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ABSTRACT

We introduce a new statistic ωℓ(rs) for measuring and analyzing large-scale structure and partic-
ularly the baryon acoustic oscillations. ωℓ(rs) is a band-filtered, configuration space statistic that is
easily implemented and has advantages over the traditional power spectrum and correlation function
estimators. Unlike these estimators, ωℓ(rs) can localize most of the acoustic information into a single
dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e.,
the integral constraint) through the use of a localized and compensated filter. It is also sensitive to
anisotropic clustering through pair counting and does not require any binning. We measure the shift
in the acoustic peak due to nonlinear effects using the monopole ω0(rs) derived from subsampled dark
matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution
(HOD) modeling. All of these are drawn from 44 realizations of 10243 particle dark matter simulations
in a 1h−1 Gpc box at z=1. We compare these shifts with those obtained from the power spectrum
and conclude that the results agree. This indicates that any distance measurements obtained from
ω0(rs) and P (k) will be consistent with each other. We also show that it is possible to extract the
same amount of acoustic information using either ω0(rs) or P (k) from equal volume surveys.

Subject headings: distance scale — cosmological parameters — large-scale structure of universe —
methods: N-body simulations — cosmology: theory

1. INTRODUCTION

Baryon acoustic oscillations (BAOs) are relic imprints
on the baryon distribution left behind by the interaction
between radiation and matter in the primordial universe.
The large amount of radiation pressure due to high tem-
peratures in the early universe pushed matter apart as
it congregated under the influence of gravity. Oscillat-
ing sound waves were set up in the primordial plasma
due to these two competing effects (Peebles & Yu 1970;
Sunyaev & Zeldovich 1970; Bond & Efstathiou 1984;
Holtzman 1989; Hu & Sugiyama 1996; Hu & White
1996; Eisenstein & Hu 1998). The distance traveled
by these sound waves before recombination is about
150 comoving Mpc and is known as the acoustic
scale. When the photons stream off, the baryons
are deposited at these characteristic separations and
hence we would expect excesses with this separa-
tion in the baryon distribution today. This charac-
teristic scale makes for a very useful standard ruler
(Eisenstein & Hu 1998; Eisenstein et al. 1998; Eisenstein
2003; Blake & Glazebrook 2003; Hu & Haiman 2003;
Linder 2003; Seo & Eisenstein 2003; Matsubara 2004;
Amendola et al. 2005).
As the universe evolves, primordial density per-

turbations begin to grow nonlinearly, especially on
small scales (Jain & Bertschinger 1994; Meiksin et al.
1999; Meiksin & White 1999; Scoccimarro et al.
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1999). This causes the acoustic scale to become
slightly shifted from its predicted linear theory po-
sition (Seo & Eisenstein 2005; Huff et al. 2007; Ma
2007; Angulo et al. 2008; Crocce & Scoccimarro 2008;
Sanchez et al. 2008; Seo et al. 2008; Smith et al. 2008;
Padmanabhan & White 2009). One must calibrate this
shift before the acoustic scale can be used as a high
precision standard ruler.
Previous calibrations and other analyses of the acous-

tic signature have been conducted using the traditional
power spectrum and correlation function methods. Al-
though analytically they are both perfectly adequate, the
estimators used to derive them from simulations and ob-
servational data are subject to numerous difficulties.
The largest survey scales are always poorly con-

strained due to effects such as the integral constraint
making it a challenge to estimate the correlation func-
tion ξ(r) accurately at these scales. The integral
constraint arises due to the fact that we do not
know the cosmic number density of any population of
mass tracers (de Lapparent et al. 1988; Baumgart & Fry
1991; Peacock & Nicholson 1991; Hamilton 1993). Cur-
rent techniques used to estimate ξ(r) (Peebles 1973;
Sharp 1979; Hewett 1982; Blanchard & Alimini 1988;
Landy & Szalay 1993; Hamilton 1993) take the number
density of tracers in the survey volume to be the true
number density. This assumption effectively ignores all
power at scales larger than the survey size while simulta-
neously increasing the correlation between scales smaller
than the survey size which causes the off-diagonal co-
variance matrix terms to be larger than they would be
otherwise.
Limited survey volume and awkward survey bound-

aries are the major concerns when trying to es-
timate the power spectrum P (k). Typically, the
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measured power spectrum is a convolution of the
window function, the Fourier transform of the se-
lection function of the survey, and the underlying
true power spectrum (Feldman et al. 1994; Park et al.
1992; Baumgart & Fry 1991; Peacock & Nicholson 1991;
Kaiser & Peacock 1991). Therefore, these P (k) estima-
tors are biased. In the limit of infinite volume, the win-
dow function should be a delta function. However, real
surveys have finite volume and hence the window func-
tion has a finite albeit very small width. This induces
an artificial smoothing at small separations in k when
attempting to deconvolve the window function from the
observed density field.
Estimating ξ(r) and P (k) also requires the binning of

data. When any binning process is invoked, one must
carefully define any averaging used to derive the value
in each bin. To reduce these errors, bin sizes are made
smaller which increases the dimensionality of the covari-
ance matrix, making it even more difficult to estimate.
Also, survey boundaries need to be addressed with spe-
cial care.
In the study of large scale structure, we are also in-

terested in any anisotropies in the distribution of ob-
jects. These can result from the bulk motions of ob-
jects (Peebles 1980; Davis & Peebles 1983; Kaiser 1987)
as well as assumed models for the Hubble parameter
H(z) and the angular diameter distance DA(z) while
calculating object separations along the line of sight
(LOS) and transverse directions respectively. Since,
at large scales we would expect the distribution to
be isotropic, any anisotropy can be deconstructed into
velocity field information which in turn provides us
with constraints on Ωm (Kaiser 1987; Hamilton 1998;
Peacock et al. 2001; Hawkins et al. 2003; Tegmark et al.
2002; Zehavi et al. 2002) and the derivative of the
growth function f = dlnD/dlna (Song & Percival 2008;
Percival & White 2009; White et al. 2009). After mod-
eling these anisotropies, any residual anisotropies can
be used to constrain DA(z)H(z) (Alcock & Paczynski
1979). If our assumed H(z) or DA(z) models are in-
correct then the distribution of objects will still ap-
pear anisotropic after the bulk motion effects are re-
moved. The magnitude of this residual anisotropy
can be used to infer the true underlying cosmology
(Padmanabhan & White 2008; Okumura et al. 2008).
Anisotropic information can be extracted from the

