different predictions, so it behooves us to re-examine the
proposed methodology. Perhaps the models can be distinguished with a more powerful statistical probe.
The ambiguous conclusion stems from the approach of plotting the constraints from the four probes in the (w0, wa)

plane and seeing if they overlap. There are three shortcomings of this approach. First, the approach is not quantitative;
it is visually appealing (do the contours overlap?) but does not yield a statistical conclusion. Second, each of the 4
constraints are obtained with the Planck prior added in. This prior therefore is used multiple times. To the extent
that one can obtain quantitative conclusions from observing the (non-)overlap of the contours, those conclusions will
be incorrect due to the redundant information. Finally, the allowed regions are actually 8 dimensional. It is very
possible that the allowed regions do not overlap in this 8D space but do in the projections onto the 2D subspace.
In the next section, we introduce a new approach for comparing the 4 probes and show that this approach is much

more successful at detecting deviations from the canonical GR model.
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FIG. 5: Same as Figure 2 but now the true model is assumed to be our toy modified gravity model with γ = 0.68. Shown are
the forecasted constraints when we incorrectly attempt to fit a GR+dark energy model to the data. The center of the WL
ellipse has moved to (w0, wa)=(-1.1, 0.47) while the CL ellipse has moved to (-1.19, 0.90).

IV. MULTI-DIMENSIONAL CONSISTENCY TEST

A. Predicting Parameter Tension

Consider a simple example with one free parameter λ and two probes. To determine if the probes are consistent
we form

χ2(λ) =

2
∑

i=1

(

λ− λ(i)
) 1

[σ(i)]2

(

λ− λ(i)
)

(25)

where λ(i) is the best fit value of the parameter from an analysis of probe i, and σ(i) is the error on probe i. A simple
way to see if these two probes are consistent is to minimize the χ2 with respect to λ. The value of λ at this minimum
is then the best fit value, and the value of χ2 there quantifies the goodness of fit in the standard way. There are two
probes and one parameter corresponding to one degree of freedom, ν = 1. So a χ2

min = 10, say, means that the fit
is quite bad because the expectation value is

〈

χ2
min

〉

= ν for ν degrees of freedom. The difference, ∆χ2 = 9, tells us
that the probes are inconsistent with 99.7% confidence.
How can we forecast the expected tension between the 2 probes if the assumed model is incorrect? In that case, it

will not necessarily be true that
〈

λ(1)
〉

=
〈

λ(2)
〉

. Then the usual result,
〈

χ2
min

〉

= ν, will not hold: the expected value

of χ2
min will be larger, corresponding to a worse fit:

〈

χ2
min

〉

= ν + B with B > 0. A signature then of an incorrect

assumed model is a value of B large relative to ν. I.e., the large χ2
min means that the probes are inconsistent in

their measurements of λ. For example, if B = 9 and ν = 1, we would conclude that the 2 probes are inconsistent
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with 99.7% confidence. Thus, if we wish to forecast the tension among several probes, the tension parameter B is an
appropriate quantity to calculate.
Let us now generalize this 1-parameter/2-probe example to a situation where there are M parameters and N

probes. Specifically, we are considering 8 cosmological parameters and 5 probes – the four of DES plus one from

Planck. Suppose that probe i returns a best fit set of parameters λα
(i) with a covariance matrix C

(i)
αβ , and for now

we assume that each of these is invertible so none of the probes is plagued with any degeneracy in parameter space
(we will relax this assumption later). Let λα be a random point in cosmological parameter space. Then, a simple
statistic [11] which speaks to the agreement of the probes is

χ2(λα) =
∑

i

∑

αβ

(λα − λα
(i))

[

C(i)
]−1

αβ
(λβ − λβ

(i)). (26)

If the likelihood from each individual probe is Gaussian in parameter space and if the assumed model is correct,
then the measured value of this χ2 will be drawn from a distribution with mean and variance equal to (N − 1)M .
Excessively large values of χ2 would falsify the underlying model.