redshift-space correlation function and to a lesser extent
from the redshift space power spectrum (Szalay et al.
1998). If one imagines a wide angle survey, P (k) estima-
tors that rely on a Fourier transform from a Cartesian

grid will suffer because an arbitrary wave vector (~k) will
not necessarily be parallel to the LOS (Cole et al. 1994,
1995; Zaroubi & Hoffman 1995; Szapudi 2004). This

means that each ~k mode will contain information about
both the LOS and transverse distributions. After aver-
aging to obtain the spherically averaged power spectrum,
any anistropies in the distribution of survey objects will
have been erased. Instead of taking a spherical average,

one can also analyze the full 3D P (~k) through Legen-
dre decomposition into radial and angular components.
However, an infinite sum is required and applicability
is limited to the linear regime (Heavens & Taylor 1995;
Percival et al. 2004). Pair count estimators for ξ(r), on

the other hand, record the distribution of tracers in both
the LOS and transverse directions accurately. Statistics
sensitive to anisotropic clustering are desirable as they
offer us a means to probe the underlying cosmology.
Ideally, we would also like the acoustic information to

be localized into a single feature at the acoustic scale to
simplify analysis. This is true for ξ(r) but not for P (k),
which has oscillatory acoustic features.
Although all of the above mentioned disadvantages of

ξ(r) and P (k) are minor, it is still beneficial to derive a
new statistic that does away with as many of the above
setbacks as possible. ωℓ(rs) is an example of such an
alternative.
The organization of this paper will be as follows. In §2,

we introduce ωℓ(rs), including its properties and compu-
tation. In §3, we describe the simulations, halo occupa-
tion models and analysis methods we use to derive acous-
tic peak shifts through implementation of the monopole
ω0(rs). We demonstrate the mutual consistency between
the peak shifts measured from the same simulations using
ω0(rs) and P (k) in §4. This is indicative of the agree-
ment we expect between distance measures from ω0(rs)
and P (k). We also show that with a reasonable finite fit-
ting range and our current choice of filter for computing
ωℓ(rs), we can extract the same amount of acoustic in-
formation using either ω0(rs) or P (k) from equal volume
surveys. Finally, we state the main results of this paper
in §5. Details of the matter and galaxy model P (k) re-
sults discussed in this paper can be found in the com-
panion papers Seo et al. (submitted) and Mehta et al.
(in prep) respectively.

2. THE ωℓ(rs) STATISTIC

2.1. Equations and Properties

We expand the angle dependence of the power spec-
trum and correlation function out as a series of Legendre
polynomials:

ξ(r, r̂ · ẑ)≡
∑

ℓ

ξℓ(r)Lℓ(r̂ · ẑ) (1)

∆2(k, k̂ · ẑ)≡ k3P (k, µ)

2π2
=

∑

ℓ

∆2
ℓ (k)Lℓ(µ) (2)

so that

ξℓ(r) = iℓ
∫

dk

k
∆2

ℓ(k)jℓ(kr) (3)

where jℓ is the spherical Bessel function of order ℓ and
Lℓ is the Legendre polynomial of order ℓ.
Imagine we have a filter, Wℓ(r, µ, rs) = Wℓ(r, rs)Lℓ(µ),

which we take to be compact and compensated
(
∫
r2 dr Wℓ(r, rs) = 0) with a characteristic scale rs. We

define our statistic as the redshift-space correlation func-
tion, ξs(r, µ), convolved with the filter as a function of
filtering scale rs.

ωℓ(rs)≡ iℓ
∫

d3r ξs(r, µ)Wℓ(r, rs)Lℓ(µ) (4)

=
4πiℓ

2ℓ+ 1

∫
r2 dr ξℓ(r)Wℓ(r, rs) (5)

=

∫
dk

k
∆2

ℓ (k)W̃ℓ(k, rs) (6)
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with

W̃ℓ(k, rs) ≡ (−1)ℓ
4π

2ℓ+ 1

∫
r2 dr Wℓ(r, rs)jℓ(kr) (7)

where the iℓ has been inserted for later convenience.
By making the filter compensated, we reduce the sen-
sitivity to the poorly constrained power at large scales
and the dependence on the uncertain mean density in
the sample. The correlation function is defined such
that ξ(r, µ) + 1 ∝ n−2 (Peebles 1980). Integrating the
left-hand side against Wℓ(r, rs)Lℓ(µ)d

3r results in ωℓ(rs)
scaling directly with n−2 following equation (4). The
constant term integrates to 0 as the filter is compensated.
Hence, any uncertainty in n enters as a pure multiplica-
tive offset in ωℓ(rs), which does not overwhelm the acous-
tic signature at large scales. This in essence, eliminates
sensitivity to the integral constraint, which is a small ef-
fect to begin with. This feature of the filter also makes
the statistic measured in different subvolumes of a sur-
vey more independent, an important feature as it makes
internal error estimates from methods such as bootstrap
or jackknife more robust (Padmanabhan et al. 2009).
Following Padmanabhan et al. (2007) we consider a

low order, smooth compensated filter. For simplicity we
assumeWℓ is independent of ℓ, though we could of course
choose different weights for each multipole6. In terms of
x ≡ (r/rs)

3, the filter

W (x) = (2x)2(1− x)2
(
1

2
− x

)
1

r3s
(8)

satisfies W (0) = W ′(0) = W (1) = W ′(1) = 0 and∫
dxW (x) = 0. The suggested form in configuration

space (top panel of Figure 1) has a broad hump peak-
ing at r ≃ 0.65 rs that matches the width of the acous-
tic peak in ξ(r) and a sharp (negative) spike at 0.9 rs
of width O(10%). This filter will smear a feature, such
as the acoustic peak in ξ(r), by very little which means
that the acoustic information will be localized in ωℓ(rs),
however, not as localized as in ξ(r). Obviously, given
sufficient signal-to-noise, measuring ωℓ(rs) for many rs
values would allow resolution in ξ(r) even below the in-
trinsic width of W (r/rs) (see §2.3).
With this choice of Wℓ the window function W̃ℓ can

be computed analytically (see Appendix for numerical
details) or numerically via fast Hankel transforms. We

show W̃ℓ(krs) for ℓ = 0, in the bottom panel of Figure

1. Since the filter is singly compensated, W̃ℓ ∼ k2 as
k → 0, reflecting insensitivity to large scales. At small

scales W̃ℓ(krs) → cos(krs)/(krs)
4, a much more rapid

convergence than evinced by the kernel for ξ(r), which
scales as (kr)−1. Thus ωℓ probes a narrow range of scales
in Fourier space and is insensitive to fluctuations on large
scales or poorly measured or modeled small-scale struc-
ture. One can choose the range of k to be sampled by
appropriate choice of rs: more information from high k
modes can be included by using smaller rs.
As an example, the linear theory monopole statistic

ω0(rs) is plotted in Figure 2. Plotting r2sω0 versus rs

6 For example, we could make the k-weight for ℓ = 0 and ℓ = 2
equal.

Fig. 1.— (top) The filter Wℓ(r/rs) in configuration space. There
is a broad hump matching the width of the acoustic peak in ξ(r)
which peaks at r ≃ 0.65 rs and a sharp (negative) spike at 0.9 rs
with a width on the order of 10%. A filter of this shape will smear
a feature, such as the acoustic peak in ξ(r), by only a small amount
which means that the acoustic information will be well localized in
ωℓ(rs). Its compensated nature implies that ωℓ(rs) is not sensitive

to the integral constraint. (bottom) The filter W̃ℓ(krs) for ℓ = 0.
The insensitivity of this filter to large scales is reflected in the

fact that it is singly compensated and W̃ℓ ∼ k2 as k → 0. At

small scales W̃ℓ(krs) → cos(krs)/(krs)4. This is a much more
rapid drop-off than observed in the kernel for ξ(r), which scales
as (kr)−1. These properties of the filter imply that ωℓ(rs) only
probes a narrow range of scales in Fourier space, and that it is
insensitive to large scale fluctuations or poorly constrained small-
scale structure.

Fig. 2.— Linear theory monopole statistic ω0(rs). The acoustic
information can be seen at the acoustic scale localized into a single
dip feature.
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gives a convenient vertical range. The acoustic informa-
tion is mostly localized into a single dip at the acoustic
scale (see §4.2.1).

2.2. Computation

It is possible to adapt ωℓ(rs) into a sum over unbinned
pair counts for any sample of mass tracers following the
methods described in Padmanabhan et al. (2007); there
is no need to first compute ξ(r, µ). Pair counting allows
us to record the redshift-space LOS and transverse distri-
butions in an unbiased manner. Hence, like ξ(r), ωℓ(rs)
is sensitive to any anisotropies of the tracer distribution
in clusters (discussed in §1).
The redshift-space correlation function can be esti-

mated as

ξs(r, µ) =
DD(r, µ)

RR(r, µ)
− 1, (9)

where DD(r, µ) is the number of data tracer pairs sep-
arated by r and µ, while RR(r, µ) is the analogue for
randomly distributed points. When analyzing observa-
tional data, the number of random points needs to be
much larger than the number of data points to keep the
shot-noise in RR smaller than that in DD, especially
at small r. Therefore, in this case, it is important to
normalize the random counts to the data counts by mul-
tiplying the RR piece by a factor of N2

D/N2
R, where ND

and NR are the total number of data and random points
respectively. For simulation data, however, it is not nec-
essary to use a very large number of random points to
compute RR smoothly at small scales (elicited below).
Equation (9) implies that Equation (4) can be rewrit-

ten as

ωℓ(rs) = iℓ
∫

d3rWℓ(r)Lℓ(µ)
DD(r, µ)

RR(r, µ)
. (10)

The −1 integrates to 0 due to the compensated nature
of the filter. The RR piece is purely geometrical and is
dependent only on the survey geometry (encoded in the
selection function Φ(r, µ)) and the number of random
points. Hence we can write RR as

RR(r, µ) = nRNRV Φ(r, µ)drdµ (11)

where V is the volume of a simulation or survey and
nR is the number density of random points. Normaliza-
tion by N2

D/N
2
R as described above then takes nRNRV

to nDNDV which is easily calculable for surveys with
well defined boundaries. For observations, Φ(r, µ) can
be computed via binning methods and then fit using a
smooth function Φ̂(r, µ). In the case of simulations in a

periodic box, Φ̂(r, µ) = 1 as all tracer particles are “de-
tected” with the same probability by construction. With
these points in mind, we can now pick arbitrarily small
bins when computing the DD piece since RR has been
approximated by a smooth function and hence does not
suffer from shot-noise induced through pair-counting. As
is such, we may employ a binning scheme in which there
is either zero or one DD pair per bin. This step reduces
the integral in Equation (10) to a sum over DD pairs as
in

ωℓ(rs) = iℓ
∑

i∈DD

Wℓ(ri)L(µi)

nDNDV Φ̂(ri, µi)
. (12)

2.3. Covariance Matrix

Since ωℓ is an unbinned quantity, we can in principle
estimate it at as many rs values as we wish without af-
fecting the signal in the adjacent values – there is no
bin which is made smaller. However adjacent points be-
come increasingly correlated as the rs spacing decreases,
compromising the usefulness of very fine sampling.
In the Gaussian limit, the covariance matrix is

Cov [ωℓ(rs), ωℓ′(r
′

s)] =
2(2ℓ+ 1)(2ℓ′ + 1)

V

×
∫

k2dk

2π2
W̃ℓ(krs)W̃ℓ′(kr

′

s)Iℓℓ′(k) (13)

with

Iℓℓ′ =
1

2

∫
dµLℓ(µ)Lℓ′(µ)

[
∑

L

PL(k)LL(µ) + ℵ
]2

(14)
where

∑
PL(k)LL(µ) is the legendre decomposition of

the full 3D power spectrum P (~k) and ℵ is shot-noise.
Assuming Poisson shot-noise, ℵ = n̄−1, where n̄ is the
number density of the mass tracer.

2.4. Summary of Key Features

We conclude this section with a summary of the key
features and advantages of ωℓ(rs) over ξ(r) and P (k)
estimators.

1. ωℓ(rs) has a compensated filter that reduces sensi-
tivity to poorly constrained large scale power and
circumvents the integral constraint. ξ(r), on the
other hand, experiences these problems. The com-
pensated filter also makes ωℓ(rs) measured in dif-
ferent subvolumes of the survey more independent
which is important for attaining robust error esti-
mates from methods such as bootstrap and jack-
knife.

2. The filter is approximately compact in both con-
figuration and Fourier space. The smoothness in
configuration space leads to the steep drop-off at
high k in Fourier space. This effectively minimizes
the impact of large k or small scale power which is
not well constrained in large cosmological surveys.
The filter is localized in configuration space which
means that, unlike in P (k), the acoustic informa-
tion is localized in ωℓ(rs). However, it is not as
localized as in ξ(r) (see §4.2.1).