B. Projections

We are now in a position to project how powerful a given set of probes will be when it comes to falsifying a model.
Namely, we can compute the expectation value of χ2 as defined in Eq. (26) if the true model were MG and determine
by how much it exceeds (N − 1)M . First, we minimize χ2 and compute the value of λ at its minimum:

λmin
α =

∑

β,γ





∑

j

(C(j))−1





−1

αβ

∑

i

(C(i))−1
βγλγ

(i). (27)

We want to insert this into Eq. (26) and take the expectation value. To do this, we will set 〈(C(i))−1〉 = F (i), the
Fisher matrix for probe i, and

〈

λα
(i)λβ

(j)
〉

= λα
(i)
λβ

(j)
+ δij(F

(i))−1
αβ (28)

where λα
(i) ≡

〈

λα
(i)
〉

is the expected outcome of the ith experiment. This assumes that the errors on the various

probes are uncorrelated with each other, which is not strictly true since, for example, we expect a stronger weak
lensing signal when we see more clusters, but it is a reasonable approximation [39, 40]. Using these leads to

〈

χ2
min

〉

= (N − 1)M +
∑

i

∑

αβ

yα
(i)yβ

(i)(F (i))−1
αβ −

∑

αβ

YαYβ(G
−1)αβ . (29)

where

yα
(i) ≡

∑

β

Fαβ
(i)λβ

(i)
(30)

Yα ≡
∑

i

yα
(i) (31)

Gαβ ≡
∑

i

Fαβ
(i). (32)

If all the probes are expected to return the same parameter (the assumed model is correct), then the two last terms
on the right in Eq. (29) cancel, and

〈

χ2
min

〉

= (N − 1)M . It makes sense therefore to subtract off a fiducial parameter
set:

∆λα
(i) ≡ λα

(i) − λfid
α (33)

so that

∆yα
(i) ≡

∑

β

Fαβ
(i)∆λβ

(i)
(34)

∆Yα ≡
∑

i

∆yα
(i). (35)
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Then, the expected value of χ2 at the minimum depends only on these differences. In particular,
〈

χ2
min

〉

= (N − 1)M +B (36)

with

B ≡
∑

i

∑

αβ

∆yα
(i)∆yβ

(i)(F (i))−1
αβ −

∑

αβ

∆Yα∆Yβ(G
−1)αβ . (37)

Our desired result – the projection for the excess χ2 due to inconsistency in the probes – has been reduced to
a calculation of B. The ingredients of this calculation, ∆y(i), are directly related to the errors in our theoretical
predictions. By (8) and (34), we have

∆yα
(i) =

∑

βγ

(Cov−1)
(i)

βγ

∂Pγ
(i)

∂λα
∆Pβ

(i) (38)

so that ∆y(i) = ∆Y = 0 when we fit the correct model (or even an incorrect model as long as it does not produce
tension in the probes) to the data.
Using the χ2 probability distribution function for ν degrees of freedom, we can use B to quantify the implied

goodness-of-fit: we compute the probability of finding a worse χ2
min than its expected value P (χ2

min >
〈

χ2
min

〉

; ν) with

ν = MN −M and
〈

χ2
min

〉

= ν + B. As an example, with N = 5 and M = 8, we have ν = 32. If we have chosen an

incorrect model so that B = 14.2, then P (χ2
min >

〈

χ2
min

〉

; ν) = 0.046, meaning we predict that the constraints from
the 5 probes will be inconsistent at the 95.4% or “2σ” level.

C. Parameter Degeneracies

In practice, Fisher matrices can be singular due to an experiment’s insensitivity to a parameter or combination of
parameters (parameter degeneracies). For example, because SN and BAO cannot measure non-geometric parameters
(Ωb, ns, σ8), the corresponding rows/columns of the SN and BAO Fisher matrices are exactly zero (and the covariance
matrix contains some corresponding infinite values). Also, the CMB cannot jointly constrain (w0, wa, Ωde, Ωk) since
these parameters essentially affect only one observable – the position of the 1st CMB peak – although there is some
extra sensitivity to these parameters via the late ISW effect. Such insensitivity yields a singular and hence non-
invertible Fisher matrix, or if the matrix is effectively singular (ill-conditioned), then its inverse formally exists but
will be numerically unstable. These degeneracies represent more than a computational issue: they correspond to
error ellipsoids which are infinite in some directions in parameter space, and hence parameter constraints cannot be
inconsistent in those directions. E.g. we clearly do not expect the SN constraint to be inconsistent with any of the
other probes in the σ8 direction. Subsequently, it is not sensible to count σ8 as a degree of freedom of the SN error
ellipsoid.
To handle degenerate Fisher matrices, we “clean” them using singular value decomposition. For each Fisher matrix,

we find a unitary matrix U such that

F = UTΛU (39)

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of F . We replace the smallest elements of Λ
with zeros (some are already zero) and recompute F using the above equation; this procedure negligibly changes the
elements of F provided we only remove eigenvalues which are much smaller than the largest eigenvalue. We compute
the inverse of F via

F−1 ≡ UTΛ−1U (40)

where Λ−1 is diagonal and we have set

(Λ−1)αα =

{

1/Λαα for Λαα 6= 0
0 for Λαα = 0

. (41)