3. Like ξ(r), ωℓ(rs) can be easily adapted into a pair
count statistic, so the distribution of tracers in both
the LOS and transverse directions can be recorded
accurately. Hence, it is unbiased and sensitive to
any anisotropies in the clustering of tracers. These
can be used to determine the underlying cosmology.
P (k) estimators do not typically allow this type of
analysis.

4. ωℓ(rs) is an unbinned statistic, unlike ξ(r) and
P (k).

While the setbacks of traditional P (k) and ξ(r) esti-
mators are minor, it is beneficial to have a statistic like
ωℓ(rs) which combines many of the advantages of both.
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3. SIMULATIONS AND ANALYSIS METHODS

A major goal in developing this new statistic is to use
it for better measuring and calibrating the acoustic scale.
The monopole statistic ω0(rs) is especially useful in this
regard as it is a direct map from the traditional 2-point
correlation function and power spectrum. In this section,
we implement ω0(rs) and demonstrate how it can be used
to measure the shift in the acoustic peak.

3.1. Simulations

We use an innovative N-body code named ABACUS
(Metchnik & Pinto 2010) to simulate the evolution of
large scale structure from an initial density field. This
code can achieve very high force accuracy with relatively
small computational effort as it does away with the te-
dious Fourier methods traditionally used to treat peri-
odic boundary conditions. Instead, Metchnik & Pinto
(2010) show the equivalence of Ewald summation and
infinite direct summation with the addition of one extra
term, and subsequently derive and exploit the computa-
tional advantages of the latter. In particular, it is possi-
ble to expand the far-field contribution to the direct force
summation into multipoles. The multipole moments are
the same in every periodic box and hence can be factored
out of the sum. The derivative terms remaining inside
the sum depend only on how each cell is partitioned and
hence need only be computed once. Expansion into mul-
tipoles also allows one to compute the force summation
to arbitrary accuracy. It is therefore possible to achieve
high computational efficiency and accuracy with compar-
atively short run-times.
We derive our results in redshift-space at z = 1 from a

set of 44 simulations with 10243 dark matter particles in
each. The simulations were performed in 1h−1 Gpc peri-
odic boxes with the WMAP5+SN+BAO best-fit cosmo-
logical parameters: Ωm = 0.279, ΩΛ = 0.721, h = 0.701,
Ωb = 0.0462, ns = 0.96 and σ8 = 0.817 (Komatsu et al.
2009) which implies a particle mass of 7.2× 1010h−1M⊙.
The initial conditions are generated via the second-order
Lagrangian perturbation theory code of Sirko (2005) at
z = 50 with no extra power for the box scale.

3.2. Halo Occupation Distributions

We use a simple friends-of-friends (Davis et al. 1985)
method with a linking length equal to 0.16 of the in-
terparticle spacing to identify the collapsed dark matter
halos in our simulations. We then populate these ha-
los with galaxies by applying simple HODs based on the
form

〈Ng(M)〉 = [1 + (M/Msat)
γ ]exp(−Mcen/M) (15)

where M is the halo mass, Mcen is the minimum
mass for a halo to contain a central galaxy, Msat

is the minimum mass for a halo to contain at least
one satellite, and γ is an exponential parameter that
we set to 1 (Guzik & Seljak 2002; Berlind et al. 2003;
Kravtsov et al. 2004; Zheng et al. 2005). We assign a
central galaxy to a halo if M > Mcen, this is a good ap-
proximation to 〈Ncen(M)〉 = exp(−Mcen/M). The cen-
tral galaxy is taken to be at the halo’s center of mass
and assigned the center of mass velocity. If a halo is
assigned a central galaxy, then the number of satellite

galaxies is determined by generation of a random in-
teger based on a Poisson distribution with mean equal
to 〈Nsat(M)〉 = (M/Msat)

γ . We then randomly pick a
corresponding number of halo particles and assign their
positions and velocities to the satellites.
In order to compare the peak shifts derived using

ω0(rs) and P (k) in a range of models, we apply three
different HODs to our simulations. The properties of
these HODs are described in Table 1 and obtained by
adjusting the values of Mcen and Msat. We also list
the properties of a dark matter (DM) only case that is
merely a 0.4% subsample of the particles in each sim-
ulation. We compute ω0(rs) in redshift-space via the
pair counting method detailed in §2.2 within the range
5h−1 Mpc ≤ rs ≤ 200h−1 Mpc using 5h−1 Mpc spacing.
We also compute σ8 using a similar pair counting method
derived from the configuration space equation

σ2
R =

∫ 2R

0

1

R3

(
3− 9

4

r

R
+

3

16

( r

R

)3
)
r2ξ(r)dr. (16)

3.3. Fitting ω0(rs) to Measure the Peak Shift

We fit the redshift-space ω0(rs) using the form

Psim(k) = B(k)Pm(k/α) +A(k) (17)

where

B(k) =
(b21 + b22k + b23k

2)

1 + rscalek
(18)

and A(k) transforms into A(rs) = a1r
−9
s in rs space.

Such a form for A(k) is motivated by the fact that
we want to marginalize over the shape of the correla-
tion function at small scales (i.e., the contribution of
the 1-halo term). Expanding Equation (8), we see that
W (x) = (−4x5 + 2x4 − 8x3 + 2x2) 1

r3
s

. This implies that

the highest order term in rs is r−9
s . At small scales, this

is the term that will dominate in the transformation from
ξ(r) to ω0(rs) as defined by Equation (4).
Pm(k) is the template power spectrum we use for our

fitting. To account for the degradation of the acous-
tic peak through nonlinear evolution and redshift distor-
tions, the template model Pm(k) is obtained from the
linear power spectrum Plin(k) at z = 1 by the modifica-
tion

Pm(k) = [Plin(k)−Psmooth(k)]exp(−k2Σ2
nl/2)+Psmooth(k)

(19)
where Psmooth is the dewiggled power spectrum de-
scribed in Eisenstein & Hu (1998) and Σnl is a nonlinear
parameter used to degrade the peak (Eisenstein et al.
2005; Tegmark et al. 2006; Crocce & Scoccimarro 2006;
Eisenstein et al. 2007; Crocce & Scoccimarro 2008;
Matsubara 2008). To allow maximum flexibility in our
marginalization, we fit over Σnl and the other nonlinear
nuisance parameter in equation (17), rscale.
Our scale dilation parameter α represents the shift in

the acoustic peak. Under this formalism, α > 1 in-
dicates a shift towards smaller scales and α < 1 in-
dicates a shift towards larger scales. Physically, α is
the ratio between the linear theory acoustic scale (150
Mpc) to the measured acoustic scale. Since all the
terms in the fitting function are additive, the basis
functions Pm(k/α)/(1+ rscalek), kPm(k/α)/(1+ rscalek),
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k2Pm(k/α)/(1 + rscalek) and r−9
s for a fixed α, Σnl and

rscale can be easily mapped into rs space (if necessary)
using equation (6) where upon a least-squares fit can be
performed against ω0(rs) from the simulations to obtain
values for the linear nuisance parameters b1, b2, b3 and
a1. As we are interested in the acoustic feature, we use a
fitting range of 30 ≤ rs ≤ 200h−1 Mpc. For an rs spac-
ing of 5h−1 Mpc, this implies 27 degrees of freedom in
the fit.
We assume that the errors on ω0(rs) can be well ap-

proximated by the covariance matrix C assuming Pois-
son shot-noise (see §3.4) with the addition of nonlinear
shot-noise. We also assume that the monopole (ℓ = 0)

dominates P (~k) so that all higher order contributions to
the power spectrum are effectively zero. This amounts

to computing C using P (~k) = Pm(k) as the input power
spectrum, where we take a fixed Σnl = 7.0h−1 Mpc at
z = 1 in redshift-space following Seo et al. (2008). We
normalize this power spectrum to the amplitude of the
redshift-space power spectrum through multiplication by
the bias squared defined as b2 = (σ8,case/σ8,matter)

2.
σ8,case values are given in Table 2 and σ8,matter = 0.506 in
real space at z = 1 in linear theory. We then iteratively
scale by b21 obtained through fitting until the output b21
is close to 1. This iterative normalization scheme is to
make the input power spectrum as close as possible to the
form being fit so that the computed covariance matrix is
a reliable estimate of the errors.
The shot-noise we enter into the calculation of C in-

cludes a nonlinear component (quoted in Table 1) in
addition to the Poisson shot-noise n̄−1 as described in
Equation (13). This additional shot-noise is a result of
nonlinear structure formation on small scales. We esti-
mate this nonlinear shot-noise as

ℵnonlin =

∫ rnonlin

0

4πr2[ξ(r) − ξlin(r)]dr (20)

where ξ(r) is the correlation function averaged over the
44 simulations for each HOD, ξlin(r) is the linear corre-
lation function at z = 1 and rnonlin is the scale above
which nonlinear effects become unimportant. We take
rnonlin to be 10h−1 Mpc. The resulting ℵnonlin is a rough
estimate of the excess small scale correlation due to non-
linear evolution. Since it makes little difference whether
all of this extra shot-noise comes in at zero separation in
r or through the extended effects of the one-halo term,
which is only important at small r, we assume the excess
correlation to be a spike at r = 0 for convenience. When
transformed into k space, this gives a constant and be-
comes extra white noise that we add on to every mode
equally, in addition to the Poisson shot-noise. For the
subsampled DM case, the linear and the measured corre-
lation functions were sufficiently similar at 1-10h−1 Mpc
to warrant taking ℵnonlin = 0 for this case. Alternatively,
one can also account for nonlinear shot-noise by com-
puting the covariance matrix using the nonlinear power
spectrum.
The χ2 likelihood indicator corresponding to the best-

fit linear nuisance parameters for fixed α, Σnl and rscale
is then

χ2 = (~ω0 − ~m)TC−1(~ω0 − ~m) (21)

where ~ω0 is ω0(rs) measured from the simulations, ~m is

Fig. 3.— ω0(rs) averaged over all 44 simulations for HOD1 (black
diamonds). Overplotted are a fit obtained through the form in
Equation (17) (red crosses) and a 0th order fit in Pm(k/α) (purple
dots), both over a range of 30 ≤ rs ≤ 200h−1 Mpc. One can see
that the 0th order fit already appears quite good with χ2 = 2.26
per dof. However, by introducing additional nuisance parameters,
the quality of the fit over the specified range improves further to
χ2 = 0.97 per dof.

the best-fit model and C−1 is the inverse of the covari-
ance matrix. We compute the best-fit values of α, Σnl

and rscale by minimizing χ2 of the fits for the DM case
and for each HOD using a generalized reduced gradient
method from IDL. We quote the bias for each case as
σ8,case/σ8,matter multiplied by the additional scaling fac-
tors of b1 described above.
We plot ω0(rs) averaged over all 44 simulations for

HOD1 in Figure 3. The fit obtained through the form
in Equation (17) and a 0th order fit obtained by just a
rescaling of Pm(k/α) are overplotted. Although the 0th
order fit already appears quite good, one can see that
introducing additional nuisance parameters improves the
quality of the fit even more over the fitting range. The χ2

per degree of freedom (dof) improves from 2.26 to 0.97.
Using this fitting technique, we derive values of bias,

α and associated errors for each of our three HODs and
our DM case via the resampling methods described in
the following section.

3.4. Resampling Methods

We use two different methods to measure the mean
peak shift α and the scatter in the mean σα for each case
in Table 1. The first is a modified jackknife technique
in which we randomly select M out of N simulations at
a time without replacement, average their ω0(rs) and
fit this average. We repeat this 1000 times and extract
a mean b1 for computing the bias, an average α and a
scatter in α. This scatter needs to be rescaled by an ad-
ditional factor of f =

√
M/

√
N −M in order to reflect

the scatter asscociated with the mean of α for N simu-
lations. For our simulations we have N = 44 and take
M = 22. With this choice of M , f = 1 and so the scatter
in α reflects the error in the mean of α. This method is
useful in that it provides us with a large set of α’s from
which we can easily derive a mean α and σα.
The fit results for the subsampled DM case as well as

for each HOD model are quoted in Table 2. The average
values of Σnl and rscale are also included for complete-
ness, however the focus of this paper is on α. The some-
what low value of χ2 per dof for HOD3 suggests that we
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are overestimating the amount of nonlinear shot-noise.
We are also approaching the shot-noise limited regime
for HOD3 as evidenced by the fact n̄P0.2 ≈ 1.6. We note
here that we used χ2 only to find the best-fit α for each
HOD, not to generate the errors. Hence, the fact that
our reduced χ2 values are slightly deviant from unity
does not hinder the error estimation.
The second method we use is jackknife resampling.