Let S(i) be the number of eigenvalues of F (i) which are zero (the nullity of the matrix). Starting again from (29), one
now finds that

〈

χ2
min

〉

= (N − 1)M −
∑

i

S(i) +B (42)
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with B unchanged from (37). Effectively, the number of degrees of freedom ν has been reduced by the total number of
parameters that each probe cannot constrain. When very small eigenvalues of each F (i) are set to zero, we find that
B changes negligibly. This means that no significant tension is expected among the probes in these highly degenerate
directions in parameter space, so we are indeed wrong to count them among the degrees of freedom. By setting the
eigenvalues to zero, we force ourselves to evaluate tension only among the degrees of freedom where we expect tension.
We excise the 3 most serious degeneracies from both the CMB and WL Fisher matrices, and we excise the 4 most
serious degeneracies from the SN, BAO and CL Fisher matrices. Thus, when all of these probes are combined, the
total number of degrees of freedom is ν = 5× 8− 8− 18 = 14.

D. Results

We suppose that we will mistakenly fit an 8-parameter ΛCDM model to data in a Universe described by our toy
modified gravity model. The MG model has a scale-independent linear growth history given by γ = 0.68, and all
ΛCDM parameters of the model are otherwise identical. In Table I, we show our estimates of the subsequent tension
among the DES probes and Planck, assuming only statistical errors in the DES probes. As described in §IVC, when
a probe’s individual Fisher matrix contains a significant parameter degeneracy, we do not count the corresponding
direction in parameter space as a source of tension or a degree of freedom.

WL CL SN BAO CMB ν B P (χ2

min > ν +B; ν)
√ √ √

5 2.06 0.2164
√ √ √

5 1.67 0.2466
√ √ √

4 0.02 0.4030
√ √ √ √

9 3.02 0.2121
√ √ √

6 2.08 0.2326
√ √ √

6 1.96 0.2414
√ √ √

5 0.75 0.3313
√ √ √ √

10 2.21 0.2715
√ √ √

6 6.71 0.0478
√ √ √

5 0.61 0.3462
√ √ √ √

10 8.23 0.0512
√ √ √

5 2.29 0.2003
√ √ √ √

10 9.22 0.0376
√ √ √ √

9 2.76 0.2271
√ √ √ √ √

14 15.58 0.0087

TABLE I: Expected tension between dark energy probes, assuming that our toy MG model is correct but we fit our GR+dark
energy model to the data. We try different probe combinations – check-marks denote included probes. The total degrees of
freedom, ν, counts the number of non-degenerate parameter combinations measured by each probe, minus the one 8-parameter
set used to minimize χ2. The expected parameter tension, B, is calculated in (37) and vanishes when all probes are expected to

have the same best-fit parameter set. We expect that
〈

χ2

min

〉

= ν+B, and this too-high value of χ2

min will cause us to interpret

the constraints to be inconsistent (non-overlapping) when B is large. P (χ2

min > ν +B; ν) is the expected goodness-of-fit of the
probes, i.e. the probability that our probes, in a truly GR universe, would yield parameter constraints with more tension than
the tension we predict due to fitting an incorrect model.

The last row of Table I shows that when all DES probes are combined with Planck, we expect their parameter
constraints to have a goodness-of-fit of 0.0087. That is, the overlap of the error contours in the 8D parameter space
will be so poor, we would interpret them to be inconsistent at about the 99.1% level. Using only WL, CL and CMB,
we still expect these probes to disagree at about the 95% level. We predict no significant tension among the probes
when either WL or CL is excluded. Our result is an improvement over the method of looking for overlap in the w0−wa

plane (see Figure 5) since it leverages tension among all parameters, and does not use the Planck prior multiple times.
We remind the reader that our forecasts assume only statistical errors in the DES probes. Accounting for systematic
errors would degrade parameter constraints, leading to more overlap, i.e. less tension. At the same time, we have
chosen a modest toy MG model which differs from ΛCDM only in the linear growth of perturbations. Other MG
models could easily produce more tension.
Ours is an encouraging result in the search for modified gravity: it means that an inconsistency among the DES
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probes is, in principle, a useful diagnostic for identifying a wrong cosmological model. Of course, if such an incon-
sistency were found, each probe’s working group would revisit its pipeline, looking for systematic errors. If tension
persisted, then the evidence for inconsistency would be strengthened.

V. CONCLUSIONS

The consistency of different dark energy probes promises to be a powerful tool in the quest to distinguish dark
energy from modified gravity. Here we have illustrated that, using the Multi-dimensional Consistency Test (MCT),
future probes from the Dark Energy Survey will be able to rule out standard (GR+dark energy) if the true gravity
model is only a modest modification of GR. Carrying out the MCT once the data are in reduces to computing the χ2

of Eq. (26) while properly accounting for degeneracies as described in §IVC. Although we have not explored this in
detail here, projections of the MCT might make a useful metric for future surveys when trying to understand their
constraining power towards modified gravity models, complementary to the figures of merit for dark energy [41].
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Appendix A: Fisher Matrices for Unmodified Probes

1. Supernova

Given the number of supernovae N and a projected uncertainty on the magnitude of each supernova, we can form
the Fisher matrix,

Fαβ =

N
∑

i=1

∂µi

∂λα

∂µi

∂λβ

1

σ2
i

(A1)

where µi is the distance modulus for a supernova at redshift zi and pα are the parameters of interest. If we bin the
supernovae in redshift bins of width ∆z = 0.1, each with an expected Na such that

∑

a

Na = N, (A2)

then the Fisher matrix becomes:

Fαβ =

13
∑

a=1

Na
∂µa

∂λα

∂µa

∂λβ

1

σ2
a

(A3)

where the first bin is at z = 0.05 and the last at z = 1.25. We set σ = 0.12 in low redshift (z < 0.8) bins and σ = 0.24
in the higher bins. Following the DES team, we also introduce a systematic floor, so that the error in any bin is
σ2
bin = σ2

a/Na + σ2
floor with σfloor = 0.02.

The derivative of the distance modulus to bin a is

∂µa

∂λα
=

5

ln(10)

∂ ln dL(za)

∂λα
. (A4)

For small values of the curvature, the luminosity distance can be approximated as

dL(z) ≃ (1 + z)

[

χ(z) +
ΩkH

2
0χ

3(z)

6

]

(A5)

where

χ(z) = 3000Mpc

∫ za

0

dz

E(z)
(A6)

with

E(z) ≡ h

[

Ωm(1 + z)3 +ΩX exp

{

3

∫ z

0

dz′

1 + z′
(1 + w0 + wa

z′

1 + z′
)

}

+Ωk(1 + z)2
]1/2

= h

[

Ωm(1 + z)3 +ΩX exp

{

3(1 + w0 + wa) ln(1 + z)− 3waz/(1 + z)

}

+Ωk(1 + z)2
]1/2

. (A7)
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We do not observe distance moduli directly but rather the peak apparent magnitude of the supernovae in a particular
band, m(z) = M0 + µ(z), where M0 is a supernova’s absolute magnitude. To account for uncertainty in the absolute
magnitudes of type 1A supernovae, we include M0 as a nuisance parameter in the SN Fisher matrix; M0 is completely
degenerate with the Hubble constant h. The SN matrix can be combined with other matrices by padding the others
with a row and column of zeros, adding all matrices together, and then marginalizing over M0.

2. Baryon Acoustic Oscillations

Galaxy surveys can measure a power spectrum of the galaxy distribution P (k) in a thin redshift bin around k = kn
with an expected covariance matrix

Cmn = 2
P (km)P (kn)

VnVeff
δm,n, (A8)

where

Veff =

∫
[

n̄(r)P (k)

1 + n̄(r)P (k)

]2

d3r =

[

nP (k)R(µ)

nP (k)R(µ) + 1

]

V0 (A9)

is an effective volume utilized for the measurement, V0 is the total volume of the survey, R = (1 + βµ2)2 describes

the effect of linear redshift space distortions, and Vn = d3
kn

(2π)3 is the volume of a shell in the Fourier space [for details

see, 43]. Equation (A9) holds if the number density of galaxies is constant within the volume.
If we have a model of how the power spectrum depends on the cosmological parameters of interest λi and if we

assume that the errors on the power spectrum measurements are uncorrelated random Gaussian variables, then by
propagating correlated errors given by the covariance matrix in Eq. (A8) we can get a Fisher matrix of cosmological
parameters

Fij =
1

2

∫ kmax

kmin

d3k

(2π)2
∂P (k)

∂λi

∂P (k)

∂λi
Veff , (A10)

[for details see 44]. We want to forecast cosmological constraints from a measured position of the baryon acoustic
peak in the three dimensional power spectrum. We will follow the formalism of (author?) [45, 46].
The baryonic part of the power spectrum can be modeled as

Pb(k) ∼
sin ks0
ks0

exp

[

−
(

k

ksilk

)1.4
]

, (A11)

where s0 is the sound horizon at recombination and ksilk is the Silk damping scale. The Silk damping scale can be
accurately fit by

ksilk = 1.6(Ωbh
2)0.52(Ωm)