The results obtained using this method are in good agree-
ment with the first method. This indicates that the error
estimates obtained using our first method are robust in
comparison to more traditional methods.
By using these resampling techniques, any non-

Gaussian effects not accounted for by assuming a Gaus-
sian covariance matrix while fitting (as in §3.3) will be
reflected in σα.

4. COMPARISON TO THE POWER SPECTRUM

4.1. Comparison from Simulations

An important step in implementing this new statis-
tic is to show that it produces consistent results when
compared to established methods and can therefore be
an effective calibrator of the acoustic scale. We do this
by comparing the peak shifts measured from the same
set of simulations via the new ω0(rs) statistic and the
traditional P (k) method (see Seo et al. (submitted) and
Mehta et al. (in prep) for details).
As we use the same 1000 random sets of M simulations

as Seo et al. (submitted) and Mehta et al. (in prep),
there should be a 1:1 correspondance between the α’s de-
rived from ω0(rs) and P (k) for the DM case and for each
HOD. It should be noted that Seo et al. (submitted) and
Mehta et al. (in prep) use different P (k) fitting forms
from the one detailed in §3.3. They employ two fitting
forms, both of which can also be described by equation
(17). The first form has B(k) as a 2nd order polyno-
mial and A(k) as a 7th order polynomial. The second
form uses Pade approximants for B(k), i.e., B(k) =
b0(1+c1k+c3k

2+c5k
3)/(1+c2k+c4k

2) and a 2nd order
polynomial for A(k). In this paper, we will compare the
α’s measured from ω0(rs) against those measured from
P (k) by Seo et al. (submitted) (DM) and Mehta et al.
(in prep) (HODs) using the first form. It should also be
noted here that the P (k) results obtained for the DM
case by Seo et al. (submitted) utilize the full DM sam-
ple whereas we have subsampled to reduce computation
time in this work.
Figure 4 shows α from ω0(rs) versus α from P (k) for

the 1000 fit iterations performed on HOD2 (top) and DM
(bottom). The red cross indicates the mean α values with
their associated errors. The central grey line is a line
with slope unity that passes through the mean. The two
outer grey lines indicate the 1σ boundaries associated
with ∆αωP . These indicate that the correlation is 1σ
consistent with a line of slope unity that has a y-intercept
of 0 for both HOD2 and the DM case implying that the
two α sets are consistent with each other. The same
holds for HOD1 but HOD3 is slightly more deviant with
1.6σ agreement between ω0(rs) and P (k). The larger
discrepancy between the HOD3 results may be due to the
fact that shot-noise is becoming significant in this case
(as shown in §3.4). It could also be that shot-noise affects
P (k) and ω0(rs) differently or the nuisance parameters

Fig. 4.— α from ω0(rs) versus α from P (k) for HOD2 (top) and
DM (bottom). The data points are from a resampling technique
in which we randomly pick M = 22 simulations out of N = 44
total and fit the averaged ω0(rs) from these M simulations. We
repeat this 1000 times and hence obtain 1000 values of α. The

scatter on α needs to be rescaled by
√
M/

√
N −M to reflect the

true scatter on the mean. For our choice of M , this scaling factor
is equal to 1. Hence the scatter in the plot truly reflects the scatter
on the mean of α. The red cross marks the mean α values with
their associated errors. The central grey line has unity slope and
passes through the mean. The two outer grey lines delineate the 1σ
boundaries associated with ∆αωP . As the data points lie largely in
between the 1σ lines with a slope similar to unity for both HOD2
and the DM case (see Table 3), we conclude that the two α sets
are consistent with each other. The same correlation is observed
for HOD1. HOD3 shows 1.6σ agreement between ω0(rs) and P (k).
This slightly larger discrepancy may be due to the fact that shot-
noise is becoming significant in this low number density case. Also,
shot-noise may affect P (k) and ω0(rs) differently or the nuisance
parameters may not be fully handling the scale-dependence of a
high-bias HOD such as HOD3. The large scatter in the DM case
is likely due to the subsampling of matter in the computation of
ω0(rs) but not in P (k). The overall agreement between the ω0(rs)
and P (k) results imply that distance measures will be consistent
between the two.

are not fully handling the scale-dependence of a high-bias
HOD such as HOD3. The large scatter in the DM case is
likely due to the fact that we have subsampled the matter
in our computation of ω0(rs) but not in P (k). The mean
differences, ∆αωP = 〈αω − αP 〉, for the DM case as well
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Fig. 5.— χ2 versus α for fits in ω0(rs), P (k) and ξ(r). We shift
the acoustic feature from linear theory by a given α (here αgiven =
1.0) and run our fit algorithms to see how well we can recover this
input. For ω0(rs) we fit between rs = 50-200h−1 Mpc, for P (k) we
fit between k = 0.0-1.2h Mpc−1 and for ξ(r) we fit between r = 50-
200h−1 Mpc. The parabolic shape of the curves is due to the fact
that ω0(rs), P (k) and ξ(r) are derived from a Gaussian random
field in linear theory. The width of the parabola at χ2 = 1 is then
the theoretical σα of the fit. The ω0(rs) and P (k) curves overlap
nicely, implying that the σα ratio between ω0(rs) and P (k) is ∼ 1.
This indicates that for the given fitting ranges ω0(rs) and P (k)
contain equal amounts of acoustic information. Hence, the same
amount of acoustic information can be obtained through either
ω0(rs) or P (k) from analysis of equal volume surveys.

as for each HOD are given in Table 3 along with their 1σ
errors. One can see that the α’s from most of the cases
are 1σ consistent between ω0(rs) and P (k), indicating
that distance measures will be consistent between the
two statistics. Hence we conclude that ω0(rs) is a well-
tuned statistic for analysis of BAOs.