0.73[1 + (10.4Ωmh
2)−0.095]h−1 (hMpc−1) . (A12)

As in (author?) [46] we will multiply Eq. (A11) by additional Gaussian functions to account for the erasure of
information due to nonlinear evolution and photometric redshifts. The final Pb is given by

Pb(k) =
√
8π2A0P0.2

sin

[

(

k2||s
2
|| + k2⊥s

2
⊥

)1/2
]

(

k2||s
2
|| + k2⊥s

2
⊥

)1/2
exp

[

−
(

k

ksilk

)1.4
]

× exp
[

−k2(1 − µ2)Σ2
⊥ − k2µ2Σ2

||

]

exp
[

−k2µ2Σ2
z

]

, (A13)

where s|| and s⊥ are sound horizon scales measured along and across the line of sight, µ is cosine of the along the line

of sight, P0.2 is galaxy power spectrum at k = 0.2hMpc−1, A0 is a normalization factor, Σ|| and Σ⊥ model the loss
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of information due to nonlinear growth and Σz models the loss of information in radial direction due to photometric
redshifts. As in (author?) [46] we will use numerical values Σ|| = Σ0G(1+ f) and Σ⊥ = Σ0G, where G is the growth

function, f = d lnG/d ln a and Σ0 = 11.0 h−1Mpc for the cosmology with σ8 = 0.8. When the physical value of the
sound horizon is known to high precision from CMB measurements the errors on s|| and s⊥ are equivalent to the
errors on angular and radial distances DA and H .
Derivatives of Eq. (A13) with respect to s|| and s⊥ are

∂Pb(x)

∂ ln s||
=

∂Pb(x)

∂ lnx
f||(µ), (A14)

∂Pb(x)

∂ ln s⊥
=

∂Pb(x)

∂ lnx
f⊥(µ), (A15)

where x =
(

k2||s
2
|| + k2⊥s

2
⊥

)1/2

, f|| = µ2 and f⊥(µ) = 1 − µ2. For most wavenumbers of interest ks0 is large and the

sinusoidal terms oscillate rapidly. We will use this fact to replace cos2(ks0) term by its rms value of 1/2 and to drop
terms proportional to sin2(ks0) when computing derivatives in Eqs. (A14)–(A15). Using Eq. (A10) with derivatives
in Eqs. (A14)–(A15) results in a Fisher matrix on radial and angular distances H(z) and DA(z)

Fij = V0A
2
0

∫ 1

0

dµfi(µ)fj(µ)

×
∫ ∞

0

k2dk
exp [−2(k/ksilk)

1.4]

[P (k)/P0.2 + (nP0.2R(µ))−1]2

× exp
[

−k2(1− µ2)Σ2
⊥ − k2µ2Σ2

||

]

exp
[

−k2µ2Σ2
z

]

(A16)

The Fisher matrix for H(z) and DA(z) computed from Eq. (A16) can be easily transformed into a Fisher matrix on
cosmological parameters w0, wa, Ωm, ΩΛ and h [see, e.g., 47].

3. CMB

Throughout, we compute Fisher matrices for the parameter set {w0, wa,ΩDE,Ωk, h,Ωb, ns, σ8}. However, our prior
from Planck CMB measurements comes in the form {w0, wa,ΩDE,Ωk,Ωmh2,Ωbh

2, ns, lnP} where lnP is the log of
the amplitude of primordial fluctuations [14]. We transform the prior matrix to our preferred format using a simple
chain rule. Starting from (7),

Fαβ =
∑

ij

(C−1)ij
∂Pi

∂λα

∂Pj

∂λβ
(A17)

=
∑

µν

∑

ij

(C−1)ij
∂Pi

∂λ′
µ

∂Pj

∂λ′
ν

∂λ′
µ

∂λα

∂λ′
ν

∂λβ
(A18)

=
∑

µν

F ′
µν

∂λ′
µ

∂λα

∂λ′
ν

∂λβ
(A19)

(A20)

Thus we express one set of parameters, λ′
α, in terms of the others, λβ , and compute the necessary matrix of partial

derivatives.


	I Introduction
	II Perturbations in Modified Gravity
	III DES Projections for the Dark Energy Equation of State
	A Supernovae, BAO, and the CMB
	B Clusters
	C Lensing
	D Initial Results and Shortcomings

	IV Multi-Dimensional Consistency Test
	A Predicting Parameter Tension
	B Projections
	C Parameter Degeneracies
	D Results

	V Conclusions
	 Acknowledgments
	 References
	A Fisher Matrices for Unmodified Probes
	1 Supernova
	2 Baryon Acoustic Oscillations
	3 CMB