4.2. Theory Constraints on σα

As we wish to promote ω0(rs) as an alternative method
for analyzing the BAO, it is necessary to show how much
acoustic information can be extracted from ω0(rs) rela-
tive to P (k) and ξ(r) for surveys of the same size. We
do this by shifting the acoustic feature in the linear the-
ory ω0(rs), P (k) and ξ(r) by a given α and then running
our fit algorithms to see how well we can recover this
input α. For ω0(rs) we fit between rs = 50-200h−1 Mpc
in rs spacings of 2.5h−1 Mpc; for P (k) we fit between
k = 0.0-1.2h Mpc−1 in log(k) spacings of ∼ 0.002; and
for ξ(r) we fit between r = 50-200h−1 Mpc in r spac-
ings of 1h−1 Mpc. We use the same fitting technique as
described in §3.3 but with different forms for B(k) and
A(k) that are then transformed to r and rs space to fit
ωℓ(rs) and ξ(r) respectively. We pick B(k) = b, where
b is the large-scale bias, and A(k) to be the cold dark
matter-only power spectrum multiplied by a set of cu-
bic spline functions specified at k = 0.0-1.08hMpc−1 in
spacings of dk = 0.12h Mpc−1 and the derivative spec-
ified at the first spline point. The spline functions are
taken to be natural (i.e., second derivative equal to 0) at
the last spline point, beyond which a linear extrapolation
is implemented. This choice of A(k) ensures convergence
when transformed to rs space and makes the fits in P (k),
ξ(r) and ω0(rs) readily comparable. We assume a sur-
vey volume of 1h−1 Gpc with ℵ = 1000 (i.e., one million
particles). As a cross check, we confirmed that this new

fitting form does in fact give similar results to the form
used in §3.3.
Figure 5 plots the χ2 versus α for ω0(rs), P (k) and

ξ(r). Here the input α is equal to 1. If ω0(rs), P (k)
and ξ(r) are derived from a Gaussian random field as
they are in linear theory, we would expect that χ2 ver-
sus α be parabolic as shown in the figure. The width
of the parabola at χ2 = 1 is then the theoretical σα

from the fit. The overlap between the ω0(rs) and P (k)
curves indicates that the ratio of σα for ω0(rs) to P (k) is
∼ 1. This means that for the given fitting ranges ω0(rs)
and P (k) contain equal amounts of acoustic information.
Since, volume is proportional to χ2 which is proprotional
to σ−2, an important implication is that we are able
to obtain the same amount of acoustic information us-
ing either ω0(rs) or P (k) from analysis of equal volume
surveys. We emphasize here that the results presented
in this section assume idealized linear theory forms for
P (k), ξ(r) and ω0(rs). In practice, numerous physical
and observational effects distort the measured statistics
from these ideals. However, we expect that the features
described in §2 will reduce the impact of troublesome
observational effects in any BAO analysis using ω0(rs).

4.2.1. Locating the Acoustic Information

It is useful to track down where the acoustic informa-
tion lies and how it changes with α in ω0(rs), ξ(r) and
P (k). This is reflected in the derivatives dω0/dα, dξ/dα
and dP/dα after marginalizing out the broadband shape.
To do this, we calculate the residuals from the P (k) fits
described in §4.2 for α = 0.996 and α = 1.004. We then
take dP/dα as the difference between these residuals di-
vided by 1.004 − 0.996 = 0.008. The transformations
of dP/dα into rs and r space then give us dω0/dα and
dξ/dα respectively. We have plotted dP/dα in the top
panel of Figure 6, dξ/dα in the middle panel and dω0/dα
in the bottom panel. It is evident from these plots that
the acoustic information is not as localized in ω0(rs) as
in ξ(r), but it is still reasonably well localized. The bot-
tom panel of Figure 6 indicates that the optimal fitting
range that will include all of the acoustic information en-
coded in ω0(rs) is somewhere within the range rs = 30-
300h−1 Mpc.
The top panel of Figure 7 shows how σα changes as the

minimum rs of the fitting range is stepped up from 30-
90h−1 Mpc with the maximum rs of the fitting range
fixed at 300h−1 Mpc. The bottom panel of Figure 7
shows how σα changes as the maximum rs of the fit-
ting range is stepped down from 300-110h−1 Mpc with
the minimum rs of the fitting range fixed at 30h−1 Mpc.
One can see that when the minimum of the fitting range
is larger than 50h−1 Mpc, σα begins to deviate, indica-
tive of missing some of the acoustic information. This
also happens when the maximum of the fitting range is
smaller than 140h−1 Mpc. Hence, the minimum fitting
range that allows one to extract all of the acoustic infor-
mation appears to be rs = 50-140h−1 Mpc. We caution,
however, against using this fitting range for analysis be-
cause Figure 6 indicates that there is acoustic informa-
tion beyond 140h−1 Mpc in rs space. Our specific choice
of filter is forcing ω0(rs) to be smooth which may be why,
once we have sampled over the peak at ∼ 130h−1 Mpc,
we can predict the shape of the curve accurately without
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Fig. 6.— (top) dP/dα calculated from the residuals of the P (k)
fits after marginalizing out the broadband shape. The change in
P (k) with α captured by dP/dα should correspond to how the
acoustic information is shifted as α changes. (middle) dξ/dα ob-
tained by transforming dP/dα. This shows where the acoustic in-
formation is located in configuration space and how it changes with
α. (bottom) dω0/dα obtained by transforming dP/dα to rs space.
This shows where the acoustic information is located in rs space
and how it changes with α. Comparison with the middle panel
indicates that the acoustic information is not as localized in ω0(rs)
as it is in ξ(r), however, it is still reasonably well localized. All
of the acoustic information is located within rs ∼ 30-300h−1 Mpc,
indicating that the optimal fitting range for ω0(rs) is somewhere
within these limits.

fitting to larger rs (i.e., there is very little χ2 contribu-
tion from large scales). Although it would increase the
computation time, we recommend extending the maxi-
mum of the fitting range out to around 200h−1 Mpc to
ensure a robust measurement of the acoustic information.
This is the motivation behind picking the fitting range
for ω0(rs) to be rs = 50-200h−1 Mpc in Figure 5.

5. CONCLUSIONS

We have presented a new statistic ωℓ(rs) for analyz-
ing baryon acoustic oscillations. This new statistic is
advantageous over the traditional methods used to es-

Fig. 7.— (top) Plots how σα changes as the minimum rs of the
fitting range is stepped up from 30-90h−1 Mpc with the maximum
rs of the fitting range fixed at 300h−1 Mpc. The deviation of σα at
rs,min larger than 50h−1 Mpc indicates that some of the acoustic
information is being missed by this fitting range. (bottom) Plots
how σα changes as the maximum rs of the fitting range is stepped
down from 300-110h−1 Mpc with the minimum rs of the fitting
range fixed at 30h−1 Mpc. The deviation of σα at rs,max smaller
than 140h−1 Mpc indicates that some of the acoustic information
is being missed by this fitting range. The above analysis implies
that in order to extract all of the acoustic information, one should
fit between rs = 50-140h−1 Mpc. However, Figure 6 indicates that
there is acoustic information beyond 140h−h Mpc in rs space, so
we caution against using this fitting range for analysis. It is possible
that our specific choice of filter is forcing ω0(rs) to be smooth, so
once we have sampled over the peak at ∼ 130h−1 Mpc, the shape
of the curve can be predicted accurately without fitting to larger
rs. We recommend extending the maximum of the fitting range
out to around 200h−1 Mpc, at the expense of computation time,
to ensure a robust measurement of the acoustic information.

timate ξ(r) and P (k) as it does away with many of
their setbacks. Estimators of ξ(r) are sensitive to poorly
measured large scale power through effects such as the
integral constraint, whereas the compensated nature of
the filter Wℓ(r) used to compute ωℓ(rs) circumvents this
problem. This feature of the filter also makes ωℓ(rs)
measured in different subvolumes of a survey more in-
dependent which makes error estimation methods such
as bootstrap and jackknife more robust. Estimators of
P (k) give the true density field convolved with a win-
dow function making the measured statistic biased. At-
tempting to deconvolve the window function introduces
artificial smoothing at small separations in k due to their
near delta function shapes in real observational surveys.
ωℓ(rs), on the other hand, does not suffer from this as it
is a pair count statistic. Pair counting allows us to ac-
curately note the unbiased distribution of tracers both
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along the LOS and in the transverse direction. The
fact that the distribution can be recorded accurately also
means that ωℓ(rs) is sensitive to anisotropic clustering.
Hence it can also be used to probe the underlying cos-
mology. In addition, there is no need to worry about
binning related issues when computing ωℓ(rs) as it is an
unbinned statistic. The smoothness of the filter in con-
figuration space causes the rapid fall-off of the filter in
Fourier space. This reduces the impact of large k modes
or small scales which are not well constrained in large
cosmology surveys. The localized nature of Wℓ(r) is con-
ducive to minimal smearing of the acoustic information
so that it is mostly concentrated in a single dip at the
acoustic scale. This is simpler to analyze than the oscil-
latory acoustic features in P (k).
We also showed that with the present form for Wℓ(r)

and a finite fitting range encompassing the acoustic scale,
it is possible to extract the same amount of acoustic in-
formation using either ω0(rs) or P (k) from equal vol-
ume surveys. It is important to note that these results
were obtained through analysis of idealized linear theory
forms for P (k), ξ(r) and ω0(rs). In practice, the mea-
sured forms of these statistics are distorted by various
physical and observational effects. However, we expect
that the features described in §2 will reduce the impact
of troublesome observational effects in any BAO analysis
using ω0(rs). We also demonstrated where the acous-

tic information is located in ω0(rs), ξ(r) and P (k) and
how it changes with α. From this analysis, the minimum
fitting range required to extract all of the acoustic infor-
mation from ω0(rs) appears to be rs = 50-140h−1 Mpc.
However, we recommend extending the maximum of the
fitting range out to around 200h−1 Mpc to ensure a ro-
bust measurement of the acoustic information.
We compared the acoustic peak shifts derived using

ω0(rs) to those derived using P (k) for a pure DM case as
well as for three halo based galaxy models. The results
for the DM and the higher number density cases are all
much better than 1σ consistent with each other. The low
number density case is slightly deviant with 1.6σ agree-
ment between ω0(rs) and P (k). This may be a result of
approaching the shot-noise limited regime or our lack of
understanding of shot-noise in general and how it may
affect P (k) and ω0(rs) differently. It may also be caused
by our fitting form not handling the scale-dependence of
high-bias models in full. The general consistency betwen
ω0(rs) and P (k) is encouraging and implies that distance
measures will be consistent between the two methods.
From this and the features listed above, we conclude that
ω0(rs) is a well-tuned new statistic for BAO analysis.
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TABLE 1
HOD properties

Model Total # Satellite Mcen Msat n̄ 2 n̄P0.2 ℵnonlin

of Galaxies1 Fraction (%) (h−1M⊙) (h−1M⊙) (h3 Mpc−3)

DM 4× 106 - - - 0.004 4.60 0.0
HOD1 2× 106 5 1.4× 1012 9.2× 1013 0.002 5.78 450.0
HOD2 1× 106 5 2.6× 1012 1.5× 1014 0.001 3.59 700.0
HOD3 3× 105 5 6.4× 1012 3.1× 1014 0.0003 1.59 1550.0

Note. — HODs are referred to by the designations under the “Model” heading throughout the
paper.
aNumber of DM particles in the DM only case.
bThe nominal Poisson shot-noise is n̄−1.

TABLE 2
Fit results for each HOD model

Model α− 1 σα Σnl rscale χ2 bias 1 σ8

(%) (%) (per d.o.f) (b)

DM 0.0457 0.0023 6.66 19.99 0.95 1.25 0.63
HOD1 0.1065 0.2243 5.61 19.78 0.97 2.04 1.11
HOD2 0.1634 0.2449 5.85 19.98 0.89 2.28 1.25
HOD3 0.4897 0.3326 6.27 20.04 0.75 2.77 1.55

Note. — Fitting range: 30 ≤ rs ≤ 200h−1 Mpc. σα is the error on the mean α of the
44 simulations.
aBias is not equal to 1 for the DM only case because we are working in redshift space.



12

TABLE 3
Difference in mean α between

ω0(rs) and P (k)

Model ∆αωP

(%)

DM 0.0516 ± 0.1205
HOD1 0.0076 ± 0.0672
HOD2 0.0205 ± 0.0600
HOD3 0.1035 ± 0.0665

APPENDIX

EVALUATING W̃ℓ(K)

The expressions for W̃ℓ(k), in terms of polynomials of k times trigonometric functions, involve a lot of cancellation.
This makes them unstable to direct evaluation. However if we define

Kn(k) =
2 + n

(krs)2+n

∫ krs

0

xn sinx dx (A1)

then

W̃0(k) =
8π

3

[
1

3
(K7 −K16)− (K10 −K13)

]
(A2)

while

W̃2(k) = −24π

5k2
[3K5 − 16K8 + 25K11 − 12K14] . (A3)

It is straightforward to evaluate Kn(x), the limits are

Kn(x) = 1− n+ 2

3!(n+ 4)
x2 +

n+ 2

5!(n+ 6)
x4 + · · · (A4)

as x → 0 and

Kn(x) = −(n+ 2)
cosx

x2
+ n(n+ 2)

sinx

x3
+ · · · (A5)

as x → ∞. The Kn also satisfy a simple recurrence relation

Kn(x) =
n+ 2

x3
[n sinx− x cosx− (n− 1)xKn−2] . (A6)

Use of this recurrence relation for high k and the power-series expansion for low k results in stable evaluation of the

W̃ℓ.




